11. Simulation

Contents

- Introduction
- Generation of traffic process realizations
- Generation of random variable realizations
- Collection of data
- Statistical analysis

What is simulation?

- **Simulation** is (at least from the teletraffic point of view) a statistical method to estimate the performance (or some other important characteristic) of the system under consideration.

- It typically consists of the following four phases:
 - Modelling of the system (real or imaginary) as a dynamic stochastic process
 - Generation of the realizations of this stochastic process ("observations")
 - Such realizations are called **simulation runs**
 - Collection of data ("measurements")
 - Statistical analysis of the gathered data, and drawing conclusions

Alternative to what?

- In previous lectures, we have looked at an alternative way to determine the performance: **mathematical analysis**
- We considered the following two phases:
 - Modelling of the system as a stochastic process.
 - (In this course, we have restricted ourselves to birth-death processes.)
 - Solving of the model by means of mathematical analysis
- The modelling phase is common to both of them
- However, the accuracy (faithfulness) of the model that these methods allow can be very different
 - unlike simulation, mathematical analysis typically requires (heavily) restrictive assumptions to be made
Performance analysis of a teletraffic system

Analysis vs. simulation (1)

- **Pros** of analysis
 - Results produced rapidly (after the analysis is made)
 - Exact (accurate) results (for the model)
 - Gives insight
 - Optimization possible (but typically hard)

- **Cons** of analysis
 - Requires restrictive assumptions
 - ⇒ the resulting model is typically too simple
 (e.g. only stationary behavior)
 - ⇒ performance analysis of complicated systems impossible
 - Even under these assumptions, the analysis itself may be (extremely) hard

Analysis vs. simulation (2)

- **Pros** of simulation
 - No restrictive assumptions needed (in principle)
 ⇒ performance analysis of complicated systems possible
 - Modelling straightforward

- **Cons** of simulation
 - Production of results time-consuming
 (simulation programs being typically processor intensive)
 - Results inaccurate (however, they can be made as accurate as required by increasing the number of simulation runs, but this takes even more time)
 - Does not necessarily offer a general insight
 - Optimization possible only between very few alternatives (parameter combinations or controls)

Steps in simulating a stochastic process

- Modelling of the system as a stochastic process
 - This has already been discussed in this course.
 - In the sequel, we will take the model (that is: the stochastic process) for granted.
 - In addition, we will restrict ourselves to simple teletraffic models.

- Generation of the realizations of this stochastic process
 - Generation of random numbers
 - Construction of the realization of the process from event to event (discrete event simulation)
 - Often this step is understood as THE simulation, however this is not generally the case

- Collection of data
 - Transient phase vs. steady state (stationarity, equilibrium)

- Statistical analysis and conclusions
 - Point estimators
 - Confidence intervals
Implementation

- Simulation is typically implemented as a computer program
- Simulation program generally comprises the following phases (excluding modelling and conclusions)
 - Generation of the realizations of the stochastic process
 - Collection of data
 - Statistical analysis of the gathered data
- Simulation program can be implemented by
 - a general-purpose programming language
 - e.g. C or C++
 - most flexible, but tedious and prone to programming errors
 - utilizing simulation-specific program libraries
 - e.g. CNCL
 - utilizing simulation-specific software
 - e.g. OPNET, BONeS, NS (in part based on p-libraries)
 - most rapid and reliable (depending on the s/w), but rigid

Other simulation types

- What we have described above, is a discrete event simulation
 - the simulation is discrete (event-based), dynamic (evolving in time) and stochastic (including random components)
 - i.e. how to simulate the time evolution of the mathematical model of the system under consideration, when the aim is to gather information on the system behavior
 - We consider only this type of simulation in this lecture
- Other types:
 - continuous simulation: state and parameter spaces of the process are continuous; description of the system typically by differential equations, e.g. simulation of the trajectory of an aircraft
 - static simulation: time plays no role as there is no process that produces the events, e.g. numerical integration of a multi-dimensional integral by Monte Carlo method
 - deterministic simulation: no random components, e.g. the first example above

Contents

- Introduction
- Generation of traffic process realizations
- Generation of random variable realizations
- Collection of data
- Statistical analysis

Generation of traffic process realizations

- Assume that we have modelled as a stochastic process the evolution of the system
- Next step is to generate realizations of this process.
 - For this, we have to:
 - Generate a realization (value) for all the random variables affecting the evolution of the process (taking properly into account all the (statistical) dependencies between these variables)
 - Construct a realization of the process (using the generated values)
 - These two parts are overlapping, they are not done separately
 - Realizations for random variables are generated by utilizing (pseudo) random number generators
 - The realization of the process is constructed from event to event (discrete event simulation)
11. Simulation

Discrete event simulation (1)

- Idea: simulation evolves from event to event
 - If nothing happens during an interval, we can just skip it!
- basic events modify (somehow) the state of the system
 - e.g. arrivals and departures of customers in a simple teletraffic model
- extra events related to the data collection
 - including the event for stopping the simulation run or collecting data
- Event identification:
 - occurrence time (when event is handled) and
 - event type (what and how event is handled)

Discrete event simulation (2)

- Events are organized as an event list
 - Events in this list are ordered (ascendingly) by the occurrence time
 - first: the event occurring next
 - Events are handled one-by-one (in this order) while at the same time
 generating new events to occur later
 - When the event has been processed, it is removed from the list
- Simulation clock tells the occurrence time of the next event
 - progressing by jumps
- System state tells the current state of the system

Discrete event simulation (3)

- General algorithm for a single simulation run:
 1. Initialization
 - simulation clock = 0
 - system state = given initial value
 - for each event type, generate next event (whenever possible)
 - construct the event list from these events
 2. Event handling
 - simulation clock = occurrence time of the next event
 - handle the event including
 - generation of new events and their addition to the event list
 - updating of the system state
 - delete the event from the event list
 3. Stopping test
 - if positive, then stop the simulation run; otherwise return to 2

Example (1)

- Task: Simulate the M/M/1 queue (more precisely: the evolution of the queue length process) from time 0 to time T assuming that the queue is empty at time 0 and omitting any data collection
 - System state (at time t) = queue length X_t
 - initial value: $X_0 = 0$
 - Basic events:
 - customer arrivals
 - customer departures
 - Extra event:
 - stopping of the simulation run at time T
- Note. No collection of data in this example
Example (2)

- **Initialization:**
 - initialize the system state: $X_0 = 0$
 - generate the time till the first arrival from the $\text{Exp}(\lambda)$ distribution

- **Handling of an arrival event (occurring at some time t):**
 - update the system state: $X_t = X_t + 1$
 - if $X_t = 1$, then generate the time $(t + S)$ till the next departure, where S is from the $\text{Exp}(\mu)$ distribution
 - generate the time $(t + I)$ till the next arrival, where I is from the $\text{Exp}(\lambda)$ distribution

- **Handling of a departure event (occurring at some time t):**
 - update the system state: $X_t = X_t - 1$
 - if $X_t > 0$, then generate the time $(t + S)$ till the next departure, where S is from the $\text{Exp}(\mu)$ distribution

- **Stopping test:** $t > T$

Example (3)

Contents

- Introduction
- Generation of traffic process realizations
 - **Generation of random variable realizations**
 - Collection of data
 - Statistical analysis

Generation of random variable realizations

- Based on (pseudo) random number generators
- **First step:**
 - generation of independent uniformly distributed between 0 and 1, i.e. $U(0,1)$ distributed, random variables using random number generators
- **Step from the $U(0,1)$ distribution to the desired distribution:**
 - rescaling ($\Rightarrow U(a,b)$)
 - discretization ($\Rightarrow \text{Bernoulli}(p), \text{Bin}(n,p), \text{Poisson}(\alpha), \text{Geom}(p)$)
 - inverse transform ($\Rightarrow \text{Exp}(\lambda)$)
 - other transforms ($\Rightarrow N(0,1) \Rightarrow N(\mu,\sigma^2)$)
 - acceptance-rejection method (for any continuous random variable defined in a finite interval whose density function is bounded)
 - two independent $U(0,1)$ distributed random variables needed
Random number generator

- Random number generator is an algorithm generating (pseudo) random integers \(Z_i \) in some interval \(0, 1, \ldots, m - 1 \)
 - The sequence generated is always periodic (goal: this period should be as long as possible)
 - Strictly speaking, the numbers generated are not random at all, but totally predictable (thus: pseudo)
 - In practice, however, if the generator is well designed, the numbers “appear” to be IID with uniform distribution inside the set \(\{0, 1, \ldots, m-1\} \)
- Validation of a random number generator can be based on empirical (statistical) and theoretical tests:
 - uniformity of the generated empirical distribution
 - independence of the generated random numbers (no correlation)

Random number generator types

- Linear congruential generator
 - most simple
 - next random number is based on just the current one: \(Z_{i+1} = f(Z_i) \)
 - period at most \(m \)
- Multiplicative congruential generator
 - a special case of the first type
- Other:
 - Additive congruential generators
 - Shuffling, etc.

Linear congruential generator (LCG)

- Linear congruential generator (LCG) uses the following algorithm to generate random numbers belonging to \(\{0, 1, \ldots, m-1\} \):
 \[
 Z_{i+1} = (aZ_i + c) \mod m
 \]
 - Here \(a, c \) and \(m \) are fixed non-negative integers \(a < m, c < m \)
 - In addition, the starting value (seed) \(Z_0 < m \) should be specified
- Remarks:
 - Parameters \(a, c \) and \(m \) should be chosen with care, otherwise the result can be very poor
 - By a right choice of parameters, it is possible to achieve the full period \(m \)
 - e.g. \(m = 2^b, c \) odd, \(a = 4k + 1 \) (\(b \) often 48)

Multiplicative congruential generator (MCG)

- Multiplicative congruential generator (MCG) uses the following algorithm to generate random numbers belonging to \(\{0, 1, \ldots, m-1\} \):
 \[
 Z_{i+1} = (aZ_i) \mod m
 \]
 - Here \(a \) and \(m \) are fixed non-negative integers \(a < m \)
 - In addition, the starting value (seed) \(Z_0 < m \) should be specified
- Remarks:
 - MCG is clearly a special case of LCG: \(c = 0 \)
 - Parameters \(a \) and \(m \) should (still) be chosen with care
 - In this case, it is not possible to achieve the full period \(m \)
 - e.g. if \(m = 2^b \), then the maximum period is \(2^{b-2} \)
 - However, for \(m \) prime, period \(m-1 \) is possible (by a proper choice of \(a \))
 - PMMLCG = prime modulus multiplicative LCG
 - e.g. \(m = 2^{31} - 1 \) and \(a = 16,807 \) (or 630,360,016)
U(0,1) distribution

- Let Z denote a (pseudo) random number belonging to $\{0,1,\ldots, m-1\}$
- Then (approximately)

$$U = \frac{Z}{m} \approx U(0,1)$$

U(a,b) distribution

- Let $U \sim U(0,1)$
- Then

$$X = a + (b-a)U \sim U(a,b)$$

This is called the **rescaling** method.

Discretization method

- Let $U \sim U(0,1)$
- Assume that Y is a **discrete** random variable
 - with value set $S = \{0,1,\ldots,n\}$ or $S = \{0,1,2,\ldots\}$
- Denote: $F(x) = P\{Y \leq x\}$, then

$$X = \min\{x \in S \mid F(x) \geq U\} \sim Y$$

This is called the **discretization** method

- **Example:** Bernoulli(p) distribution

$$X = \begin{cases} 0, & \text{if } U \leq 1-p \\ 1, & \text{if } U > 1-p \end{cases} \sim \text{Bernoulli}(p)$$

Inverse transform method

- Let $U \sim U(0,1)$
- Assume that Y is a **continuous** random variable
- Assume further that $F(x) = P\{Y \leq x\}$ is strictly increasing
- Let $F^{-1}(y)$ denote the inverse of the function $F(x)$, then

$$X = F^{-1}(U) \sim Y$$

This is called the **inverse transform** method

- **Proof:** Since $P\{U \leq u\} = u$ for all $u \in (0,1)$, we have

$$P\{X \leq x\} = P\{F^{-1}(U) \leq x\} = P\{U \leq F(x)\} = F(x)$$
11. Simulation

Exp(λ) distribution

- Let $U \sim U(0,1)$
 - Then also $1-U \sim U(0,1)$
- Let $Y \sim \text{Exp}(\lambda)$
 - $F(x) = P\{Y \leq x\} = 1-e^{-\lambda x}$ is strictly increasing
 - The inverse transform is $F^{-1}(y) = -(1/\lambda) \log(1-y)$
- Thus, by the inverse transform method,
 $$X = F^{-1}(1-U) = -\frac{1}{\lambda} \log(U) \sim \text{Exp}(\lambda)$$

N(0,1) distribution

- Let $U_1 \sim U(0,1)$ and $U_2 \sim U(0,1)$ be independent
- Then, by so called Box-Müller method, the following two (transformed) random variables are independent and identically distributed obeying the $N(0,1)$ distribution:
 $$X_1 = \sqrt{-2 \log(U_1)} \sin(2\pi U_2) \sim N(0,1)$$
 $$X_2 = \sqrt{-2 \log(U_1)} \cos(2\pi U_2) \sim N(0,1)$$

N(μ,σ²) distribution

- Let $X \sim N(0,1)$
- Then, by the rescaling method,
 $$Y = \mu + \sigma X \sim N(\mu, \sigma^2)$$

Contents

- Introduction
- Generation of traffic process realizations
- Generation of random variable realizations
- Collection of data
- Statistical analysis
11. Simulation

Collection of data

- Our starting point was that simulation is needed to estimate the value, say α, of some performance parameter
 - This parameter may be related to the transient or the steady-state behaviour of the system.
 - Examples 1 & 2 (transient phase characteristics)
 - average waiting time of the first k customers in an M/M/1 queue assuming that the system is empty in the beginning
 - average queue length in an M/M/1 queue during the interval $[0,T]$ assuming that the system is empty in the beginning
 - Example 3 (steady-state characteristics)
 - the average waiting time in an M/M/1 queue in equilibrium
- Each simulation run yields one sample, say X, describing somehow the parameter under consideration
- For drawing statistically reliable conclusions, multiple samples, X_1, \ldots, X_n, are needed (preferably IID)

11. Simulation

Transient phase characteristics (1)

- Example 1:
 - Consider e.g. the average waiting time of the first k customers in an M/M/1 queue assuming that the system is empty in the beginning
 - Each simulation run can be stopped when the kth customer enters the service
 - The sample X based on a single simulation run is in this case:

$$X = \frac{1}{k} \sum_{i=1}^{k} W_i$$

- Here W_i = waiting time of the ith customer in this simulation run
- Multiple IID samples, X_1, \ldots, X_n, can be generated by the method of independent replications:
 - multiple independent simulation runs (using independent random numbers)

11. Simulation

Transient phase characteristics (2)

- Example 2:
 - Consider e.g. the average queue length in an M/M/1 queue during the interval $[0,T]$ assuming that the system is empty in the beginning
 - Each simulation run can be stopped at time T (that is: simulation clock = T)
 - The sample X based on a single simulation run is in this case:

$$X = \frac{1}{T} \int_{0}^{T} Q(t) dt$$

- Here $Q(t)$ = queue length at time t in this simulation run
- Note that this integral is easy to calculate, since $Q(t)$ is piecewise constant
- Multiple IID samples, X_1, \ldots, X_n, can again be generated by the method of independent replications

11. Simulation

Steady-state characteristics (1)

- Collection of data in a single simulation run is in principle similar to that of transient phase simulations
- Collection of data in a single simulation run can typically (but not always) be done only after a warm-up phase (hiding the transient characteristics) resulting in
 - overhead = "extra simulation"
 - bias in estimation
 - need for determination of a sufficiently long warm-up phase
- Multiple samples, X_1, \ldots, X_n, may be generated by the following three methods:
 - independent replications
 - batch means
Steady-state characteristics (2)

- **Method of independent replications:**
 - multiple independent simulation runs of the same system (using independent random numbers)
 - each simulation run includes the warm-up phase \Rightarrow inefficiency
 - samples IID \Rightarrow accuracy
- **Method of batch means:**
 - one (very) long simulation run divided (artificially) into one warm-up phase and n equal length periods (each of which represents a single simulation run)
 - only one warm-up phase \Rightarrow efficiency
 - samples only approximately IID \Rightarrow inaccuracy,

 - choice of n, the larger the better

Parameter estimation

- As mentioned, our starting point was that simulation is needed to estimate the value, say α, of some performance parameter
- Each simulation run yields a (random) sample, say X_i, describing somehow the parameter under consideration
 - Sample X_i is called unbiased if $E[X_i] = \alpha$
- Assuming that the samples X_i are IID with mean α and variance σ^2
 - Then the sample average

\[
\bar{X}_n := \frac{1}{n} \sum_{i=1}^{n} X_i
\]

- is unbiased and consistent estimator of α, since

\[
E[\bar{X}_n] = \frac{1}{n} \sum_{i=1}^{n} E[X_i] = \alpha
\]

\[
D^2[\bar{X}_n] = \frac{1}{n^2} \sum_{i=1}^{n} D^2[X_i] = \frac{1}{n} \sigma^2 \rightarrow 0 \text{ (as } n \rightarrow \infty)\]

Example

- Consider the average waiting time of the first 25 customers in an M/M/1 queue with load $\rho = 0.9$ assuming that the system is empty in the beginning

 - Theoretical value: $\alpha = 2.12$ (non-trivial)
 - Samples X_i from ten simulation runs ($n = 10$):

 \[
 1.05, 6.44, 2.65, 0.80, 1.51, 0.55, 2.28, 2.82, 0.41, 1.31
 \]

 - Sample average (point estimate for α):

\[
\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{1}{10} (1.05 + 6.44 + \ldots + 1.31) = 1.98
\]
11. Simulation

Confidence interval (1)

- **Definition**: Interval \((\bar{X}_n - y, \bar{X}_n + y)\) is called the confidence interval for the sample average at confidence level \(1 - \beta\) if \(P\{|\bar{X}_n - \alpha| \leq y\} = 1 - \beta\)

 - Idea: “with probability \(1 - \beta\), the parameter \(\alpha\) belongs to this interval”
- Assume then that samples \(X_i, i = 1, \ldots, n\), are IID with unknown mean \(\alpha\) but known variance \(\sigma^2\)
- By the Central Limit Theorem (see Lecture 5, Slide 48), for large \(n\), \(Z := \frac{\bar{X}_n - \alpha}{\sigma/\sqrt{n}} \approx N(0,1)\)

Confidence interval (2)

- Let \(z_p\) denote the \(p\)-fractile of the \(N(0,1)\) distribution

 - That is: \(P\{Z \leq z_p\} = p\), where \(Z \sim N(0,1)\)

 - Example: for \(\beta = 5\%\) (\(1 - \beta = 95\%\)) \(\Rightarrow z_{1-(\beta/2)} = z_{0.975} \approx 1.96 \approx 2.0\)
- **Proposition**: The confidence interval for the sample average at confidence level \(1 - \beta\) is \(\bar{X}_n \pm z \cdot \frac{\sigma}{\sqrt{n}}\)

 - **Proof**: By definition, we have to show that \(P\{|\bar{X}_n - \alpha| \leq z \cdot \frac{\sigma}{\sqrt{n}}\} = 1 - \beta\)

Confidence interval (3)

- In general, however, the variance \(\sigma^2\) is unknown (in addition to the mean \(\alpha\))

 - It can be estimated by the sample variance: \(S_n^2 := \frac{1}{n-1}\sum_{i=1}^{n}(X_i - \bar{X}_n)^2 = \frac{1}{n-1}(\sum_{i=1}^{n}X_i^2 - n\bar{X}_n^2)\)

 - It is possible to prove that the sample variance is an unbiased and consistent estimator of \(\sigma^2\):

 \[E[S_n^2] = \sigma^2\]

 \[D^2[S_n^2] \to 0 \ (n \to \infty)\]
11. Simulation

Confidence interval (4)

• Assume that samples X_i are IID obeying the $N(\alpha, \sigma^2)$ distribution with unknown mean α and unknown variance σ^2
• Then it is possible to show that

\[
T := \frac{\bar{X} - \alpha}{S_n / \sqrt{n}} \sim \text{Student}(n - 1)
\]

• Let $t_{n-1, \beta}$ denote the p-fractile of the Student$(n-1)$ distribution
 – That is: $P\{T \leq t_{n-1, \beta}\} = p$, where $T \sim \text{Student}(n-1)$
 – Example 1: $n = 10$ and $\beta = 5\%$, $t_{9, 0.975} \approx 2.26 \approx 2.3$
 – Example 2: $n = 100$ and $\beta = 5\%$, $t_{99, 0.975} \approx 1.98 \approx 2.0$
• Thus, the conf. interval for the sample average at conf. level $1 - \beta$ is

\[
\bar{X}_n \pm t_{n-1, 1-\beta} \frac{S_n}{\sqrt{n}}
\]

Example (continued)

• Consider the average waiting time of the first 25 customers in an M/M/1 queue with load $\rho = 0.9$ assuming that the system is empty in the beginning
 – Theoretical value: $\alpha = 2.12$
 – Samples X_i from ten simulation runs ($n = 10$):
 • 1.05, 6.44, 2.65, 0.80, 1.51, 0.55, 2.28, 2.82, 0.41, 1.31
 – Sample average $\bar{X}_n = 1.98$ and the square root of the sample variance:
 \[
 S_n = \sqrt{\frac{1}{9} ((1.05 - 1.98)^2 + \ldots + (1.31 - 1.98)^2)} = 1.78
 \]
 – So, the confidence interval (that is: interval estimate for α) at confidence level 95% is

\[
\bar{X}_n \pm t_{9, 0.975} \frac{S_n}{\sqrt{n}} = 1.98 \pm 2.26 \cdot \frac{1.78}{\sqrt{10}} = 1.98 \pm 1.27 = (0.71, 3.25)
\]

Observations

• Simulation results become more accurate (that is: the interval estimate for α becomes narrower) when
 – the number n of simulation runs is increased, or
 – the variance σ^2 of each sample is reduced
 • by running longer individual simulation runs
 • variance reduction methods
• Given the desired accuracy for the simulation results, the number of required simulation runs can be determined dynamically

Literature

• I. Mitrani (1982)
 – “Simulation techniques for discrete event systems”
 – Cambridge University Press, Cambridge
 – “Simulation modeling and analysis”