PDH Switches

Switching Technology S38.165 http://www.netlab.hut.fi/opetus/s38165

© P. Raatikainen

Switching Technology / 2004

L8 - 1

PDH switches

- General structure of a telecom exchange
- Timing and synchronization
- Dimensioning example

PDH exchange

- Digital telephone exchanges are called SPC (Stored Program Control) exchanges
 - controlled by software, which is stored in a computer or a group of computers (microprocessors)
 - programs contain the actual intelligence to perform control functions
 - software divided into well-defined modular blocks, which makes the system less complicated to maintain and expand
- Main building blocks
 - subscriber interfaces and trunk interfaces
 - · switch fabric
 - switch/call control

© P. Raatikainen

© P. Raatikainen

Switching Technology / 2004

L8 - 3

L8 - 4

Basic blocks of a PDH exchange SWITCH FABRIC SWITCH CONTROL

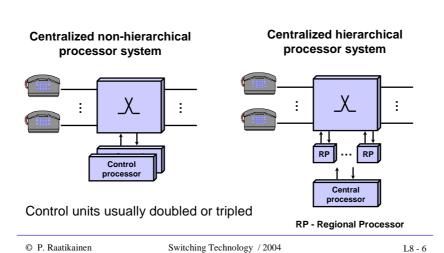
Switching Technology / 2004

Switch control

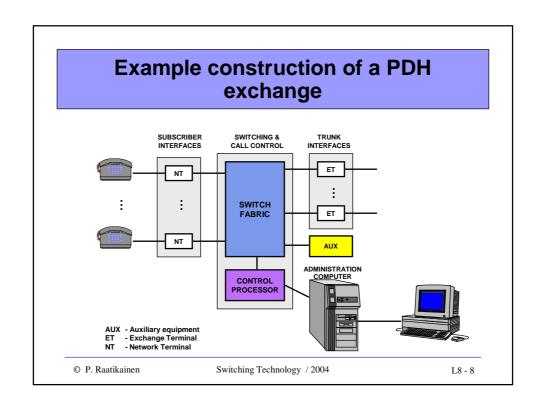
Centralized

- all control actions needed to set up/tear down a connection are executed in a central processing unit
- processing work normally shared by a number of processors
- hierarchical or non-hierarchical processor architecture

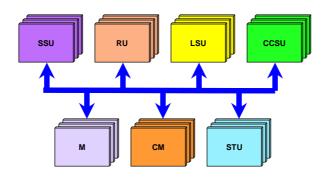
Distributed


- control functions are shared by a number of processing units that are more or less independent of one another
- switching device divided into a number of switching parts and each of them has a control processor


© P. Raatikainen


Switching Technology / 2004

L8 - 5


Switch control (cont.)

SSU

STU

CCSU - Common Channel Signaling Unit CM - Central Memory

Line Signaling Unit LSU

- Registering UnitSubscriber Stage UnitStatistics Unit

DX200 / Nokia

© P. Raatikainen

Switching Technology / 2004

L8 - 9

Call processing units

- Common Channel Signaling Unit (CCSU)
 - processes SS7 signaling messages
- Central Memory (CM)
 - common central memory of the different control units
- Line Signaling unit (LSU)
 - processes line signaling information
- Marker (M)
 - connection (channel) control
- Register Unit (RU)
 - registers for information such as call/customer related billing
- Subscriber Stage Unit (SSU)
 - subscriber stage control (incl. subscriber signaling)
- Statistics Unit (STU)
 - · statistical information such as call durations and outage periods

Hierarchical control software

Software systems in the control part:

- signaling and call control
- charging and statistics
- maintenance software

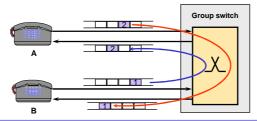
Control of connections:

- calls should not be directed to faulty destinations
- faulty connections should be cleared
- detected faulty connections must be reported to far-end if possible

Administration programs

Call control programs

Signaling message processing

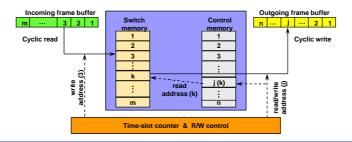

© P. Raatikainen

Switching Technology / 2004

L8 - 11

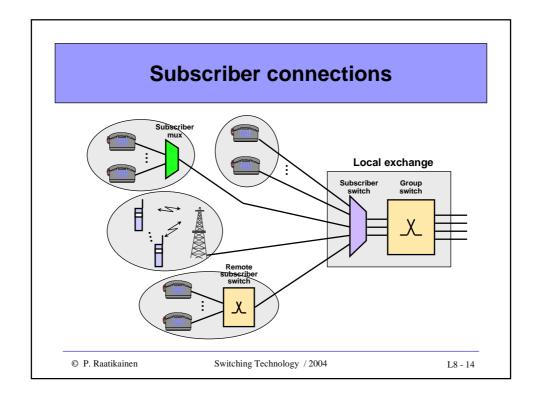
Switching part

- Main task of a switching part is to connect an incoming time-slot to an outgoing one – unit responsible for this function is called a group switch
- Control system assigns incoming and outgoing time-slot, which are reserved by signaling, on associated physical links
 need for time and space switching



© P. Raatikainen

Switching Technology / 2004


Group switch implementations

- Group switch can be based on a space or time switch fabric
- Memory based time switch fabrics are the most common ones
 - flexible construction
 - due to advances in IC technology suitable also for large switch fabrics

© P. Raatikainen

Switching Technology / 2004

Typical subscriber connections and trunk lines

Subscriber connections

- conventional twisted pair serving, e.g., an analog 3 kHz voice channel or 2B+D digital ISDN connection
- radio link serving, e.g., an analog voice channel (NMT) or a digital GSM voice/data channel
- E1, ..., E3 links connecting business users with a number of voice channels

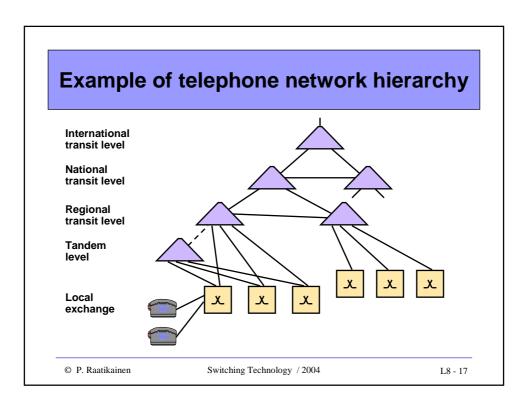
Trunk lines

- standard PDH links (E1, ..., E4)
- standard SDH links (STM-1, ..., STM-16) carrying standard PDH/PCM signals

© P. Raatikainen

Switching Technology / 2004

L8 - 15


Subscriber and trunk interface

• Subscriber interface

- · on-hook/off-hook detection, reception of dialed digits
- check of subscriber line, power supply for subscriber line
- physical signal reception/transmission, A/D-conversion
- concentration

• Trunk interface

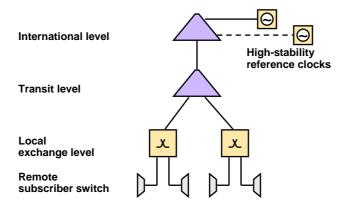
- timing and synchronization (bit and octet level) to line/clock signal coming from an exchange of higher level of hierarchy
- frame alignment/frame generation
- multiplexing/demultiplexing

Network synchronization

Need for synchronization

- Today's digital telecom networks are combination of PDH and SDH technologies, i.e. TDM and TDMA utilized
- These techniques require that time and timing in the network can be controlled, e.g., when traffic is added or dropped from a bit stream in an optical fiber or to/from a radio-transmitted signal
- The purpose of network synchronization is to enable the network nodes to operate with the same frequency stability and/or absolute time
- Network synchronism is normally obtained by applying the master-slave timing principle

Network synchronization

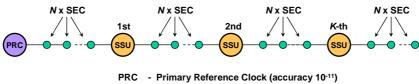

Methods for network synchronization

- Distribute the clock over special synchronization links
 - offers best integrity, independent of technological development and architecture of the network
- Distribute the clock by utilizing traffic links
 - most frequently used (master-slave network superimposed on the traffic network)
- Use an independent clock in each node
 - expensive method, but standard solution in international exchanges
- Use an international navigation system in each node
 - GPS (Global Positioning System) deployed increasingly
 - independent of technological development and architecture of network
- · Combine some of the above methods

© P. Raatikainen Switching Technology / 2004

L8 - 19

Master-slave synchronization over transport network



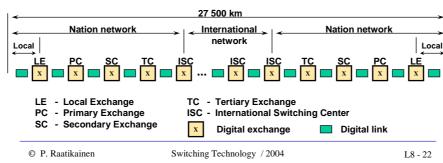
ITU-T Recommendations G.810, G.811, G.812, G.812, G.823

© P. Raatikainen Switching Technology / 2004

SDH synchronization network reference chain

- As the number of clocks in tandem increases, synchronization signal is increasingly degraded
- To maintain clock quality, it is important to specify limit to the number of cascaded clocks and set limit on degradation of the synchronization signal
- Reference chain consists of KSSUs each linked with NSECs
- Provisionally K and N have been set to be K=10 and N=20
 - total number of SECs has been limited to 60

SEC - SDH Equipment Clock (accuracy 10⁻⁹) SSU - Synchronization Supply Unit (accuracy 10⁻⁶)


© P. Raatikainen

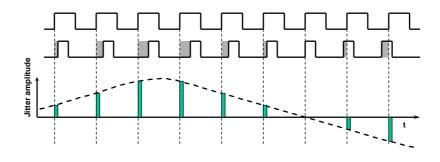
Switching Technology / 2004

L8 - 21

PDH synchronization reference connection

- End-to-end timing requirements are set for the reference connection
- · Link timing errors are additive on the end-to-end connection
- By synchronizing the national network at both ends, timing errors can be reduced compared to totally plesiochronous (separate clock in each switch) operation
- International connections mostly plesiochronous

Types of timing variation


- Frequency offset
 - steady-state timing difference causes buffer overflows
- Periodic timing differences
 - jitter (periodic variation > 10 Hz)
 - wander (periodic variation < 10 Hz)
- Random frequency variation cased by
 - electronic noise in phase-locked loops of timing devices and recovery systems
 - transients caused by switching from one clock source to another
- Timing variation causes
 - slips (= loss of a frame or duplication of a frame) in PDH systems
 - pointer adjustments in SDH systems => payload jitter
 - => data errors

© P. Raatikainen

Switching Technology / 2004

L8 - 23

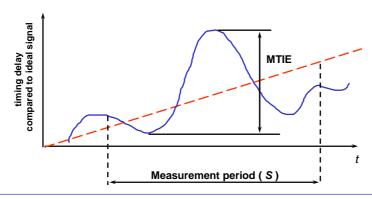
Visualization of jitter and wander

© P. Raatikainen

Switching Technology / 2004

Timing variation measures

- Time interval error (TIE)
 - difference between the phase of a timing signal and phase of a reference (master clock) timing signal (given in ns)
- Maximum time interval error (MTIE)
 - maximum value of TIE during a measurement period
- Maximum relative time interval error (MRTIE)
 - underlying frequency offset subtracted from MTIE
- Time deviation (TDEV)
 - average standard deviation calculated from TIE for varying window sizes


© P. Raatikainen

Switching Technology / 2004

L8 - 25

Maximum time interval error

 Maximum of peak-to-peak difference in timing signal delay during a measurement period as compared to an ideal timing signal

© P. Raatikainen

Switching Technology / 2004

MTIE limits for PRC, SSU and SEC

Clock source	Time-slot interval [ns]	Observation interval
PRC	25 ns 0.3 <i>t</i> ns 300 ns 0.01 <i>t</i> ns	0.1 < t < 83 s 83 < t < 1000 s 1000 < t < 30 000 s t > 30 000 s
SSU	25 ns 10 <i>t</i> ns 2000 ns 433 <i>t</i> ^{0,2} + 0.01 <i>t</i> ns	0.1 < t < 2.5 s 2.5 < t < 200 s 200 < t < 2 000 s t > 2 000 s
SEC	250 ns 100 <i>t</i> ns 2000 ns 433 <i>t</i> ^{0.2} + 0.01 <i>t</i> ns	0.1 < t < 2.5 s 2.5 < t < 20 s 20 < t < 2 000 s t > 2 000 s

ETS 300 462-3

© P. Raatikainen

Switching Technology / 2004

L8 - 27

Occurrence of slips

- Slips occur on connections whose timing differs from the timing signal used by the exchange
- If both ends of a connection are internally synchronized to a PRC signal, theoretically slips occur no more frequently than once in 72 days
- In a **reference connection**, a slip occurs theoretically once in 72/12 = 6 days or if national segments are synchronized once in 72/4 = 18 days
- Slip requirement on an end-to-end connection is looser:

Average frequency of slips	Share of time during one year	
≤ 5 slips / 24h	98.90 %	
5 slips/ 24 h 30 slips/ 1h	< 1 %	
≤ 10 slips / 1h	< 0.1 %	

© P. Raatikainen

Switching Technology / 2004

Slip calculation example

Show that two networks with single frame buffers and timed from separate PRCs would see a maximum slip rate of one slip every 72 days

Solution:

- Timing accuracy of a PRC clock is 10⁻¹¹
- Let the frequencies of the two ends be f₁ and f₂
- In the worst case, these frequencies deviate from the reference clock f_o by 10⁻¹¹x f_o and those deviations are to different directions
- Let the frequencies be $f_1 = (1 + 10^{-11}) f_0$ and $f_2 = (1 10^{-11}) f_0$
- Duration of bits in these networks are T_1 = 1/ f_1 and T_2 = 1/ f_2

© P. Raatikainen

Switching Technology / 2004

L8 - 29

Slip calculation example (cont.)

Solution (cont.):

- During one bit interval, the timing difference is |T₁-T₂| and after some N bits the difference exceeds a frame length of 125 µs and a slip occurs => $N|T_1 - T_2| = 125 \times 10^{-6}$
 - $=> N = 125 \times 10^{-6} / [|T_1 T_2|] = 125 \times 10^{-6} / [|(1/f_1 1/f_2)|]$
- Inserting $f_1 = (1 + 10^{-11}) f_0$ and $f_2 = (1 10^{-11}) f_0$ into the above equation, we get => $N = 125 \times 10^{-6} f_0 (1 - 10^{-22})/(2 \times 10^{-11}) = 62.5 \times 10^{-5} \times f_0$
- Multiplying N by the duration (T_b) of one bit, we get the time (T_{slip}) between slips
- In case of E1 links, $f_0 = 2.048 \times 10^6 / \text{s}$ and $T_h = 488$ ns. Dividing the obtained T_{slip} by 60 (s), then by 60 (min) and finally by 24 (h) we get the average time interval between successive slips to be 72.3 days

Synchronization of a switch

Synchronization sub-system in an exchange

- Supports both plesiochronous and slave mode
- Clock accuracy is chosen based on the location of the exchange in the synchronization hierarchy
 - accuracy decreases towards the leaves of the synchronization tree
- Synchronizes itself automatically to several PCM signals and chooses the most suitable of them (primary, secondary, etc.)
- · Implements a timing control algorithm to eliminate
 - instantaneous timing differences caused by the transmission network (e.g. switchovers - automatic replacement of faulty equipment with redundant ones)
 - jitter
- Follows smoothly incoming synchronization signal

© P. Raatikainen

Switching Technology / 2004

L8 - 31

Synchronization of a switch (cont.)

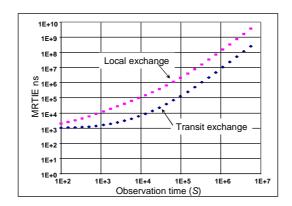
Exchange follows the synchronization signal

- Relative error used to set requirements
 - maximum relative time interval error MRTIE≤1000 ns (S≥ 100s)
- Requirement implies how well the exchange must follow the synchronization signal when the input is practically error free
- When none of the synchronization inputs is good enough, the exchange-clock automatically switches over to plesiochronous operation
- In plesiochronous mode MRTIE≤ (aS +0.5bS² + c) ns
- Timing system monitors all incoming clock signals and when a quality signal is detected, the system switches over back to slave mode (either manually by an operator command or automatically)

© P. Raatikainen

Stability of an exchange clock

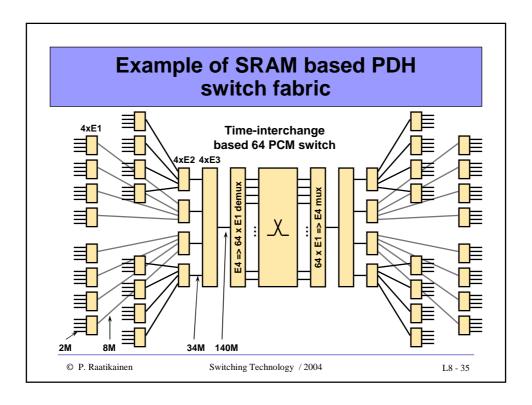
- Clock stability is measured by aging (= b)
 - temperature stabilized aging in the order of $n \times 10^{-10}$ /day
- MRTIE \leq (aS +0.5bS² + c) ns
 - S = measurement period
 - a = accuracy of the initial setting of the clock
 - b = clock stability (measured by aging)
 - c = constant


	Transit node clock	Local node clock
а	0.5 - corresponds to an initial frequency shift of 5x10 ⁻¹⁰	10.0 - corresponds to an initial frequency shift of 1x10-8
b	1.16x10 ^{-5 -} corresponds to aging of 10 ⁻⁹ /days	2.3x10 ⁻⁴ - corresponds to aging of 2x10 ⁻⁸
С	1000	1000

© P. Raatikainen

Switching Technology / 2004

L8 - 33


MRTIE in an exchange (plesiochronous mode)

Duration of a time-slot in an E1 PCM-signal is $3.9\,\mu s$ and duration of a bit is 488 ns.

© P. Raatikainen

Switching Technology / 2004

Example of SRAM based PDH switch fabric (cont.)

Memory size and speed requirement:

- Switch memory (SM) and control memory (CM) are both single chip solutions
- Size of both SM and CM ≥ 64x32 octets = 2048 octets
- Number of SM write and read cycles during a frame interval (125 μ s) is 2x64x32 = 4096
- Access cycle of SM should be \leq 125 μs / 4096 = 30,5 ns
- Number of CM write and read cycles during a frame interval (125 μ s) is 1x64x32 = 2048
- Access cycle of CM should be \leq 125 μs / 2048 = 61 ns

PDH bit rates and related bit/octet times

Hierarchy level	Time-slot interval [ns]	Bit interval [ns]
E1/2M	3906	488
E2/8M	947	118
E3/34M	233	29
E4/140M	57.4	7.2

- When time-slots turn into parallel form (8 bits in parallel) memory speed requirement decreased by a factor of 8
- Present day memory technology enables up to 256 PDH E1 signals to be written to and read from a SRAM memory on wire speed

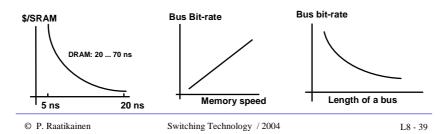
© P. Raatikainen

Switching Technology / 2004

L8 - 37

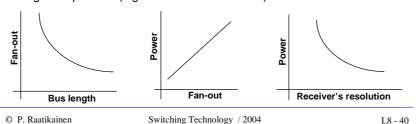
Properties of full matrix switches

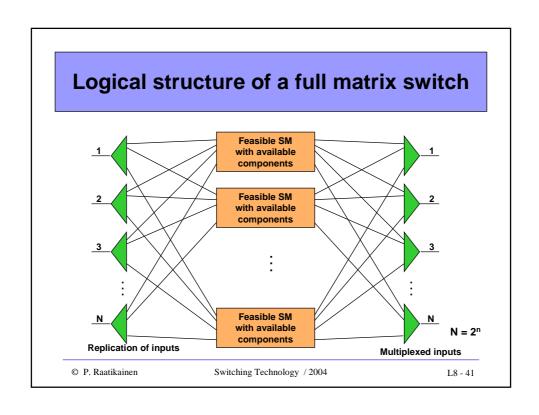
Pros

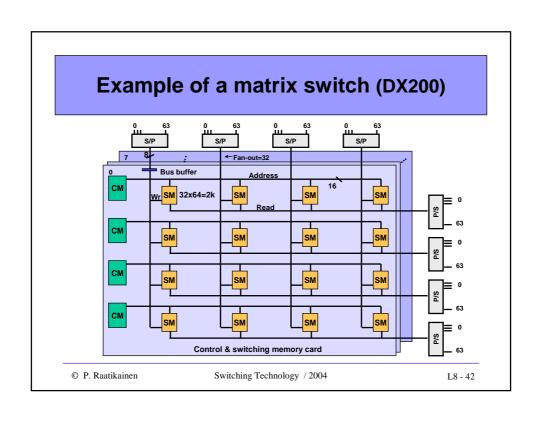

- strict-sense non-blocking
- no path search a connection can always be written into the control memory if requested output is idle
- · multi-cast capability
- · constant delay
- multi-slot connections possible

Cons

- switch and control memory both increase in square of the number of input/outputs
- broadband required memory speed may not be available


Make full use of available memory speed


- · At the time of design, select components that
 - give adequate performance
 - will stay on the market long enough
 - are not too expensive (often price limits the use of the fastest components)
- To make full use of available memory speed, buses must be fast enough
- When increasing required memory speed, practical bus length decreases (proportional to inverse of speed)



Power consumption - avoid heating problem

- · Power consumption of an output gate is a function of
 - inputs connected to it (increased number of inputs => increased power consumption)
 - bit rate/clock frequency (higher bit rate => increased power consumption)
 - bus length (long buses inside switch fabric => increased power consumption and decreased fan-out)
- Increase in power consumption => heating problem
- Power consumption and heating problem can be reduced, e.g. by using lower voltage components (higher resolution receivers)

Example of a matrix switch (cont.)

- S/P (Serial/Parallel conversion) incoming time-slots are turned into parallel form to reduce the speed on internal buses
- **P/S** (Parallel/Serial conversion) parallel form output signals converted back to serial form
- 64 PCM S/P-P/S pairs implemented on one card, which is practical because PCMs are bi-directional
- One switch block can serve max 4 S/P-P/S pairs which is chosen based on required capacity (64, 128, 192 or 256 E1/PCMs)
- One S/P+P/S pair feeds max 8 parallel switch blocks chosen based on the required capacity in the installation (n * 256 E1/PCM's)
- Max size of the example DX200-system fabric is 2048 E1/PCM's
- Currently, a bigger matrix (8K E1/PCM's) is available, slightly different SRAMs are needed, but principle is similar

© P. Raatikainen

Switching Technology / 2004

L8 - 43

Example of a matrix switch (cont.)

- A time-slot is forwarded from an S/P to all parallel switch blocks and (in each switch block) it is written to all SMs along the vertical bus
- A single time-slot replicated into max 4x8=32 locations
- Data in CMs directs storing of a time-slot in correct positions in SMs
- CM also includes data which directs reading of a correct time-slot to be forwarded to each output time-slot on each output E1 link
- CM includes a 16-bit pointer to a time-slot to be read
 - 2 bits of CM content point to an SM chip and
 - -5+6=11 bits point to a memory location on an SM chip
 - remaining 3 bits point to (source) switch block

Example of a matrix switch (cont.)

- Number of time-slots to be switched during a frame (125 μs):
 8x4x64x32 = 65 536 time-slots (= 64 kbytes)
- Each time-slot stored in 4 SMs in each of the 8 switch blocks => max size of switch memory 8x4x65 536 = 2097152 (= 2 Mbytes)
- Every 32nd memory location is read from SM in a max size switch => average memory speed requirement < 31 ns (less than the worst case requirement 64x32 write and 64x32 read operations during a 125 μs period)
- Control memory is composed of 4x4 control memory banks in each
 of the 8 switch blocks and each memory bank includes 2.048
 kwords (word= 2 bytes) for write and 2.048 kwords for read control,
 i.e. max CM size is 8x4x4x8kbytes = 1048576 bytes (= 1 Mbytes)

© P. Raatikainen

Switching Technology / 2004

L8 - 45

Growth of matrix ____ 256 PCM 512 PCM © P. Raatikainen Switching Technology / 2004 L8 - 46