Transmission techniques and multiplexing hierarchies

Switching Technology S38.165
http://www.netlab.hut.fi/opetus/s38165

Transmission techniques and multiplexing hierarchies

- Transmission of data signals
- Timing and synchronization
- Transmission techniques and multiplexing
- PDH
- ATM
- IP/Ethernet
- SDH/SONET
- OTN
- GFP

Transmission of data signals

- Encapsulation of user data into layered protocol structure
- Physical and link layers implement functionality that have relevance to switching
- multiplexing of transport signals (channels/connections)
- medium access and flow control
- error indication and recovery
- bit, octet and frame level timing/synchronization
- line coding (for spectrum manipulation and timing extraction)

Encapsulation of user data

Synchronization of transmitted data

- Successful transmission of data requires bit, octet, frame and packet level synchronism
- Synchronous systems (e.g. PDH and SDH) carry additional information (embedded into transmitted line signal) for accurate recovery of clock signals
- Asynchronous systems (e.g. Ethernet) carry additional bit patterns to synchronize receiver logic

Timing accuracy

- Inaccuracy of frequency classified in telecom networks to
- jitter (short term changes in frequency $>10 \mathrm{~Hz}$)
- wander (< 10 Hz fluctuation)
- long term frequency shift (drift or skew)
- To maintain required timing accuracy, network nodes are connected to a hierarchical synchronization network
- Universal Time Coordinated (UTC): error in the order of 10^{-13}
- Error of Primary Reference Clock (PRC) of the telecom network in the order of 10^{-11}

Timing accuracy (cont.)

- Inaccuracy of clock frequency causes
- degraded quality of received signal
- bit errors in regeneration
- slips: in PDH networks a frame is duplicated or lost due to timing difference between the sender and receiver
- Based on applied synchronization method, networks are divided into
- fully synchronous networks (e.g. SDH)
- plesiochronous networks (e.g. PDH), sub-networks have nominally the same clock frequency but are not synchronized to each other
- mixed networks

Methods for bit level timing

- To obtain bit level synchronism receiver clocks must be synchronized to incoming signal
- Incoming signal must include transitions to keep receiver's clock recovery circuitry in synchronism
- Methods to introduce line signal transitions
- Line coding
- Block coding
- Scrambling

Line coding

Line coding (cont.)

- ADI, ADI RZ and codes alike introduce DC balance shift => clock recovery becomes difficult
- AMI and AMI RZ introduces DC balance, but lacks effective ability to introduce signal transitions
- HDB3 (High Density Bipolar 3) code, used in PDH systems, guarantees a signal transition at least every fourth bit
- 0000 coded by 000 V when there is an odd number of pulses since the last violation (V) pulse
- 0000 coded by B00V when there is an even number of pulses since the last violation pulse

HDB3

Line coding (cont.)

- When bit rates increase (> $100 \mathrm{Mbit} / \mathrm{s}$) jitter requirements become tighter and signal transitions should occur more frequently than in HDB3 coding
- CMI (Coded Mark Inversion) coding was introduced for electronic differential links and for optical links
- CMI doubles bit rate on transmission link => higher bit rate implies larger bandwidth and shortened transmission distance

CMI

Block coding

- Entire blocks of n bits are replaced by other blocks of m bits $(m>n)$
- $n B m B$ block codes are usually applied on optical links by using on-off keying
- Block coding adds variety of " 1 "s and " 0 "s to obtain better clock synchronism and reduced jitter
- Redundancy in block codes (in the form of extra combinations) enables error recovery to a certain extent
- When $m>n$ the coded line signal requires larger bandwidth than the original signal
- Examples: 4B5B (FDDI), 5B6B (E3 optical links) and 8B10B (GbE)

Coding examples

4B5B coding

Input word	Output word	Other output words	
0000	11110	00000	Quiet line symbol
0001	01001	11111	Idle symbol
0010	10100	00100	Halt line symbol
0011	10101	11000	Start symbol
0100	01010	10001	Start symbol
0101	01011	01101	End symbol
0110	01110	00111	Reset symbol
0111	01111	11001	Set Symbol
1000	10010	00001	Invalid
1001	10011	00010	Invalid
1010	10110	00011	Invalid
1011	10111	00101	Invalid
1100	11010	00110	Invalid
1101	11011	01000	Invalid
1110	11100	01100	Invalid
1111	11101	10000	Invalid

5B6B coding

Input word	Output word
000000	101011
00001	
00010	101010
00011	101001
\ldots	111000
11100	010011
111101	010111
11110	011011
111111	011100

Scrambling

- Data signal is changed bit by bit according to a separate repetitive sequence (to avoid long sequences of " 1 "s or " 0 "s)
- Steps of the sequence give information on how to handle bits in the signal being coded
- A scrambler consists of a feedback shift register described by a polynomial $\left(x^{\mathrm{N}}+\ldots+\mathbf{x}^{\mathrm{m}}+\ldots+\mathrm{x}^{\mathrm{k}}+\ldots+\mathrm{x}+\mathbf{1}\right)$
- Polynomial specifies from where in the shift register feedback is taken
- Output bit rate is the same as the input bit rate
- Scrambling is not as effective as line coding

Scrambler example

SDH/STM-1 uses $\mathbf{x}^{\mathbf{7}}+\mathbf{x}^{6}+\mathbf{1}$ polynomial

Methods for octet and frame level timing

- Frame alignment bit pattern
- Start of frame signal
- Use of frame check sequence

Frame alignment sequence

- Data frames carry special frame alignment bit patterns to obtain octet and frame level synchronism
- Data bits scrambled to avoid misalignment
- Used in networks that utilize synchronous transmission, e.g. in PDH, SDH and OTN
- Examples
- PDH E1 frames carry bit sequence 0011011 in every other frame (even frames)
- SDH and OTN frames carry a six octet alignment sequence (hexadecimal form: F6 F6 F6 2828 28) in every frame

Start of frame signal

- Data frames carry special bit patterns to synchronize receiver logic
- False synchronism avoided for example by inserting additional bits into data streams
- Used in synchronous and asynchronous networks, e.g., Ethernet and HDLC
- Examples
- Ethernet frames are preceded by a 7-octet preamble field (10101010) followed by a start-of-frame delimiter octet (10101011)
- HDLC frames are preceded by a flag byte (0111 1110)

Frame check sequence

- Data frames carry no special bit patterns for synchronization
- Synchronization is based on the use of error indication and correction fields
- CRC (Cyclic Redundancy Check) calculation
- Used in bit synchronous networks such as ATM and GFP (Generic Framing Procedures)
- Example
- ATM cells streams can be synchronized to HEC (Header Error Control) field, which is calculated across ATM cell header

Transmission techniques

- PDH (Plesiochronous Digital Hierarchy)
- ATM (Asynchronous Transfer Mode)
- IP/Ethernet
- SDH (Synchronous Digital Hierarchy)
- OTN (Optical Transport network)
- GFP (Generic Framing Procedure)

Plesiochronous Digital Hierarchy (PDH)

- Transmission technology of the digitized telecom network
- Basic channel capacity 64 kbit/s
- Voice information PCM coded
- 8 bits per sample
- A or μ law
- sample rate $8 \mathrm{kHz}(125 \mu \mathrm{~s})$
- Channel associated signaling (SS7)
- Higher order frames obtained by multiplexing four lower order frames bit by bit and adding some synchr. and management info
- The most common switching and transmission format in the telecommunication network is PCM 30 (E1)

E0

PDH E1-frame structure (even frames)

Multi- frame

PDH E1-frame structure (odd frames)

PDH-multiplexing

- Tributaries have the same nominal bit rate, but with a specified, permitted deviation (100 bit/s for 2.048 Mbit/s)
- Plesiochronous = tributaries have almost the same bit rate
- Justification and control bits are used in multiplexed flows
- First order (E1) is octet-interleaved, but higher orders (E2, ...) are bit-interleaved

PDH network elements

- concentrator
- n channels are multiplexed to a higher capacity link that carries m channels ($n>m$)
- multiplexer
- n channels are multiplexed to a higher capacity link that carries n channels
- cross-connect
- static multiplexing/switching of user channels
- switch
- switches incoming TDM/SDM channels to outgoing ones

Example PDH network elements

Synchronous digital hierarchy

Major ITU-T SDH standards:

SDH reference model

- DXC Digital gross-connect
- MPX Multiplexer
- R Repeater

SDH-multiplexing

- Multiplexing hierarchy for plesiochronous and synchronous tributaries (e.g. E1 and E3)
- Octet-interleaving, no justification bits - tributaries visible and available in the multiplexed SDH flow
- SDH hierarchy divided into two groups:
- multiplexing level (virtual containers, VCs)
- line signal level (synchronous transport level, STM)
- Tributaries from E1 (2.048 Mbit/s) to E4 (139.264 Mbit/s) are synchronized (using justification bits if needed) and packed in containers of standardized size
- Control and supervisory information (POH , path overhead) added to containers => virtual container (VC)

SDH-multiplexing (cont.)

- Different sized VCs for different tributaries (e.g. VC-12/E1, VC-3/E3, VC-4/E4)
- Smaller VCs can be packed into a larger VC (+ new POH)
- Section overhead (SOH) added to larger VC => transport module
- Transport module corresponds to line signal (bit flow transferred on the medium)
- bit rate is $155.52 \mathrm{Mbit} / \mathrm{s}$ or its multiples
- transport modules called STM-N ($\mathrm{N}=1,4,16,64, \ldots)$
- bit rate of STM-N is Nx155.52 Mbit/s
- duration of a module is $125 \mu \mathrm{~s}$ (= duration of a PDH frame)

SDH network elements

- regenerator (intermediate repeater, IR)
- regenerates line signal and may send or receive data via communication channels in RSOH header fields
- multiplexer
- terminal multiplexer multiplexes/demultiplexes PDH and SDH tributaries to/from a common STM-n
- add-drop multiplexer adds or drops tributaries to/from a common STMn
- digital cross-connect
- used for rearrangement of connections to meet variations of capacity or for protection switching
- connections set up and released by operator

Example SDH network elements

Cross-connect

Add-drop multiplexer

Terminal multiplexer

Generation of STM-1 frame

STM-n frame

Three main fields:

- Regeneration and multiplexer section overhead (RSOH and MSOH)
- Payload and path overhead (POH)
- AU (administrative) pointer specifies where payload (VC-4 or VC-3) starts

Synchronization of payload

- Position of each octet in a STM frame (or VC frame) has a number
- AU pointer contains position number of the octet in which VC starts
- Lower order VC included as part of a higher order VC (e.g. VC-12 as part of VC-4)

ATM concept in summary

- cell
- 53 octets
- routing/switching
- based on VPI and VCI
- adaptation
- processing of user data into ATM cells
- error control
- cell header checking and discarding
- flow control
- no flow control
- input rate control
- congestion control
- cell discarded (two priorities)

ATM protocol reference model

AAL	Convergence sublayer (CS)	
	Segmentation and reassembly (SAR)	
ATM	Generic flow control VPI/VCI translation Multiplexing and demultiplexing of cells	
Phys	\bigcirc	Cell rate decoupling HEC header sequence generation/verification Cell delineation Transmission frame adaptation Transmission frame generation/recovery
	ミ	Timing Physical medium

Reference interfaces

NNI - Network-to-Network Interface
UNI - User Network Interface
EX - Exchange Equipment
TE - Terminal Equipment

ATM cell structure

ATM connection types

VCI \boldsymbol{k} - Virtual Channel Identifier \boldsymbol{k}
VPI \boldsymbol{k} - Virtual Path Identifier \boldsymbol{k}

Physical layers for ATM

- SDH (Synchronous Digital Hierarchy)
- STM-1 155 Mbit/s
- STM-4 622 Mbit/s
- STM-16 2.4 Gbit/s
- PDH (Plesiochronous Digital Hierarchy)
- E1 2 Mbit/s
- E3 $34 \mathrm{Mbit} / \mathrm{s}$
- E4 $140 \mathrm{Mbit} / \mathrm{s}$
- TAXI 100 Mbit/s and IBM 25 Mbit/s
- Cell based interface
- uses standard bit rates and physical level interfaces (e.g. E1, STM-1 or STM-4)
- HEC used for framing

Transport of data in ATM cells

ATM cell encapsulation / SDH

ATM cell encapsulation / PDH (E1)

TSO	Header	TS16	
TSO		TS16	Header
TSO		TS16	
TSO	Header	TS16	
TS0		TS16	Head.

TSO

- frame alignment

TS16

- reserved for signaling
- F3 OAM functions
- loss of frame alignment
- performance monitoring
- transmission of FERF and LOC
- performance reporting

Cell based interface

Frame structure for cell base interfaces:

- PL cells processed on physical layer (not on ATM layer)
- IDLE cell for cell rate adaptation
- PL-OAM cells carry physical level OAM information (regenerator (F1) and transmission path (F3) level messages)
- PL cell identified by a pre-defined header
- 0000000000000000000000000000001 (IDLE cell)
- 0000000000000000000000000001001 (phys. layer OAM)
- xxxx0000 000000000000000 0000xxxx (reserved for phys. layer)

ATM network elements

- Gross-connect
- switching of virtual paths (VPs)
- VP paths are statically connected
- Switch
- switching of virtual channel (VCs)
- VC paths are dynamically or statically connected
- DSLAM (Digital Subscriber Line Access Multiplexer)
- concentrates a larger number of sub-scriber lines to a common higher capacity link
- aggregated capacity of subscriber lines surpasses that of the common link

Ethernet

- Originally a link layer protocol for LANs (10 and 100 MbE)
- Upgrade of link speeds => optical versions 1 GbE and 10 GbE => suggested for long haul transmission
- No connections - each data terminal (DTE) sends data when ready - MAC is based on CSMA/CD
- Synchronization
- line coding, preamble pattern and start-of-frame delimiter
- Manchester code for 10 MbE , 8B6T for 100 MbE , 8B10B for GbE

Ethernet frame

Preamble - AA AA AA AA AA AA AA (Hex)
SFD - Start of Frame Delimiter AB (Hex)
DA - Destination Address
SA - Source Address
T/L - Type (RFC894, Ethernet) or Length (RFC1042, IEEE 802.3) indicator CRC - Cyclic Redundance Check
Inter-frame gap 12 octets ($9,6 \mu \mathrm{~s} / 10 \mathrm{MbE}$)

1GbE frame

Preamble - AA AA AA AA AA AA AA (Hex)
SFD - Start of Frame Delimiter AB (Hex)
DA - Destination Address
SA - Source Address
T/L - Type (RFC894, Ethernet) or Length (RFC1042, IEEE 802.3) indicator
CRC - Cyclic Redundancy Check
Inter-frame gap 12 octets ($96 \mathrm{~ns} / 1 \mathrm{GbE}$)
Extension - for padding short frames to be 512 octets long

Ethernet network elements

- Repeater

- interconnects LAN segments on physical layer
- regenerates all signals received from one segment and forwards them onto the next
- Bridge
- interconnects LAN segments on link layer (MAC)
- all received frames are buffered and error free ones are forwarded to another segment (if they are addressed to it)
- Hub and switch
- hub connects DTEs with two twisted pair links in a star topology and repeats received signal from any input to all output links
- switch is an intelligent hub, which learns MAC addresses of DTEs and is capable of directing received frames only to addressed ports

Optical transport network

- Optical Transport Network (OTN), being developed by ITU-T (G.709), specifies interfaces for optical networks
- Goal to gather for the transmission needs of today's wide range of digital services and to assist network evolution to higher bandwidths and improved network performance
- OTN builds on SDH and introduces some refinements:
- management of optical channels in optical domain
- FEC to improve error performance and allow longer link spans
- provides means to manage optical channels end-to-end in optical domain (i.e. no O/E/O conversions)
- interconnections scale from a single wavelength to multiple ones

OTN reference model


```
- OCh Optical Channel 
- OMS Optical Multiplexing Section
- OMPX Optical Multiplexer
- OTS Optical Transport Section
```


OTN layers and OCh sub-layers

OTN frame structure

- Three main fields

- Optical channel overhead
- Payload
- Forward error indication field

OTN frame structure (cont.)

OTU - Optical transport unit
ODU - Optical data unit
OPU - Optical payload unit
FEC - Forward error correction

- Frame size remains the same (4×4080) regardless of line rate
=> frame rate increases as line rate increases
- Three line rates defined:
- OTU1 2.666 Gbit/s
- OTU2 10.709 Gbit/s
- OTU3 43.014 Gbit/s

Generation of OTN frame and signal

OTN network elements

- optical amplifier
- amplifies optical line signal
- optical multiplexer
- multiplexes optical wavelengths to OMS signal
- add-drop multiplexer adds or drops wavelengths to/from a common OMS
- optical cross-connect
- used to direct optical wavelengths (channels) from an OMS to another
- connections set up and released by operator
- optical switches ?
- when technology becomes available optical switches will be used for switching of data packets in the optical domain

Generic Framing Procedure (GFP)

- Recently standardized traffic adaptation mechanism especially for transporting block-coded and packet-oriented data
- Standardized by ITU-T (G.7041) and ANSI (T1.105.02) (the only standard supported by both organizations)
- Developed to overcome data transport inefficiencies of existing ATM, POS, etc. technologies
- Operates over byte-synchronous communications channels (e.g. SDH/SONET and OTN)
- Supports both fixed and variable length data frames
- Generalizes error-control-based frame delineation scheme (successfully employed in ATM)
- relies on payload length and error control check for frame boundary delineation

GFP (cont.)

- Two frame types: client and control frames
- client frames include client data frames and client management frames
- control frames used for OAM purposes
- Multiple transport modes (coexistent in the same channel) possible
- Frame-mapped GFP for packet data, e.g. PPP, IP, MPLS and Ethernet)
- Transparent-mapped GFP for delay sensitive traffic (storage area networks), e.g. Fiber Channel, FICON and ESCON

GFP frame types

GFP client data frame

- Composed of a frame header and payload
- Core header intended for data link management
- payload length indicator (PLI, 2 octets), HEC (CRC-16, 2 octets)
- Payload field divided into payload header, payload and optional FCS (CRC-32) sub-fields
- Payload header includes:
- payload type (2 octets) and type HEC (2 octets) sub-fields
- optional 0-60 octets of extension header
- Payload:
- variable length (0-65 535 octets, including payload header and FCS) for frame mapping mode (GFP-F) - frame multiplexing
- fixed size $N x[536,520]$ for transparent mapping mode (GFP-T) - no frame multiplexing

GFP frame structure

Source: IEEE Communications Magazine, May 2002

GFP relationship to client signals and transport paths

ESCON - Enterprise System CONnection
FICON - Fiber CONnection
IP/PPP - IP over Point-to-Point Protocol
MAPOS - Multiple Access Protocol over SONET/SDH
RPR - Resilient Packet Ring
Source: IEEE Communications Magazine, May 2002

Adapting traffic via GFP-F and GFP-T

GFP-F frame

$\underset{2 \text { bytes }}{\mathrm{PLI}}$	cHEC 2 bytes	Payload header 4 bytes	Client PDU (PPP, IP, Ethernet, RPR, etc.)					FCS (optional) 4 bytes
GFP-T frame								
$\begin{gathered} \text { PLI } \\ 2 \text { bytes } \end{gathered}$	cHEC 2 bytes	Payload header 4 bytes	8x64B/65B superblock \#1	\#2	...	\#N-1	\#N	FCS (optiona 4 bytes
FCS cHEC PDU PLI	- Frame Check Sequence - Core Header Error Control - Packet Data Unit - Payload Length Indicator							
(c) P. Raatikainen		Switching Technology / 2005						L2-6

GFP-T frame mapping

64B/65B code block

