Switch Fabrics

Switching Technology $\mathbf{S 3 8 . 1 6 5}$
http://www.netlab.hut.fi/opetus/s38165

Switch fabrics

- Basic concepts
- Time and space switching
- Two stage switches
- Three stage switches
- Cost criteria
- Multi-stage switches and path search

Switch fabrics (cont.)

- Multi-point switching
- Self-routing networks
- Sorting networks
- Fabric implementation technologies
- Fault tolerance and reliability

Basic concepts

- Accessibility
- Blocking
- Complexity
- Scalability
- Reliability
- Throughput

Accessibility

- A network has full accessibility (= connectivity) when each inlet can be connected to each outlet (in case there are no other I/O connections in the network)
- A network has a limited accessibility when the above given property does not exist
- Interconnection networks applied in today's switch fabrics usually have full accessibility

Accessibility (cont.)

Example of limited accessibility

Blocking

- Blocking is defined as failure to satisfy a connection request and it depends strongly on the combinatorial properties of the switching networks

Network class	Network type	Network state
Non-blocking	Strict-sense non-blocking	Without blocking states
	Wide-sense non-blocking	With blocking state
	Rearrangeably non-blocking	
Blocking	Others	

Blocking (cont.)

- Non-blocking - a path between an arbitrary idle inlet and arbitrary idle outlet can always be established independent of network state at set-up time
- Blocking - a path between an arbitrary idle inlet and arbitrary idle outlet cannot be established owing to internal congestion due to the already established connections
- Strict-sense non-blocking - a path can always be set up between any idle inlet and any idle outlet without disturbing paths already set up
- Wide-sense non-blocking - a path can be set up between any idle inlet and any idle outlet without disturbing existing connections, provided that certain rules are followed. These rules prevent network from entering a state for which new connections cannot be made
- Rearrangeably non-blocking - when establishing a path between an idle inlet and an idle outlet, paths of existing connections may have to be changed (rearranged) to set up that connection

Complexity

- Complexity of an interconnection network is expressed by cost index
- Traditional definition of cost index gives the number of crosspoints in a network
- used to be a reasonable measure of space division switching systems
- Nowadays cost index alone does not characterize cost of an interconnection network for broadband applications
- VLSIs and their integration degree has changed the way how cost of a switch fabric is formed (number of ICs, power consumption)
- management and control of a switching system has a significant contribution to cost

Complexity (cont.)

Cost index of an 8×8 crossbar is 64 (cross-points)

Cost index of an 8×8 banyan is $12 \times 4=48$ (cross-points)

Scalability

- Due to constant increase of transport links and data rates on links, scalability of a switching system has become a key parameter in choosing a switch fabric architecture
- Scalability describes ability of a system to evolve with increasing requirements
- Issues that are usually matter of scalability
- number of switching nodes
- number of interconnection links between nodes
- bandwidth of interconnection links and inlets/outlets
- throughput of switch fabric
- buffering requirements
- number of inlets/outlets supported by switch fabric

Scalability (cont.)

Example of scalability

- a switching equipment has room for 20 line-cards and the original design supports $10 \mathrm{Mbit} / \mathrm{s}$ interfaces (one per line card)
- throughput of switch fabrics is scalable from $500 \mathrm{Mbit} / \mathrm{s}$ to $2 \mathrm{Gbit} / \mathrm{s}$
- original switch fabric can support new line cards that implement two $10 \mathrm{Mbit} / \mathrm{s}$ interfaces each
- when line interfaces are replaced with $100 \mathrm{Mbit} / \mathrm{s}$ rates (one per line-card), the switch fabric has to be updated (scaled up) to $2 \mathrm{Gbit} / \mathrm{s}$ speed
- buffering memories need to be replaced by faster (and possible larger) ones
- larger number of line cards implies at least new physical design
- increase of line rates beyond $100 \mathrm{Mbit} / \mathrm{s}$ means redesign of switch fabric

Reliability

- Reliability and fault tolerance are system measures that have an impact on all functions of a switching system
- Reliability defines probability that a system does not fail within a given time interval provided that it functions correctly at the start of the interval
- Availability defines probability that a system will function at a given time instant
- Fault tolerance is the capability of a system to continue its intended function in spite of having a fault(s)
- Reliability measures:
- MTTF (Mean Time To Failure)
- MTTR (Mean Time To Repair)
- MTBF (Mean Time Between Failures)

Reliability (cont.)

Relation of reliability $R(t)$ to availability $F(t)$ is given by
$\mathrm{F}(\mathrm{t})=1-\mathrm{R}(\mathrm{t})$

Relation of MTTF, MTTR and MTBF

Throughput

- Throughput gives forwarding/switching speed/efficiency of a switch fabric
- It is measured in bits/s, octets/s, cells/s, packet/s, etc.
- Quite often throughput is given in the range (0 ... 1.0], i.e. the obtained forwarding speed is normalized to the theoretical maximum throughput

Switch fabrics

- Basic concepts
- Time and space switching
- Two stage switches
- Three stage switches
- Cost criteria
- Multi-stage switches and path search

Switching mechanisms

- A switched connection requires a mechanism that attaches the right information streams to each other
- Switching takes place in the switch fabric, the structure of which depends on network's mode of operation, available technology and required capacity
- Communicating terminals may use different physical links and different time-slots, so there is an obvious need to switch both in time and in space domain
- Time and space switching are basic functions of a switch fabric

Space division switching

- A space switch directs traffic from input links to output links
- An input may set up one connection (1, 3, 6 and 7), multiple connections (4) or no connection (2, 5 and 8)

Crossbar switch matrix

- Crossbar matrix introduces the basic structure of a space switch
- Information flows are controlled (switched) by opening and closing crosspoints
- \boldsymbol{m} inputs and \boldsymbol{n} outputs => $\boldsymbol{m} \boldsymbol{n}$ cross-points (connection points)
- Only one input can be connected to an output at a time, but an input can be connected to multiple outputs (multi-cast) at a time

An example space switch

- $m \times 1$-multiplexer used to implement a space switch
- Every input is fed to every output mux and mux control signals are used to select which input signal is connected through each mux

Time division multiplexing

- Time-slot interchanger is a device, which buffers m incoming time-slots, e.g. 30 time-slots of an E1 frame, arranges new transmit order and transmits n time-slots
- Time-slots are stored in buffer memory usually in the order they arrive or in the order they leave the switch - additional control logic is needed to decide respective output order or the memory slot where an input slot is stored

Time-slot interchange

Time switch implementation example 1

- Incoming time-slots are written cyclically into switch memory
- Output logic reads cyclically control memory, which contains a pointer for each output time-slot
- Pointer indicates which input time-slot to insert into each output time-slot

Time switch implementation example 2

- Incoming time-slots are written into switch memory by using write-addresses read from control memory
- A write address points to an output slot to which the input slot is addressed
- Output time-slots are read cyclically from switch memory

Properties of time switches

- Input and output frame buffers are read and written at wire-speed, i.e. m R/Ws for input and n R/Ws for output
- Interchange buffer (switch memory) serves all inputs and outputs and thus it is read and written at the aggregate speed of all inputs and outputs
=> speed of an interchange buffer is a critical parameter in time switches and limits performance of a switch
- Memory speed requirement can be cut by utilizing parallel to serial conversion
- Speed requirement of control memory is half of that of switch memory (in fact a little moor than that to allow new control data to be updated)

Time-Space analogy

- A time switch can be logically converted into a space switch by setting time-slot buffers into vertical position => time-slots can be considered to correspond to input/output links of a space switch
- But is this logical conversion fair?

Space-Space analogy

- A space switch carrying time multiplexed input and output signals can be logically converted into a pure space switch (without cyclic control) by distributing each time-slot into its own space switch

An example conversion

Properties of space and time switches

Space switches

- number of cross-points (e.g. ANDgates)
- m input $x n$ output $=m n$
- when $m=n=>n^{2}$
- output bit rate determines the speed requirement for the switch components
- both input and output lines deploy "bus" structure
=> fault location difficult

Time switches

- size of switch memory (SM) and control memory (CM) grows linearly as long as memory speed is sufficient, i.e. $S M+C M+$ input buffering + output buffering
$=2 \times 2 \times$ number of time-slots
- a simple and cost effective structure when memory speed is sufficient
- speed of available memory determines the maximum switching capacity

Switch fabrics

- Basic concepts
- Time and space switching
- Two stage switches
- Three stage switches
- Cost criteria
- Multi-stage switches and path search

A switch fabric as a combination of space and time switches

- Two stage switches
- Time-Time (TT) switch
- Time-Space (TS) switch
- Space-Time (ST) switch
- Space-Space (SS) switch
- TT-switch gives no advantage compared to a single stage T-switch
- SS-switch increases blocking probability

A switch fabric as a combination of space and time switches (cont.)

- ST-switch gives high blocking probability (S-switch can develop blocking on an arbitrary bus, e.g. slots from two different buses attempting to flow to a common output)
- TS-switch has low blocking probability, because T-switch allows rearrangement of time-slots so that S -switching can be done blocking free

Time multiplexed space (TMS) switch

- Space divided inputs and each of them carry a frame of three time-slots

Outputs

- Input frames on each link are synchronized to the crossbar
- A switching plane for each time-slot to direct incoming slots to destined output links of the corresponding time-slot

Connection conflicts in a TMS switch

- Space divided inputs and each of them carry a frame of three time-slots
- Input frames on each link are synchronized to the crossbar
- A switching plane for each time-slot to direct incoming slots to destined output links of the corresponding time-slot

TS switch interconnecting TDM links

- Time division switching applied prior to space switching
- Incoming time-slots can always be rearranged such that output requests become conflict free for each slot of a frame, provided that the number of requests for each output is no more than the number of slots in a frame

SS equivalent of a TS-switch

Connections through SS-switch

Example connections:

- $(1,3,1)=>(2,1,2)$
- $(1,4,2)$ => $(2,3,4)$

Switch fabrics

- Basic concepts
- Time and space switching
- Two stage switches
- Three stage switches
- Cost criteria
- Multi-stage switches and path search

Three stage switches

- Basic TS-switch sufficient for switching time-slots onto addressed outputs, but slots can appear in any order in the output frame
- If a specific input slot is to carry data of a specific output slot then a time-slot interchanger is needed at each output
=> any time-slot on any input can be connected to any time-slot on any output
=> blocking probability minimized
- Such a 3-stage configuration is named TST-switching (equivalent to 3 -stage SSS-switching)

TST-switch:

SSS presentation of TST-switch

Three stage switch combinations

- Possible three stage switch combinations:
- Time-Time-Time (TTT) (not significant, no connection from PCM to PCM)
- Time-Time-Space (TTS) (=TS)
- Time-Space-Time (TST)
- Time-Space-Space (TSS)
- Space-Time-Time (STT) (=ST)
- Space-Time-Space (STS)
- Space-Space-Time (SST) (=ST)
- Space-Space-Space (SSS) (not significant, high probability of blocking)
- Three interesting combinations TST, TSS and STS

Time-Space-Space switch

- Time-Space-Space switch can be applied to increase switching capacity

Space-Time-Space switch

- Space-Time-Space switch has a high blocking probability (like STswitch) - not a desired feature in public networks

Graph presentation of space switch

- A space division switch can be presented by a graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$
- \boldsymbol{V} is the set of switching nodes
- \boldsymbol{E} is the set of edges in the graph
- An edge $\boldsymbol{e} \in \boldsymbol{E}$ is an ordered pair $(\boldsymbol{u}, \boldsymbol{v}) \in \boldsymbol{V}$
- more than one edge can exist between \boldsymbol{u} and \boldsymbol{v}
- edges can be considered to be bi-directional
- \boldsymbol{V} includes two special sets (\boldsymbol{T} and \boldsymbol{R}) of nodes not considered part of switching network
- \boldsymbol{T} is a set of transmitting nodes having only outgoing edges (input nodes to switch)
- \boldsymbol{R} is a set of receiving node having only incoming edges (output nodes from switch)

Graph presentation of space switch (cont.)

- A connection requirement is specified for each $\boldsymbol{t} \in \boldsymbol{T}$ by subset $\boldsymbol{R}_{\boldsymbol{t}} \in \boldsymbol{R}$ to which \boldsymbol{t} must be connected
- subsets $\boldsymbol{R}_{\boldsymbol{t}}$ are disjoint for different \boldsymbol{t}
- in case of multi-cast $\boldsymbol{R}_{\boldsymbol{t}}$ contains more than one element for each t
- A path is a sequence of edges $(t, a),(a, b),(b, c), \ldots,(f, g),(g, r) \in \boldsymbol{E}$, $\boldsymbol{t} \in \boldsymbol{T}, \boldsymbol{r} \in \boldsymbol{R}$ and a, b, c, \ldots, f, g are distinct elements of $V-(T+R)$
- Paths originating from different t may not use the same edge
- Paths originating from the same t may use the same edges

Graph presentation example

INPUT NODES t

OUTPUT NODES r

$V=\left(t_{1}, t_{2}, \ldots t_{15}, s_{1}, s_{2}, \ldots s_{5}, u_{1}, u_{2}, u_{3}, v_{1}, v_{2}, \ldots v_{5}, r_{1}, r_{2}, \ldots r_{15}\right)$
$E=\left\{\left(t_{1}, s_{1}\right), \ldots\left(t_{15}, s_{5}\right),\left(s_{1}, u_{1}\right),\left(s_{1}, u_{2}\right), \ldots\left(s_{5}, u_{3}\right),\left(u_{1}, v_{1}\right),\left(u_{1}, v_{2}\right), \ldots\left(u_{3}, v_{5}\right)\right.$, $\left.\left(v_{1}, r_{1}\right),\left(v_{1}, r_{2}\right), \ldots\left(v_{5}, r_{15}\right)\right\}$

SSS-switch and its graph presentation

Graph presentation of connections

Establish connections:

Path $1=\left\{\left(t_{11}, s_{4}\right),\left(s_{4}, u_{1}\right),\left(u_{1}, v_{2}\right),\left(v_{2}, r_{5}\right)\right\}$
Path $2=\left\{\left(t_{4}, s_{2}\right),\left(s_{2}, u_{2}\right),\left(u_{2}, v_{1}\right),\left(v_{1}, r_{2}\right),\left(u_{2}, v_{4}\right),\left(v_{4}, r_{11}\right)\right\}$

Graph presentation of connections (cont.)

