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Stochastic processes (1)

Consider a teletraffic (or any) system

It typically evolves in time randomly
— Example 1: the number of occupied channels in a telephone link
at time t or at the arrival time of the n" customer
— Example 2: the number of packets in the buffer of a statistical multiplexer
at time t or at the arrival time of the n" customer
This kind of evolution is described by a stochastic process
— At any individual time t (or n) the system can be described by a random
variable
— Thus, the stochastic process is a collection of random variables

Stochastic processes (2)

Definition : A (real-valued) stochastic process X = (X [t l)isa
collection of random variables X;
— taking values in some (real-valued) set S X(w) O S and

— indexed by a real-valued (time) parameter t [ I.

— Stochastic processes are also called random processes
(or just processes)

The index set | [ L] is called the parameter space of the process

The value set S [ is called the state space of the process

— Note: Sometimes notation X; is used to refer to the whole stochastic
process (instead of a single random variable)




Stochastic processes (3)

Each (individual) random variable X; is a mapping from the sample
space Q into the real values [I:

Xt Q- D, w— Xt(a))

Thus, a stochastic process X can be seen as a mapping from the
sample space Q into the set of real-valued functions 0' (with t O | as
an argument):

X:Q 0o, w— X(w)

Each sample point w [ Q is associated with a real-valued function
X(w). Function X(w) is called a realization (or a path or a trajectory )
of the process.

Summary

Given the sample point w [1 Q

— X(w) = (X(w) |t O 1) is a real-valued function (of t (I 1)
Given the time index t L1 1,

— X = (X{(w) | w U Q) is a random variable (as w U Q)
Given the sample point w [1 Q and the time index t L1 1,

— Xi(w) is a real value




Example

Consider traffic process X = (X; | t [ [0,T]) in a link between two
telephone exchanges during some time interval [0, T]

— X denotes the number of occupied channels at time t

Sample point w [ Q tells us
— what is the number X, of occupied channels at time O,
— what are the remaining holding times of the calls going on at time O,
— at what times new calls arrive, and
— what are the holding times of these new calls.
From this information, it is possible to construct the realization X(w) of
the traffic process X
Note that all the randomness is included in the sample point w

— Given the sample point, the realization of the process is just a
(deterministic) function of time
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Categories of stochastic processes

* Reminder:
— Parameter space: set | of indices t LI |
— State space: set Sof values X(w) 0 S
» Categories:
— Based on the parameter space:
» Discrete-time processes : parameter space discrete
» Continuous-time processes : parameter space continuous
— Based on the state space:
» Discrete-state processes : state space discrete
« Continuous-state processes : state space continuous
* In this course we will concentrate on the discrete-state processes
(with either a discrete or a continuous parameter space)
— Typical processes describe the number of customers in a queueing system
(the state space being thus S={0,1,2,...})

Examples

* Discrete-time, discrete-state processes
— Example 1: the number of occupied channels in a telephone link
at the arrival time of the n" customer, n=1,2,...
— Example 2: the number of packets in the buffer of a statistical multiplexer
at the arrival time of the n customer, n=1,2,...
» Continuous-time, discrete-state processes
— Example 3: the number of occupied channels in a telephone link
attimet>0
— Example 4: the number of packets in the buffer of a statistical multiplexer
attimet>0
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Notation

* For a discrete-time process

1

— the parameter space is typically the set of positive integers, | ={1,2,...}
— Index tis then (often) replaced by n: X, X (w)

» For a continuous-time process

— the parameter space is typically either a finite interval, | = [0, T], or all non-
negative real values, | = [0, )

In this case, index t is (often) written not as a subscript but in parentheses:
X(t), X (t;w)
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Distribution

» The stochastic characterization of a stochastic process X is made
by giving all possible finite-dimensional distributions

P{ Xty S X000 X, S Xn}

where ty,...,t, U1, Xq,..., X, 0 Sand n=1,2,...

In general, this is not an easy task because of dependencies between
the random variables X; (with different values of time t)
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Dependence

* The most simple (but not so interesting) example of a stochastic
process is such that all the random variables X; are independent of
each other. In this case

P{th < Xl,...,th < Xn} - P{th < X]}P{ th < Xn}

» The most simple non-trivial example is a Markov process . In this case
P{X¢, <%0 Xt SXn} =
P{X¢, 3} P{ X, X0 | Xy <%} P{X¢, <X | Xg, ;S Xn-1}
* This is related to the so called Markov property :

— Given the current state (of the process),
the future (of the process) does not depend on the past (of the process)
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Stationarity

» Definition : Stochastic process X is stationary if all finite-dimensional
distributions are invariant to time shifts, that is:

P{Xt1+A < Xl,...,th+A < Xn} - P{th < Xl,...,th < Xn}
forall A, n, ty,..., t,and Xy,..., X,

« Consequence : By choosing n = 1, we see that all (individual) random
variables X; of a stationary process are identically distributed:

P{X; <X} =F(X)

for all t LI I. This is called the stationary distribution  of the process.
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Stochastic processes in teletraffic theory

* In this course (and, more generally, in teletraffic theory) various
stochastic processes are needed to describe
— the arrivals of customers to the system (arrival process )
— the state of the system (state process , traffic process )
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Arrival process

* An arrival process can be described as
— apoint process (T, |Nn=1,2,...)where T, tells the arrival time of the nt"
customer (discrete-time, continuous-state)
* typically it is assumed that the interarrival times T,,— T,,.; are
independent and identically distributed (IID) [0 renewal process
 then it is sufficient to specify the interarrival time distribution
» exponential IID interarrival times [J Poisson process
— acounter process (A(t) | t = 0) where A(t) tells the number of arrivals up
to time t (continuous-time, discrete-state)
 non-decreasing: A(t+A) = A(t) for all t,A >0
* thus non-stationary!

« independent and identically distributed (IID) increments A(t+A) — A(t)
with Poisson distribution [1 Poisson process
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State process

* Insimple cases
— the state of the system is described just by an integer
* e.g. the number X(t) of calls or packets at time t
— This yields a state process that is continuous-time and discrete-state
* In more complicated cases,

— the state process is e.g. a vector of integers (cf. loss and queueing network
models)

* Now it is reasonable to ask whether the state process is stationary

— Although the state of the system did not follow the stationary distribution at
time O, in many cases state distribution approaches the stationary
distribution as t tends to o
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Bernoulli process

Definition : Bernoulli process with success probability p is an infinite
series (X, |n=1,2,...)of independent and identical random
experiments of Bernoulli type with success probability p
Bernoulli process is clearly discrete-time and discrete-state

— Parameter space: | ={1,2,...}

— State space: S={0,1}
Finite dimensional distributions (note: X.'s are IID):

P{X1 =X, Xy = Xn} = P{Xq =X} P{ X[y = Xn}

n
=1 pNi(1-p) N = pZm 1-p) 2%
=1
Bernoulli process is stationary (stationary distribution: Bernoulli(p))
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Poisson process (1)

Definition 1 : A point process (T,,| n=1,2,...)is a Poisson process
with intensity A if the probability that there is an event during a short

time interval (t, t+h] is Ah + o(h) independently of the other time
intervals

— T, tells the occurrence time of the ni" event
— o(h) refers to any function such that o(h))h -~ Oash - 0

— new events happen with a constant intensity A: (Ah + o(h))/h - A

— Poisson process can be seen as the continuous-time counter-part of a
Bernoulli process

Defined as a point process,
Poisson process is discrete-time and continuous-state

— Parameter space: | ={1,2,...}
— State space: S= (0, o)
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Poisson process (2)

Consider the interarrival time T, — T,,.; between two events (T = 0)

— Since the intensity that something happens remains constant A, the
interarrival time distribution is clearly memoryless. On the other hand, we
know that this is a property of an exponential distribution.

— Due to the same reason, different interarrival times are also independent

— This leads to the following (second) characterization of a Poisson process
Definition 2 : A point process (T,,|n=1,2,...)is a Poisson process
with intensity A if the interarrival times T, — T,,_; are independent and
identically distributed (1ID) with joint distribution EXp(\)

— T, tells (again) the occurrence time of the nth event
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Poisson process (3)

Consider finally the number of events A(t) during time interval [0 t]

— In a Bernoulli process, the number of successes in a fixed interval would
follow a binomial distribution. As the “time slice” tends to O, this approaches
a Poisson distribution.

— On the other hand, since the intensity that something happens remains
constant A, the number of events occurring in disjoint time intervals are
clearly independent.

— This leads to the following (third) characterization of a Poisson process

Definition 3 : A counter process (A(t) |t = 0) is a Poisson process
with intensity A if its increments in disjoint intervals are independent
and follow a Poisson distribution as follows:

At +A) — A(t) LPoissoriAA)
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Poisson process (4)

» Defined as a counter process,
Poisson process is continuous-time and discrete-state

— Parameter space: | =[0, o)
— State space: S={0,1,2,...}
« One dimensional distribution: A(t) L1Poissonkt)
— E[A(t)] = At, DYA(1)] = At
* Finite dimensional distributions (due to indep. of disjoint intervals):

P{ A(t]_) = Xl,...,A(tn) = Xn} =
P{A(ty) = X} P{A(tp) — Aty) = Xp — X} -
P{ A(tn) - A(tn_l) = Xn — Xn—:l}

* No stationary distribution (but independent and identically distributed
increments) 23

Three ways to characterize the Poisson process

» Itis possible to show that all three definitions for a Poisson process are,
indeed, equivalent

A

v

1,1
4%3

T, T,Tg 1,

F—— A4
\ N no event with prob. 1-Ah+o(h
event with prob. Ah+o(h)
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Properties (1)

Property 1 (Sum): Let A{(t) and Ax(t) be two independent Poisson
processes with intensities A; and A,. Then the sum (superposition)
process A(t) + A(t) is a Poisson process with intensity A; + A,.

Proof: Consider a short time interval (t, t+h]
— Probability that there are no events in the superposition is

(L-Agh+o(h))(A- Azh+o(h)) =1~ (4 + Ap)h +o(h)
— On the other hand, the probability that there is exactly one event is
(Ah+0o(h))A- Azh+ o(h)) + (L- K+ o(h))(Azh +o(h))
= (A +A2)h+o(h)

)\1 I X X >
Ay | >
At XXX .
Properties (2)

Property 2 (Random sampling ): Let T,, be a Poisson process with
intensity A. Denote by G, the point process resulting from a random
and independent sampling (with probability p) of the points of T,,. Then
0, is a Poisson process with intensity pA.
Proof: Consider a short time interval (t, t+h]

— Probability that there are no events after the random sampling is

(1-Ah+o(h)) + (1- p)(Ah+o(h)) =1- pAh+o(h)
— On the other hand, the probability that there is exactly one event is

p(Ah+o(h)) = pAh+o(h)

A F— XK —X—>
pA | >
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Properties (3)

Property 3 (Random sorting ): Let T, be a Poisson process with
intensity A. Denote by Gn(l) the point process resulting from a random
and independent sampling (with probability p) of the points of T,
Denote by Gn(Z) the point process resulting from the remaining points.
Then Gn(l) and o, (2) are independent Poisson processes with
intensities Ap and A(1 — p).

Proof: Due to property 2, it is enough to prove that the resulting two
processes are independent.

v

>
©
v

v
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Properties (4)

Property 4 (PASTA): Consider any simple (and stable) teletraffic
model with Poisson arrivals. Let X(t) denote the state of system at time
t (continuous-time process) and Y,, denote the state of the system seen
by the nth arriving customer (discrete-time process). Then the
stationary distribution of X(t) is the same as the stationary distribution
of Yy,
Thus, we can say that

— arriving customers see the system in the stationary state
PASTA property is only valid for Poisson arrivals

— Consider e.g. your own PC. Whenever you start a new session, the system
is idle. In the continuous time, however, the system is not only idle but also
busy (when you use it).

28
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Markov process

« Consider a continuous-time and discrete-state stochastic process X(t)
— with state space S={0,1,...,N} or S={0,1,...}
« Definition : The process X(t) is a Markov process if

P{ X(tn+1) = Xn+1 | X(tl) = Xy-ees X(tn) = Xn} =
P{X(th+1) = Xn+1 | X (th) = Xn}

foralln, ty<... <t . and Xq,..., X, 41
— This is called the Markov property

— Given the current state,

the future of the process does not depend on its past
— As regards the future of the process,

it is important to know the current state

(not how the process has evolved to this state)
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Example

« Process X(t) with independent increments is always a Markov process:
X(tn) = X(th-1) + (X(tn) = X(th-1))

» It follows that Poisson process is a Markov process:

— according to Definition 3, the increments of a Poisson process are
independent
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Time-homogeneity

 Definition : Markov process X(t) is time-homogeneous if
P{X(t+4)=y[X(t)=x =P{X(8)=y|X(0)=x

forallt, A20and X,y IS

* In other words,
probabilities P{X(t + A) =y | X(t) =X} are independent of t
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State transition rates

Consider a time-homogeneous Markov process X(t)
The state transition rates gj;, where I,J O S are defined as follows:

Gij = H%ﬁ P{X(h) = ]1X(0) =1}

The initial distribution P{X(0) =i}, i J S and the state transition rates
g; together determine the state probabilities P{X(t) =i},1 0SS by the
Kolmogorov (backwards/forwards) equations
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Exponential holding times

When in state I, the conditional probability that there is a transition from
state I to state ] during a short time interval (t, t+h] is g;;h + o(h)
independently of the other time intervals

Let g; denote the total transition rate out of state i, that is:

4= > G
J#
Then, the conditional probability that there is a transition from state i to

any other state during a short time interval (t, t+h] is g;h + o(h)
independently of the other time intervals

Thus, the holding time in (any) state i is exponentially distributed with
intensity g
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State transition probabilities

Let T; denote the holding time in state |

It can be seen as the minimum of independent (potential) holding times
Tij corresponding to (potential) transitions from state i to state |:

Tj =minTj
j#i

Let then Pj denote the conditional probability that, when in state i, there
is a transition from state I to state |

Since potential holding times Tij are exponentially distributed with
intensity Qj. we have (by slide 5.44)

e
T UExp(q;),  py = P{Ti =T} =q':
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State transition diagram

A time-homogeneous Markov process can be represented by a state
transition diagram , which is a directed graph where

— nodes correspond to states and
— one-way links correspond to potential state transitions

link fromstate tostate] < g >0

Example: Markov process with three states, S={0,1,2}

L WA
i AN
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Irreducibility

Definition : There is a path from state i to state j (i — j) if there is a
directed path from state i to state | in the state transition diagram.

In this case, starting from state i, the process visits state j with positive
probability

Definition : States i and ] communicate (i « J)ifi - jand] - I.

Definition : Markov process is irreducible if all statesi [ S
communicate with each other

Example: The Markov process presented in the previous slide is
irreducible
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Global balance equations, equilibrium distribution

Consider an irreducible Markov process X(t)
Definition : Let T= (Tt | 7§, 2 0, i O S) be a distribution defined on the

state space § that is:
2ins’i =1 (N)

It is the equilibrium distribution  of the process if the following global
balance equations (GBE) are satisfied for each i [0 S

> iz 789 = 2 2 7Tjdj (GBE)
— lItis possible that no equilibrium distribution exists
— However, if the state space is finite, a unique equilibrium distribution exists

— By choosing the equilibrium distribution (if it exists) as the initial distribution,
the Markov process X(t) becomes stationary (with stationary distribution )
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Example

0
ot
|
]

NG

770+7T1+7T2:1 (N)

70 El.:ﬁz 1
71 A=my A+ m, L (GBE)

To@+pu) =m0

_ 1 _ Lty -1
[ 7T0—3+u, ﬂ1_3+/1’ﬂ2_3+u
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Local balance equations

Consider still an irreducible Markov process X(t). Next we will give
sufficient (but not necessary) conditions for the equilibrium distribution.

Proposition : Let 1= (Tt | 1t 2 0,1 0 §) be a distribution defined on the
state space S that is:

2ins’h =1 (N)
If the following local balance equations (LBE) are satisfied for each
LjOS

TiGj = TTjqji (LBE)
then Ttis the equilibrium distribution of the process.

— Proof: (GBE) follows from (LBE) by summing over all j Z i

— In this case the Markov process X(t) is called reversible (looking
stochastically the same in either direction of time)

40
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Birth-death process

« Consider a continuous-time and discrete-state Markov process X(t)
— with state space S={0,1,...,N} or S={0,1,...}

 Definition : The process X(t) is a birth-death process (BD) if state
transitions are possible only between neighbouring states, that is:

li-jpP1 O ;=0
* In this case, we denote
Hi=0Gij—120
Ai=0ii«120
— The former is called the death rate and the latter the birth rate .

— In particular, we define plg =0 and Ay = 0 (if N < c0)
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Irreducibility

* Proposition : A birth-death process is irreducible if and only if
A; >Oforalli O S{N} and ; > Ofor all i 1 S{0}

» State transition diagram of an infinite-state irreducible BD process:

(0)< (1) (2 )e > eee

» State transition diagram of a finite-state irreducible BD process:

)\O )\1 )\N—Z )\N—l
@): (e Yoo "N-1e ;(E\D
M1 Ho MN-1 Mn
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Equilibrium distribution (1)
« Consider an irreducible birth-death process X(t)
« Letm=(m |i O S denote the equilibrium distribution (if it exists)
* Local balance equations (LBE):
TiAi = Thaali+1 (LBE)

* Thus we get the following recursive formula: _
A Aj-1
Tivp=-——71 U
i+1 = Hi+1

* Normalizing condition (N):

(N)

||IIS ||Z|Sj—1
44




Equilibrium distribution (2)

Thus, the equilibrium distribution exists if and only if

> <

1S j —1
Finite state space :
The sum above is always finite, and the equilibrium distribution is

A
— -1 J -1
: Syt P
Infinite state space :
If the sum above is finite, the equilibrium distribution is

. = ig + 1H
7 nojl_:ll’lej’ E‘ Zl_l J F ,

1=1j —1

Example
0 A OH \ ,
Q=u - AgQ @E 0 "V . =@
0 x4 -
TiA =Tjp
U my=pm (p=Aly)  (LBE)
0 7 =mpp
1o+ 74 + 1 = Mo(L+ p+ p°) =1 (N)
i
[] m:pi
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Pure birth process

Definition : A birth-death process is a pure birth process if
W, =0forallidS

State transition diagram of an infinite-state pure birth process:

A A A

State transition diagram of a finite-state pure birth BD process:

Example: Poisson process is a pure birth process (with constant birth
rate \; = A foralli 0 S={0,1,...})
Note: Pure birth process is never irreducible (nor stationary)!
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THE END
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