
L6 - 1© P. Raatikainen Switching Technology / 2005

Switch Fabrics

Switching Technology S38.165
http://www.netlab.hut.fi/opetus/s38165

L6 - 2© P. Raatikainen Switching Technology / 2005

Switch fabrics

• Multi-point switching
• Self-routing networks
• Sorting networks
• Fabric implementation technologies
• Fault tolerance and reliability

L6 - 3© P. Raatikainen Switching Technology / 2005

Sorting networks

• Types of blocking

• Internal blocking

• Output blocking

• Head of line blocking

• Sorting to remove internal blocking

• Resolving output conflicts

• Easing of HOL blocking

L6 - 4© P. Raatikainen Switching Technology / 2005

Internal blocking

• Internal blocking occurs at the internal links of a switch fabric
• In a switch fabric, which implements synchronous slot timing,

internal blocking implies that some input (i) to output (j)
connection cannot be established (even if both are idle ones)

• Internally non-blocking switch makes all requested connections
(i, ji), provided that there are no multiple request to the same
output (ji ≠ ji’ if i ≠ i’, 1≤i,j≤N)

1

2

Input
i

3

4

1

2

Output
j

3

4

Connection pattern = {(2, 1), (3, 4), (4, 3)}

Dest.
j i

1

4

3

L6 - 5© P. Raatikainen Switching Technology / 2005

Output blocking

• Internally non-blocking switch can block at an output of a switch
fabric due to conflicting requests, i.e., ji = ji’ for some i ≠ i’

• When an output conflict occurs, switch should connect one of the
conflicting inputs to requested output => output conflict resolution

• Major distinction between a circuit and packet switching node
• a packet switching node must solve output conflicts per time-slot (time-

slots are not assigned beforehand)
• a circuit switching node solves

possible output conflicts and
assigns a time-slot for entire
duration of a connection
beforehand

1

2

Input
i

3

4

1

2

Output
j

3

4

Dest.
j i

1

4

3

3

Conflicting output request

L6 - 6© P. Raatikainen Switching Technology / 2005

Head of line (HOL) blocking

• Packets not forwarded due to output conflict are buffered
=> more delay experienced

• Buffered packets normally served in a FCFS (First Come First
Served) manner
=> HOL blocking introduced at the input queues

• Packet facing HOL blocking
may prevent the next packet in
the queue to be delivered to
a non-contended output
=> throughput of a switch
reduced

1

2

Input
i

3

4

1

2

Output
j

3

4

Dest.
j i

14

43

31

32

Conflicting output request
Packet blocked
by HOL queuing

L6 - 7© P. Raatikainen Switching Technology / 2005

Sorting to remove internal blocking

• If connection requests at the inputs of a banyan network are
compact and in strictly increasing order
=> input-output paths are link-disjoint
=> banyan internally non-blocking

• A method for building an internally non-blocking network is to apply
a sorting network in front of a banyan network to generate a strict
increasing order of destination addresses for the banyan network

• A sorting network connects an input i, which has a connection
request to output j i, to an output of a sorting network according to
the position of j i in the sorted list of destination requests (see figure)

• Sorting networks can be formed by interconnecting nodes of smaller
sorting networks (such as 2x2)

• Self-routing should be applied in the sorting network

L6 - 8© P. Raatikainen Switching Technology / 2005

Internally non-blocking and self-routing
switch

1

2

Input
i

3

4

Output
j

4

Dest.
j i

1

4

3

1

2

3

Sorting network
(Batcher)

Routing network
(Banyan)

1

3

4

Compact and monotone
output addresses

L6 - 9© P. Raatikainen Switching Technology / 2005

Sorting to remove internal blocking

• A permuted list (a1, a2 , …, aN) can be restored to its original order
by sorting

• A switching network for a maximal connection pattern can be
obtained from a sorting network by treating 2x2 sorting elements
as 2x2 switching elements

• Asymptotic lower bound for 2x2 sorting elements to build a NxN
sorting network is Nlog 2N (as for a respective switching network)
- however, no sorting network found so far to obtain this bound

• Sequential merge-sorting process can be used to obtain Nlog2N
bound for the number of binary sorts

L6 - 10© P. Raatikainen Switching Technology / 2005

Merge-sorting algorithm

Merge-sorting algorithm

• Input : unsorted list AN = (a1, a2 , …, aN)

• Sort procedure:
Sort (AN) = Merge {Sort(a1, …, a½N), Sort (a½N+1, …, aN)}

• Merge procedure:
Merge {(a1, …, am), (a’1, …, a’m’)}

= {a1, (Merge ((a2, …, am), (a’1, …, a’m’))} if a1≤ a’1
= {a’1, (Merge ((a1, …, am), (a’2, …, a’m’))} if a1> a’1

• Procedure Merge, called by procedure Sort, takes two sorted lists
and merges them by comparing the smallest elements in each of
the two sorted lists

L6 - 11© P. Raatikainen Switching Technology / 2005

Merge-sorting algorithm (cont.)

• Merging of two sorted lists (N/2 numbers in each) requires N
binary sorts

• Total complexity of sorting N numbers, which are in any order, is
C(N) = 2C(N/2) = N + 2(N/2 + 2C(N/4)) = … = Nlog2N

• Due to sequential nature of procedure Merge the sorting takes at
least O(N) time

1
4
6

10
11
15
17
20

2
5
7
9

12
14
16
24

Compare numbers
at the top of lists

then merge

L6 - 12© P. Raatikainen Switching Technology / 2005

Merge-sorting example

Sort the set {8, 3, 1, 4, 6, 2, 9, 5}

8 3 1 4 6 2 9 5

83 1 4 62 95

Step 1: 4 times 2 sorts

31 4 8 52 96

Step 2: 2 times 4 sorts

21 3 4 65 98

Step 3: 1 time 8 sorts

L6 - 13© P. Raatikainen Switching Technology / 2005

Odd-even merging

Recursive construction of an odd-even merger
- number of sorting stages is log2N
- number of sorting elements is 0.5N [log2N-1]+1

a0

a1

a2

a3

aN/2-2

aN/2-1

...

b0

b1

bN/2-4

bN/2-3

bN/2-2

bN/2-1

...

e0

e1

eN/2-4

eN/2-3

eN/2-2

eN/2-1

...

e2

e3

e4

eN/2-5

Even
merger

N/2

Odd
merger

N/2

...
...

...
...

...
...

d0

d1

dN/2-3

dN/2-2

dN/2-1

...

c0

c1

cN/2-2

cN/2-1
...

c2

...

L6 - 14© P. Raatikainen Switching Technology / 2005

Bitonic list

• Bitonic list AN = (a1, a2 , …, aN) is a list for which it holds that
a1 ≤ a2 ≤ … ≤ ak-1 ≤ ak and ak ≥ ak+1 ≥ … ≥ aN-1 ≥ aN (1≤ k ≤ N)

• Unique cross-over property - when comparing a monotonically
increasing list with a monotonically decreasing list, there is at most one
position where the two lists cross-over in their values (see figures)

1
4
6

10
11
15
17
20

24
16
14
12
9
7
5
2

<

>

Bitonic list

Cross-over

17
20
24
16
14
12
9
7

5
2
1
4
6

10
11
15<

>

Circular bitonic list

Cross-over

L6 - 15© P. Raatikainen Switching Technology / 2005

Bitonic merging

Recursive construction of a bitonic merger
- number of sorting stages is log2N
- number of sorting elements is 0.5N log2N

a0

a1

aN/2-2

aN/2-1

...

aN/2

aN/2+1

aN-2

aN-1

...

Bitonic
merger

N/2

Bitonic
merger

N/2

...
...

...
...

d0

d1

dN/2-3

dN/2-2

dN/2-1

...

c0

c1

cN/2-2

cN/2-1

...

c2

e0

e1

eN/2-2

eN/2-1

...

eN/2

eN/2+1

eN-2

eN-1

...

...

L6 - 16© P. Raatikainen Switching Technology / 2005

Sorting by merging

Recursive construction of a sorting by merging network
- number of sorting stages is 0.5Nlog2N(log2N + 1)

a0

a1

aN/2-2

aN/2-1

...

aN/2

aN/2+1

aN-2

aN-1

...

...

2x2

2x2

...

e0

eN-1

2x2

2x2

...

Merger
N

Merger
N/2

Merger
N/4

Merger
N/4

Merger
N/2

Merger
N/4

Merger
N/4

...

...

L6 - 17© P. Raatikainen Switching Technology / 2005

Odd-even sorting network example

• Number of sorting stages is 0.5log2N(log2N + 1)
• Number of sorting elements is 0.25N[log2N(log2N - 1) + 4] - 1

2x2 UP SORTER 2x2 DOWN SORTER

2x2
SORTER

4x4
SORTER

8x8
SORTER

L6 - 18© P. Raatikainen Switching Technology / 2005

Bitonic sorting network example

• Number of sorting stages is 0.5log2N(log2N + 1)

• Number of sorting elements is 0.25Nlog2N(log2N + 1)

2x2
SORTER

4x4
SORTER

8x8
SORTER

2x2 UP SORTER 2x2 DOWN SORTER

L6 - 19© P. Raatikainen Switching Technology / 2005

Batcher-Banyan self-routing network

2x2
BITONIC
SORTER

4x4
BITONIC
SORTER

8x8
BITONIC
SORTER

8x8
ROUTER

SORTING NETWORK ROUTING NETWORK

2x2 UP SORTER 2x2 DOWN SORTER

L6 - 20© P. Raatikainen Switching Technology / 2005

Resolving output blocking

• Packet switches do not maintain a scheduler for dedicating time-slots
for packets (at the inputs)
=> output conflicts possible
=> output conflict resolution needed on slot by slot basis

• Output conflicts solved by

• polling (e.g. round robin, token circulation)
- do not scale for large numbers of inputs
- outputs just served have an unfair advantage in getting a new time-slot

• sorting networks (making a banyan network internally non-blocking)

• An example of sorting networks is sort-purge-concentrate network
• when sorting self-routing addresses, duplicated output requests appear

adjacent to each other in the sorted order (see figure)
- either one has to be purged (deleted)
- successful delivery is acknowledged and purged packets are re-sent

L6 - 21© P. Raatikainen Switching Technology / 2005

Sort-purge-concatenate network

1

2

Input
i

3

4

Output
j

4

Dest.
j i

1

2

3

Sorting
network

Concentration
network

Compact and sorted
output addresses

1

3

4

1

3

3

4

3

1

4

3

Purge
network

Routing network
(Banyan)

Sorted destination
addresses

• A sorting network can easily handle packet priority by
- adding a priority field in the self-routing address
- higher priority packets are placed in a favorable position before purging
- support of priority is an essential feature when integrating circuit and
packet switching in a sort-banyan network

L6 - 22© P. Raatikainen Switching Technology / 2005

Resolving HOL blocking

• HOL blocking solved by

• allowing packets behind a HOL packet to contend for outputs

• allow multiple delivery of conflicting HOL packets to an output
buffer
- multiple rounds of arbitration for sort-banyan network
- multiple planes of sort-banyan networks

• a good solution is to implement multiple input buffers (one for
each output if possible) and if the packet in turn cannot be
transmitted due to HOL, transmit an other packet from another
buffer

L6 - 23© P. Raatikainen Switching Technology / 2005

Construction of a multipoint
packet switch

• Multipoint switch can be constructed by cascading a copy network
and a point-to-point (routing) network

• copy network is a cascade of a compact super-concentrator (e.g.
reverse banyan network) and copy distribution network (e.g. multicast
banyan network)

COMPACT SUPER
CONCENTRATOR

COPY DISTRIBUTION
NETWORK

BANYAN SWITCH

COPY NETWORK ROUTING NETWORK

L6 - 24© P. Raatikainen Switching Technology / 2005

Multipoint packet switch

• In a self-routing multipoint switch
• incoming packets may be destined to multiple outputs
• if packets carry all needed destination addresses, headers would be

variable length (and long)
• header problem can be avoided by labeling the packet (to be copied) by

a virtual address (Broadcast Channel Number, BCN) and number of
copies - each copy (with the same BCN) is given a distinct destination
address

• Compact super-concentrator connects active inputs so that their
destination addresses form a compact and sorted set at the outputs

• Copy distribution network establishes a multicast tree for each
multicast connection

• Copy network becomes a self-routing one by providing
• self-routing address for compact super-concentrator
• self-routing interval address for copy distribution network

L6 - 25© P. Raatikainen Switching Technology / 2005

Multipoint packet switch (cont.)

• Running-sum-adder is user for calculating self-routing address and
self-routing interval address

+

x

x+yy

x

Function of
an adder

+

+

+

+

+

+

+

+

+

+

+

+

BCN +
number
of copies

Self-routing address
(BCN +IR) +
interval address

L6 - 26© P. Raatikainen Switching Technology / 2005

Example of a multicast banyan network

0000
0001

0010
0011

0100
0101

0110
0111

1000
1001

1010
1011

1100
1101

1110
1111

0000
0001

0010
0011

0100
0101

0110
0111

1000
1001

1010
1011

1100
1101

1110
1111

Multipoint connections:
X1 = 7 => y1 = {1, 3}
X2 = 8 => y2 = {4, 5, 6}
X3 = 9 => y3 = {7, 8, 10, 13, 14}

L6 - 27© P. Raatikainen Switching Technology / 2005

2x2
BITONIC
SORTER

4x4
BITONIC
SORTER

8x8
BITONIC
SORTER

8x8
ROUTER

SORTING NETWORK ROUTING NETWORK

2x2 UP SORTER 2x2 DOWN SORTER

Batcher-Banyan example

000/110 (6)

001/100 (4)

010/ *** (-)

011/011 (3)

100/111 (7)

101/010 (2)

110/ *** (-)

111/001 (1)

Source/dest.

6

4

3

-

7

2

1

-

-

4

6

3

2

-

1

7

4

3

7

-

-

6

1

2

4

3

1

2

7

-

-

6

3

2

4

1

-

6

-

7

3

1

4

2

-

6

-

7

2

1

-

3

7

6

4

-

3

1

2

-

6

-

7

4

2

-

3

1

6

4

7

-

L6 - 28© P. Raatikainen Switching Technology / 2005

Switch fabrics

• Multipoint switching
• Self-routing networks
• Sorting networks
• Fabric implementation technologies
• Fault tolerance and reliability

L6 - 29© P. Raatikainen Switching Technology / 2005

Fabric implementation technologies

• Time division fabrics
• Shared media
• Shared memory

• Space division fabrics
• Crossbar
• Multi-stage constructions

• Buffering techniques

L6 - 30© P. Raatikainen Switching Technology / 2005

Time division fabrics

• Shared media
• Bus architectures
• Ring architectures

• Shared memory

L6 - 31© P. Raatikainen Switching Technology / 2005

Shared bus

Bus architecture
• Switching in time domain, but time and space switching

implementations enabled
• Easy to implement and low cost index (= N)
• One time-slot carried through the bus at a time

=> limited throughput (multi-casting possible)
=> low number of line interfaces
=> limited scalability

Bus
control

Line
Interface #2

Line
Interface #3

Line
Interface # n...

Line
Interface #1

L6 - 32© P. Raatikainen Switching Technology / 2005

Shared bus (cont.)

Bus architecture
• Internally non-blocking implementations require high capacity

switching bus => throughput ≥ aggregate capacity of line interfaces
• Inherently a single stage switch, but TST-switching possible if line-

cards support time division multiplexing (TDM)
• Multiple-bus structures can be used to improve reliability and

increase throughput

Line
Interface #2

Line
Interface #3

Line
Interface # n...Line

Interface #1
Bus

control

Bus 2

Bus 1

L6 - 33© P. Raatikainen Switching Technology / 2005

Ring architectures

Ring architecture
• Rings coarsely divided into source and destination release rings

– in source release (SR) rings only one switching operation in
progress at a time
=> limited throughput (like a shared bus)

– destination release (DR) rings allow spatial reuse,
i.e., multiple time-slots can be carried through the
ring simultaneously
=> improved throughput

• Switching in time domain, but time and space
switching implementations enabled

• Usually easy to implement and low
cost index (= N)

• Scales better than a shared bus

L6 - 34© P. Raatikainen Switching Technology / 2005

Ring architectures (cont.)

Ring architecture
• Internally non-blocking implementations

require that throughput of a ring bus ≥
aggregate capacity of line interfaces

• Throughput can be improved by implementing
parallel ring buses - control usually distributed
=> MAC implementations may be difficult

• Multi-casting relatively easy to implement
• Inherently a single stage switch, but TST-

switching possible if line-cards support TDM

• Multiple rings can be used to implement
switching networks

L6 - 35© P. Raatikainen Switching Technology / 2005

Ring architectures (cont.)

Dual ring architecture
• Multiple rings used to improve throughput, decrease internal

blocking, improve scalability and increase reliability

L6 - 36© P. Raatikainen Switching Technology / 2005

Shared memory

Shared memory architecture
• Switching in time domain, but time and space switching

implementations enabled
• Inherently a single stage switch, but allows TST-switching if line-

cards support TDM
• Easy to implement and low cost index (= N)

Buffer
memory

CPU

Bus

Line
Interface #2

Line
Interface #3

Line
Interface # n...Line

Interface #1

L6 - 37© P. Raatikainen Switching Technology / 2005

Shared memory (cont.)

Shared memory architecture
• Every time-slot carried twice through the bus

=> low throughput
=> low number of line interfaces
=> limited scalability

• Internally non-blocking if throughput of a switching bus and
speed of shared memory ≥ aggregate capacity of line interfaces

• Performance can be improved by dual bus architecture or
replacing the bus with a space switch (such as crossbar)

L6 - 38© P. Raatikainen Switching Technology / 2005

Shared memory (cont.)

Shared memory architecture
• Dual-bus architecture improves throughput, decreases internal

blocking, improves scalability and increases reliability

• Memory speed requirement equal to that of single bus solutions

Line
Interface #2

Line
Interface #3

Line
Interface # n...

Line
Interface #1

Buffer
memory

CPU

Bus 1

Bus 2

L6 - 39© P. Raatikainen Switching Technology / 2005

Dimensioning example

A shared memory architecture, which uses a shared bus to
connect line interfaces to the memory, is used to implement a
switching equipment. The bus is 32 bits wide and bus clock is 150
MHz. Three clock cycles are needed to transfer a 32 bit word
through the bus and 20 % of the bus capacity is used for other than
switching purposes. How many E1 interfaces can be supported by

the switch ? What is the required memory speed ?

L6 - 40© P. Raatikainen Switching Technology / 2005

Dimensioning example (cont.)

Solution :

The bus transfers 32-bit wide data words at the speed of
(150/3)x106 transfers/s = 50x106 transfers/s.

If the bus carries an eight bit time-slot (of a 64 kbit/s PDH channel)
across the bus at a time, a single bus solution can transfer 0.8x(150/3)
Mbytes/s = 40 Mbytes/s

In a single bus solution, half of the bus capacity (20 Mbytes/s) is used
for storing time-slots to the memory and another half for reading time-
slots from the memory

=> during a 125 µs period (= duration of an E1 frame) the bus witches
(125x10-6)x(20x106) bytes = 2500 incoming (and outgoing) time-slots
and thus the number of supported E1 links is 2500/32 ≈ 78

L6 - 41© P. Raatikainen Switching Technology / 2005

Dimensioning example (cont.)

Solution (cont.) :
If the memory interface logic accesses the buffer memory at the speed
of the data bus, then the memory speed requirement is
1/(50x106) s = 20 ns.

If the memory interface logic allows lower access rate than the data
bus transfer rate, then the memory speed requirement is
1/(40x106) s = 25 ns.

Throughput of the switching system could be increased by adding a 32 bit
receiver-register to the shared switch memory block, which enables to transfer
4 time-slots (in parallel) through the bus at a time. By doing so, the throughput
of the bus gets four fold and the number of supported E1 links increases to
312. However, the time-slots are still written one by one to the switch memory,
and the corresponding memory speed requirement is (depending on the
memory interface logic) either 5.0 ns or 6.25 ns.

L6 - 42© P. Raatikainen Switching Technology / 2005

Space division fabrics

• Crossbar
• Multi-stage constructions

L6 - 43© P. Raatikainen Switching Technology / 2005

Crossbar

Crossbar architecture
• Inherently a space division switch
• Allows to build TST-switches if interfaces implement TDM

functionality
• Hard to implement large switches due to complicated control

schemes
=> high cost index (= N2)

• Commercial high-speed NxN crossbar components enable
modular and relatively inexpensive fabric constructions, but still
control of the switch is a problem

L6 - 44© P. Raatikainen Switching Technology / 2005

Crossbar (cont.)

Crossbar architecture
• Inherently a strict-sense non-blocking fabric architecture
• Possible to carry N time-slots through the switch at a time

=> high throughput
=> possible to implement a large number of line interfaces
=> scales well within the limits of the available modular components
=> scaling up means increase of cross-point count from NxN to
(N+k)x(N+k)

• Multi-casting easy to implement
Switch control

L6 - 45© P. Raatikainen Switching Technology / 2005

Crossbar (cont.)

Example implementation of a crossbar

Connection
control

...

...

...

1

2

m

...

1 2 n
...

Outputs

In
pu

ts

AND

AND

AND

...

AND

AND

AND

AND

AND

AND

... ...

Connection
control

...

...

...

1

2

m

...

1 2 n
...

Outputs

In
pu

ts

AND

AND

AND

ANDAND

ANDAND

ANDAND

...

ANDAND

ANDAND

ANDAND

AND

AND

AND

ANDAND

ANDAND

ANDAND

... ...

L6 - 46© P. Raatikainen Switching Technology / 2005

Crossbar (cont.)

An 8x8 switch constructed of four 4x4 crossbar blocks

Notice that doubling of input/output count increases the number of
crossbar components from one to four.

L6 - 47© P. Raatikainen Switching Technology / 2005

Multi-stage building blocks

• Multi-stage switches normally constructed of 2x2 switching blocks
• Implemented usually in FPGAs (Field Programmable Gate Arrays)

and/or ASICs (Application Specific Integrated Circuit)
• FPGA for experimental use and low volume production
• ASICs for high volume production

• Batcher-banyan network most popular
• Used to implement space division

switching
• Allows to build TST-switches if

interfaces support TDM
functionality

X
In1
In2

Out1
Out2

X
In3
In4

Out1
Out2

X
In5
In6

Out1
Out2

X
In7
In8

Out1
Out2

X
In1
In2

Out1
Out2

X
In1
In2

Out3
Out4

X
In1
In2

Out5
Out6

X
In1
In2

Out7
Out8

Switch network
composed of
2x2 blocks

L6 - 48© P. Raatikainen Switching Technology / 2005

Multi-stage building blocks (cont.)

• Hard to implement large circuit switches due to complicated control
schemes (especially rearrangeable fabrics)
=> high cost index (∼∼∼∼ CNlog2N)

• Suitable for packet switching when self-routing functionality included
• Fixed length time-slot implementations favored to obtain strict-sense

non-blocking fabrics

• Possible to carry N time-slots through the switch at a time
=> relatively high throughput
=> scalable only if larger networks can be factored using smaller
NxN components
=> scaling up means increase of cross-point count from ∼∼∼∼ CNlog2N
to ∼∼∼∼ C(N+k)log2(N+k)

X
In1
In2

Out1
Out2

L6 - 49© P. Raatikainen Switching Technology / 2005

Problems with multi-stages

• Path search required
• Fast connection establishment implies need for fast control system

=> part of switching capacity is lost if control system is not fast
enough

• Multi-cast is not self evident, because multi-cast complicates path
search and control scheme and increases blocking probability

• Multi-slot connections (i.e. several slots used for a particular
connection) complicate matters
- especially if path delay is not constant, e.g., slots belonging to the
same connection may arrive to outputs in different order than they
arrived at the inputs
- blocking increases

L6 - 50© P. Raatikainen Switching Technology / 2005

Trends in fabric technologies

• Memory technology getting faster and faster

• Current SRAM (Static Random Access Memory) technology allows
easy implementations of large PDH switches, e.g., full matrix for
8000 E1 (2M) PDH circuits - bigger fabrics hardly needed in narrow
band networks
=> in narrow band networks the trend over the last 10 years has
been to build full matrix fabrics based on shared memory

• However, when striving for broadband communications, memory
based switch fabrics do not scale to bandwidth needs
=> multi-stage and crossbar switches have their change

L6 - 51© P. Raatikainen Switching Technology / 2005

Trends in fabric technologies (cont.)

• Multistage fabrics were “reinvented” at the advent of ATM
- ATM suits perfectly for fixed length time-slot switching
- self-routing and sorting applies for ATM cell routing
- blocking and buffering causes headache
=> in spite of huge research effort, there have been very few commercial
multi-stage fabrics available (mostly proprietary ASICs)

• Development of IC technologies, increased packing density (number
of gates/chip) and increased speed have enabled crossbar fabrics
suitable for high-speed switching applications (N = 2 … 64 and line
rate 2.5 … 40 Gbit/s)
- examples: Cx27399/Mindspeed, ETT1/Sierra, CE200/Internet Machines
and PI140xx/Agere

• Packet switching and advent of optical networking favors multi-
stages and crossbars
=> packet switching introduces a new problem - buffering

L6 - 52© P. Raatikainen Switching Technology / 2005

Technological tradeoffs in switch fabric
design

• When trying to simplify path search and to speed up connection
establishment
=> bus speed increases (inside fabric)
=> faster memory required => power consumption increases
=> integration level of a cross-point product needs to be increased
=> faster memory required, etc.

• If fast memory not available, use
=> crossbar fabrics (for small switches)
=> multistage fabrics (for large switches)
- real switching capacity may be less
than theoretical

- minimization of cross-point count
often pointless

Le
ve

l o
f c

ro
ss

-
po

in
t i

nt
eg

ra
tio

n

Memory speed

B
us

 s
pe

ed

Complexity of path search

L6 - 53© P. Raatikainen Switching Technology / 2005

Electronic design problems

• Signal skew - caused by long signal lines with varying capacitive load
inside switch fabric and/or on circuit boards

• Mismatching line termination - caused by long signal lines combined
with varying (high) bit rates

• Varying delay on bus lines - caused by differently routed bus lines (non-
uniform capacitive load)

• Crosstalk - caused by electro-magnetic coupling of signals from adjacent
signal lines

• Power feeding and voltage-swing - incorrectly dimensioned power
source/lines cause non-uniform voltage and lack of adequate filtering causes
fluctuation of voltage

• Mismatching timing signals - different line lengths from a centralized
timing source cause phase shift and distributed timing may suffer from lack
of adequate synchronization

L6 - 54© P. Raatikainen Switching Technology / 2005

Some design limitations

• Speed of available components vs. required wire speed and slot
time interval

• Component packing density and power consumption vs. heating
problem

• Maximum practical fan-out vs. required size of fabric
• Required bus length inside switch fabric

- long buses decrease internal speed of fabric
- diagnostics get difficult

• IPR policy
- whether company wants to use special components or more
general all-purpose components

L6 - 55© P. Raatikainen Switching Technology / 2005

Design optimization example

• An NxN switch fabric is to be designed and there are three alternative
crossbar components a, b and c available
- a is an NaxNa fabric component
- b is an NbxNb fabric component
- c is an NcxNc fabric component
and Na<Nb<Nc≤N

• Component a has entered the market at time ta, b at time tb and c at time tc
• Product development starts at tpd and the switch product should come in the

market at tm. Components are expected to be available when the product
development starts => ta < tb < tc ≤ tpd < tm

• Price of a component develops with time and is generally given by
P(t)=Cf(t) + D, where Cf(t) is a time dependent and D a constant part of
component’s price

• Question: Which one of the three components to choose for constructing an
NxN switch fabric ?

L6 - 56© P. Raatikainen Switching Technology / 2005

Design optimization example (cont.)

• As an example, let’s assume that price of each component is a function of
time and is given by P(t)=Ce-t/T+ D ,
where C, D and T are component specific constants
=> Pa(t)=Cae-t/Ta+ Da , Pb(t)=Cbe-t/Tb+ Db and Pc(t)=Cce-t/Tc+ Dc

• Number of alternative crossbar components needed to build an NxN switch
=> Ka = ceil[N/Na]

2, Kb = ceil[N/Nb]
2 , Kc = ceil[N/Nc]

2

• Individual component and total component costs as a function of time t

=> Pa(t)=Cae-(t- ta)/Ta+ Ca and Ta(t)= Ka Pa(t) , t ≥ ta
=> Pb(t)=Cbe-(t- tb)/Tb+ Cb and Tb(t)= Kb Pb(t) , t ≥ tb
=> Pc(t)=Cce-(t- tc)/Tc+ Cc and Tc(t)= Kc Pc(t) , t ≥ tc

• These functions can be used to draw price development curves to make
comparisons

L6 - 57© P. Raatikainen Switching Technology / 2005

Design optimization example (cont.)

Numerical example:
• Let N = 64, Na = 16, Nb = 32, Nc = 64, Ta = Tb = Tc = 3 time units (years),

Ca = 20,Cb = 50, Cc = 100 and Da = 10, Db = 20, Dc = 40 price units (euros)

• Product development period is assumed to be 1 time unit (year) and
tb = ta +1.5, tc = ta +3, tm = ta +4 => tpd = ta + 3

• Choosing that t ≥ to = tpd = 0 => ta = - 3, tb = -1.5, tc = 0 and tm = +1

• Number of components needed Ka = 16, Kb = 4, Kc = 1

• Switch fabric component cost functions

=> Pa(t)= [20e-(t+3)/3 + 10] and Ta(t)= 16 x Pa(t)
=> Pb(t)= [50e-(t+1.5)/3 + 20] and Tb(t)= 4 x Pb(t)

=> Pc(t)=100e-(t)/3 + 40 and Tc(t)= 1 x Pc(t)

L6 - 58© P. Raatikainen Switching Technology / 2005

Design optimization example (cont.)

Component cost

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6

Time

C
os

t

Pa(t) Pb(t) Pc(t)

Switch fabric cost

0

50

100

150

200

250

300

350

0 1 2 3 4 5 6

Time

C
os

t

Ta(t) Tb(t) Tc(t)

• Although the price of component c is manifold compared to the price of
component a or b, c turns out to be the cheapest alternative

• Another reason to choose c is that it probably stays longest in the market
giving more time for the switch product

Numerical example (cont.) :

