12. Traffic engineering
12. Traffic engineering

Contents

- Topology
 - Traffic matrix
 - Traffic engineering
 - Load balancing
Topography

- A telecommunication network consists of nodes and links
 - Let \mathcal{N} denote the set of nodes indexed with n
 - Let \mathcal{J} denote the set of nodes indexed with n
- Example:
 - $\mathcal{N} = \{a,b,c,d,e\}$
 - $\mathcal{J} = \{1,2,3,...,12\}$
 - Link 1 from node a to node b
 - Link 2 from node b to node a
- Let c_j denote the capacity of link j (bps)
We define a path (= route) as a
- set of consecutive links connecting two nodes
- Let \(P \) denote the set of paths indexed with \(p \)

Example:
- three paths from node a to node c:
 - red path consisting of links 1 and 3
 - green path consisting of links 11 and 6
 - blue path consisting of links 10, 8 and 6
Path matrix

- Each path consists of a set of links
- This connection is described by the **path matrix** A, for which
 - element $a_{jp} = 1$ if $j \in p$, that is, link j belongs to path p
 - otherwise $a_{jp} = 0$
- Example:
 - three columns of a path matrix

<table>
<thead>
<tr>
<th></th>
<th>ac1</th>
<th>ac2</th>
<th>ac3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Shortest paths

- If each link j is associated with a corresponding weight w_j, the length l_p of path p is given by

$$l_p = \sum_{j \in p} w_j$$

 - With unit link weights $w_j = 1$, path length = hop count

- Example:
 - two shortest paths (with length 2) from node a to node c
12. Traffic engineering

Contents

- Topology
- Traffic matrix
- Traffic engineering
- Load balancing
12. Traffic engineering

Traffic characterisation

Traffic

- Circuit-switched
 - e.g. telephone traffic
 - Link
 - Network

- Packet-switched
 - e.g. data traffic
 - Link
 - Network
Traffic matrix (1)

- Traffic in a network is described by the **traffic matrix** T, for which
 - element t_{nm} tells the **traffic demand** (bps) from origin node n to destination node m
 - Aggregated traffic of all flows with the same origin and destination
 - Aggregated traffic during a time interval, e.g. busy hour or "typical 5-minute interval"

- Example:
 - Traffic demand from origin a to destination c is t_{ac} (bps)
Traffic matrix (2)

- Below we present the traffic demands in a vector form
 - Let K denote the set of origin-destination pairs (OD-pairs) indexed with k
- Traffic demands constitute a vector x, for which
 - element x_k tells the traffic demand of OD-pair k
- Example:
 - if OD-pair (a,c) is indexed with k, then $x_k = t_{ac}$
12. Traffic engineering

Contents

• Topology
• Traffic matrix
• Traffic engineering
• Load balancing
Traffic engineering and network design

- **Traffic engineering** = ”Engineer the traffic to fit the topology”
 - Given a fixed topology and a traffic matrix, how to **route** these traffic demands?

- **Network design** = ”Engineer the topology to fit the traffic”
Effect of routing on load distribution

• Routing algorithm determines how the traffic load is distributed to the links
 – Internet routing protocols (RIP, OSPF, BGP) apply the shortest path algorithms (Bellman-Ford, Dijkstra)
 – In MPLS networks, other algorithms are also possible
• More precisely: routing algorithm determines the proportions (splitting ratios) ϕ_{pk} of traffic demands x_k allocated to paths p,

$$\sum_{p \in P} \phi_{pk} = 1 \quad \text{for all } k$$
12. Traffic engineering

Link counts

- Traffic on a path p between OD-pair k is thus

$$\phi_{pk} x_k$$

- **Link counts** y_j are determined by traffic demands x_k and splitting ratios ϕ_{pk}:

$$y_j = \sum_{p \in P} \sum_{k \in K} a_{jp} \phi_{pk} x_k$$

- The same in matrix form:

$$y = A \phi x$$
12. Traffic engineering

MPLS

- **MPLS** (Multiprotocol Label Switching) supports traffic load distribution to parallel paths between OD-pairs
 - In MPLS networks, there can be any number of parallel Label Switched Paths (LSP) between OD-pairs
 - These paths do not need to belong to the set of shortest paths
 - Each LSP is associated with a label and each MPLS packet is tagged with such a label
- MPLS packets are routed through the network via these LSP’s (according to their label)
- Traffic load distribution can be affected **directly** by changing the splitting ratios ϕ_{pk} at the origin nodes
12. Traffic engineering

OSPF (1)

- **OSPF** (Open Shortest Path First) is an intradomain routing protocol in IP networks.
- **Link State Protocol**
 - each node tells the other nodes the distance to its neighbouring nodes
 - these distances are the link weights for the shortest path algorithm
 - based on this information, each node is aware of the whole topology of the domain
 - the shortest paths are derived from this topology using Dijkstra’s algorithm
- **IP packets are routed through the network via these shortest paths**
Routers in OSPF networks typically apply **ECMP** (Equal Cost Multipath)

- If there are multiple shortest paths from node n to node m, then node n tries to split the traffic uniformly to those outgoing links that belong to at least one of these shortest paths
- However, this does **not** imply that the traffic load is distributed uniformly to all shortest paths! See the example on next slide.

Traffic load distribution can be affected only **indirectly** by changing the link weights

- splitting ratios ϕ_{pk} can not directly be changed
- due to ECMP, the desired splitting ratios ϕ_{pk} may be out of reach
ECMP

\[y = \frac{x}{2} \]
\[y = \frac{x}{4} \]
\[\phi = \frac{1}{4} \]
\[\phi = \frac{1}{2} \]
Effect of link weights on load distribution (1)
12. Traffic engineering

Effect of link weights on load distribution (2)

![Diagram showing effect of link weights on load distribution.]

- Link weight increased
- Maximum link load

\[w = 1, w = 1, w = 1, w = 2, w = 1 \]

\[\phi = \frac{1}{2} \]
12. Traffic engineering

Contents

- Topology
- Traffic matrix
- Traffic engineering
- Load balancing
Load balancing problem (1)

- Given a fixed topology and a traffic matrix, how to optimally route these traffic demands?
- One approach is to equalize the relative load of different links, $\rho_j = y_j/c_j$
 - Sometimes this can be done in multiple ways (upper figure)
 - Sometimes it is not possible at all (lower figure)
 - In this case, we may, however, try to get as close as possible, e.g. by minimizing the maximum relative link load (called: load balancing problem)
• **Load Balancing Problem:**
 - Consider a network with topology \((N,J)\), link capacities \(c_j\), and traffic demands \(x_k\). Determine the splitting ratios \(\phi_{pk}\) so that the maximum relative link load is minimized.

Minimize

\[
\max_{j \in J} \frac{y_j}{c_j}
\]

subject to

\[
\begin{align*}
y_j &= \sum_{p \in P} \sum_{k \in K} A_{jp} \phi_{pk} x_k & \forall j \in J \\
\sum_{p \in P} \phi_{pk} &= 1 & \forall k \in K \\
\phi_{pk} &\geq 0 & \forall p \in P, k \in K
\end{align*}
\]
Load balancing problem (3)

- Load Balancing Problem has always a solution but this might not be unique
- Example:
 - the same maximum link load is achieved with routes of different length
 - the upper routes are better due to smaller capacity consumption
- A reasonable unique solution is achieved by associating a negligible cost with all the hops along the paths used
Load balancing problem (4)

- **Load Balancing Problem** with a reasonable and unique solution:
 - Consider a network with topology \((N,J)\), link capacities \(c_j\), and traffic demands \(x_k\). Determine the splitting ratios \(\phi_{pk}\) so that the maximum relative link load is minimized with the smallest amount of required capacity.

Minimize: \[
\max_{j \in J} \frac{y_j}{c_j} + \varepsilon \sum_{j \in J} y_j
\]

subject to:
\[
\begin{align*}
y_j &= \sum_{p \in P} \sum_{k \in K} A_{jp} \phi_{pk} x_k \quad \forall j \in J \\
\sum_{p \in P} \phi_{pk} &= 1 \quad \forall k \in K \\
\phi_{pk} &\geq 0 \quad \forall p \in P, k \in K
\end{align*}
\]
12. Traffic engineering

Example (1): optimal solution

\[
\begin{align*}
\phi &= 1/2 \\
\rho &= x/4 \\
\rho &= x \cdot \frac{1}{8}
\end{align*}
\]
Example (2): link weights $w = 1$
Example (3): optimal link weights
THE END