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5. Stochastic processes (1)

Stochastic processes (1)

• Consider some quantity in a teletraffic (or any) system

• It typically evolves in time randomly

– Example 1: the number of occupied channels in a telephone link 

at time t or at the arrival time of the nth customer

– Example 2: the number of packets in the buffer of a statistical multiplexer 

at time t or at the arrival time of the nth customer

• This kind of evolution is described by a stochastic process

– At any individual time t (or n) the system can be described by a random 

variable

– Thus, the stochastic process is a collection of random variables
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5. Stochastic processes (1)

Stochastic processes (2)

• Definition: A (real-valued) stochastic process X = (X
t
| t ∈ I) is a 

collection of random variables X
t

– taking values in some (real-valued) set S, X
t
(ω) ∈ S, and 

– indexed by a real-valued (time) parameter t ∈ I.

• Stochastic processes are also called random processes

(or just processes)

• The index set I ⊂ ℜ is called the parameter space of the process

• The value set S ⊂ ℜ is called the state space of the process

• Note: Sometimes notation X
t
is used to refer to the whole stochastic 

process (instead of a single random variable related to the time t)
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5. Stochastic processes (1)

Stochastic processes (3)

• Each (individual) random variable X
t
is a mapping from the sample 

space Ω into the real values ℜ:

• Thus, a stochastic process X can be seen as a mapping from the 

sample space Ω into the set of real-valued functions ℜI (with t ∈ I as 

an argument):

• Each sample point ω ∈ Ω is associated with a real-valued function 

X(ω). Function X(ω) is called a realization (or a path or a trajectory) 
of the process.

)(    : ωω
tt

X,X aℜ→Ω

)(    : ωω X,X
I

aℜ→Ω
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5. Stochastic processes (1)

Summary

• Given the sample point ω ∈ Ω

– X(ω) = (X
t
(ω) | t ∈ I) is a real-valued function (of t ∈ I)

• Given the time index t ∈ I, 

– X
t
= (X

t
(ω) | ω ∈ Ω) is a random variable (as ω ∈ Ω)

• Given the sample point ω ∈ Ω and the time index t ∈ I, 

– X
t
(ω) is a real value
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5. Stochastic processes (1)

Example

• Consider traffic process X = (X
t
| t ∈ [0,T]) in a link between two 

telephone exchanges during some time interval [0,T]

– X
t
denotes the number of occupied channels at time t

• Sample point ω ∈ Ω tells us 

– what is the number X
0

of occupied channels at time 0,

– what are the remaining holding times of the calls going on at time 0,

– at what times new calls arrive, and 

– what are the holding times of these new calls.

• From this information, it is possible to construct the realization X(ω) of 

the traffic process X

– Note that all the randomness in the process is included in the sample point ω

– Given the sample point, the realization of the process is just a (deterministic) 

function of time
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5. Stochastic processes (1)

Traffic process
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5. Stochastic processes (1)

Categories of stochastic processes

• Reminder:

– Parameter space: set I of indices t ∈ I

– State space: set  S of values X
t
(ω) ∈ S

• Categories:

– Based on the parameter space:

• Discrete-time processes: parameter space discrete

• Continuous-time processes: parameter space continuous

– Based on the state space:

• Discrete-state processes: state space discrete

• Continuous-state processes: state space continuous

• In this course we will concentrate on the discrete-state processes 
(with either a discrete or a continuous parameter space (time))

– Typical processes describe the number of customers in a queueing system 

(the state space being thus S = {0,1,2,...})
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5. Stochastic processes (1)

Examples

• Discrete-time, discrete-state processes

– Example 1: the number of occupied channels in a telephone link 

at the arrival time of the nth customer, n = 1,2,...

– Example 2: the number of packets in the buffer of a statistical multiplexer 

at the arrival time of the nth customer, n = 1,2,...

• Continuous-time, discrete-state processes

– Example 3: the number of occupied channels in a telephone link 

at time t > 0

– Example 4: the number of packets in the buffer of a statistical multiplexer 

at time t > 0
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5. Stochastic processes (1)

Notation

• For a discrete-time process, 

– the parameter space is typically the set of positive integers, I = {1,2,…}

– Index t is then (often) replaced by n: X
n
, X

n
(ω)

• For a continuous-time process, 

– the parameter space is typically either a finite interval, I = [0, T], or all non-

negative real values, I = [0, ∞) 

– In this case, index t is (often) written not as a subscript but in parentheses: 

X(t), X (t;ω)
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5. Stochastic processes (1)

Distribution

• The stochastic characterization of a stochastic process X is made 

by giving all possible finite-dimensional distributions

where t
1
,…, t

n
∈ I, x

1
,…, x

n
∈ S and n = 1,2,...

• In general, this is not an easy task because of dependencies between 

the random variables X
t
(with different values of time t)

• For discrete-state processes it is sufficient to consider probabilities of 

the form

– cf. discrete distributions
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5. Stochastic processes (1)

Dependence

• The most simple (but not so interesting) example of a stochastic

process is such that all the random variables X
t
are independent of 

each other. In this case

• The most simple non-trivial example is a discrete state Markov 

process. In this case

• This is related to the so called Markov property:

– Given the current state (of the process), 

the future (of the process) does not depend on the past (of the process), i.e. 

how the process has arrived to the current state
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5. Stochastic processes (1)

Stationarity

• Definition: Stochastic process X is stationary if all finite-dimensional 
distributions are invariant to time shifts, that is:

for all ∆, n, t
1
,…, t

n
and x

1
,…, x

n

• Consequence: By choosing n = 1, we see that all (individual) random 

variables X
t
of a stationary process are identically distributed:

for all t ∈ I. This is called the stationary distribution of the process.
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5. Stochastic processes (1)

Stochastic processes in teletraffic theory

• In this course (and, more generally, in teletraffic theory) various 

stochastic processes are needed to describe 

– the arrivals of customers to the system (arrival process)

– the state of the system (state process)

• Note that the latter is also often called as traffic process
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5. Stochastic processes (1)

Arrival process

• An arrival process can be described as

– a point process (τ
n
| n = 1,2,...) where τ

n
tells the arrival time of the nth

customer (discrete-time, continuous-state) 

• non-decreasing: τ
n+1

≥ τ
n

kaikilla n

– thus non-stationary!

• typically it is assumed that the interarrival times τ
n
− τ

n-1
are 

independent and identically distributed (IID) ⇒ renewal process

• then it is sufficient to specify the interarrival time distribution

• exponential IID interarrival times ⇒ Poisson process

– a counter process (A(t) | t ≥ 0) where A(t) tells the number of arrivals up to 

time t (continuous-time, discrete-state)

• non-decreasing: A(t+∆) ≥ A(t) for all t,∆ ≥ 0

– thus non-stationary! 

• independent and identically distributed (IID) increments A(t+∆) − A(t)
with Poisson distribution ⇒ Poisson process
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5. Stochastic processes (1)

State process

• In simple cases 

– the state of the system is described just by an integer

• e.g. the number X(t) of calls or packets at time t

– This yields a state process that is continuous-time and discrete-state

• In more complicated cases, 

– the state process is e.g. a vector of integers (cf. loss and queueing network 

models)

• Typically we are interested in 

– whether the state process has a stationary distribution

– if so, what it is?

• Although the state of the system did not follow the stationary 

distribution at time 0, in many cases state distribution approaches the 

stationary distribution as t tends to ∞
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Contents
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5. Stochastic processes (1)

Bernoulli process

• Definition: Bernoulli process with success probability p is an infinite 

series (X
n
| n = 1,2,...) of independent and identical random 

experiments of Bernoulli type with success probability p

• Bernoulli process is clearly discrete-time and discrete-state

– Parameter space: I = {1,2,…}

– State space: S = {0,1}

• Finite dimensional distributions (note: X
n
’s are IID):

• Bernoulli process is stationary (stationary distribution: Bernoulli(p))
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5. Stochastic processes (1)

Definition of a Poisson process

• Poisson process is the continuous-time counterpart of a Bernoulli 
process

– It is a point process (τ
n
| n = 1,2,...) where τ

n
tells tells the occurrence time 

of the nth event, (e.g. arrival of a client)

– “failure” in Bernoulli process is now an arrival of a client

• Definition 1: A point process (τ
n
| n = 1,2,...) is a Poisson process with 

intensity λ if the probability that there is an event during a short time 

interval (t, t+h] is λh + o(h) independently of the other time intervals

– o(h) refers to any function such that o(h)/h → 0 as h → 0

– new events happen with a constant intensity λ: (λh + o(h))/h→ λ

– probability that there are no arrivals in (t, t+h] is 1 − λh + o(h)

• Defined as a point process, Poisson process is discrete-time and 
continuous-state

– Parameter space: I = {1,2,…}

– State space: S = (0, ∞)
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5. Stochastic processes (1)

Poisson process, another definition

• Consider the interarrival time τ
n
− τ

n-1
between two events (τ

0
= 0)

– Since the intensity that something happens remains constant λ, the ending 

of the interarrival time within a short period of time (t, t+h], after it has 

lasted already the time t, does not depend on t (or on other previous 

arrivals)

– Thus, the interarrival times are independent and, additionally, they have the 

memoryless property. This property can be only the one of exponential 

distribution (of continuous-time distributions)

• Definition 2: A point process (τ
n
| n = 1,2,...) is a Poisson process

with intensity λ if the interarrival times τ
n
− τ

n−1
are independent and 

identically distributed (IID) with joint distribution Exp(λ)
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5. Stochastic processes (1)

Poisson process, yet another definition (1)

• Consider finally the number of events A(t) during time interval [0,t]

– In a Bernoulli process, the number of successes in a fixed interval would 

follow a binomial distribution. As the “time slice” tends to 0, this approaches 

a Poisson distribution.

– Note that A(0)=0

• Definition 3: A counter process (A(t) | t ≥ 0) is a Poisson process with 

intensity λ if its increments in disjoint intervals are independent and 

follow a Poisson distribution as follows:

• Defined as a counter process, 

Poisson process is continuous-time and discrete-state

– Parameter space: I = [0, ∞)

– State space: S = {0,1,2,…}

)(Poisson)()( ∆∼−∆+ λtAtA
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5. Stochastic processes (1)

Poisson process, yet another definition (2)

• One dimensional distribution: A(t) ∼ Poisson(λt)

– E[A(t)] = λt, D2[A(t)] = λt

• Finite dimensional distributions (due to independence of disjoint 
intervals):

• Poisson process, defined as a counter process is not stationary, but it 
has stationary increments

– thus, it doesn’t have a stationary distribution, but independent and 
identically distributed increments
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5. Stochastic processes (1)

Three ways to characterize the Poisson process

• It is possible to show that all three definitions for a Poisson process are, 

indeed, equivalent

A(t)

τ
1

τ
2
τ
3

τ
4

τ
4
−τ

3

event with prob. λh+o(h)
no event with prob. 1−λh+o(h)
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5. Stochastic processes (1)

Properties (1)

• Property 1 (Sum): Let A
1
(t) and A

2
(t) be two independent Poisson 

processes with intensities λ
1
and λ

2
. Then the sum (superposition) 

process A
1
(t) + A

2
(t) is a Poisson process with intensity λ

1
+ λ

2
.

• Proof: Consider a short time interval (t, t+h]

– Probability that there are no events in the superposition is 

– On the other hand, the probability that there is exactly one event is 

)()(1))(1))((1( 2121 hohhohhoh ++−=+−+− λλλλ

))())((1())(1))((( 2121 hohhohhohhoh ++−++−+ λλλλ

λ
1

λ
2

λ
1
+λ

2

)()( 21 hoh ++= λλ
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5. Stochastic processes (1)

Properties (2)

• Property 2 (Random sampling): Let τ
n
be a Poisson process with 

intensity λ.  Denote by σ
n
the point process resulting from a random 

and independent sampling (with probability p) of the points of τ
n
. Then 

σ
n
is a Poisson process with intensity pλ.

• Proof: Consider a short time interval (t, t+h]

– Probability that there are no events after the random sampling is 

– On the other hand, the probability that there is exactly one event is 

)(1))()(1())(1( hohphohphoh +−=+−++− λλλ

)())(( hohphohp +=+ λλ

λ

pλ
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5. Stochastic processes (1)

Properties (3)

• Property 3 (Random sorting): Let τ
n
be a Poisson process with 

intensity λ.  Denote by σ
n

(1) the point process resulting from a random 

and independent sampling (with probability p) of the points of τ
n
. 

Denote by σ
n

(2) the point process resulting from the remaining points. 

Then σ
n

(1) and σ
n

(2) are independent Poisson processes with 

intensities λp and λ(1 − p). 

• Proof: Due to property 2, it is enough to prove that the resulting two 

processes are independent. Proof will be ignored on this course.

λ

λp

λ(1-p)
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5. Stochastic processes (1)

Properties (4)

• Property 4 (PASTA): Consider any simple (and stable) teletraffic
model with Poisson arrivals. Let X(t) denote the state of system at time 
t (continuous-time process) and Y

n
denote the state of the system seen 

by the nth arriving customer (discrete-time process). Then the 
stationary distribution of X(t) is the same as the stationary distribution 
of Y

n
.

• Thus, we can say that 

– arriving customers see the system in the stationary state

– PASTA= “Poisson Arrivals See Time Avarages”

• PASTA property is only valid for Poisson arrivals

– and it is not valid for other arrival processes

– consider e.g. your own PC. Whenever you start a new session, the system 
is idle. In the continuous time, however, the system is not only idle but also 
busy (when you use it).
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5. Stochastic processes (1)

Example(1)

• Connection requests arrive at a server according to a Poisson process

with intensity requests in a minute.

– What is the probability that exactly 2 new requests arrive during the next 30 

seconds?

• Number of new arrivals during a time interval follows Poisson

distribution with the parameter 5.23060/5 =⋅=∆λ
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5. Stochastic processes (1)

Example(2)

• Consider the system described on previous slide.

– A new connection request has just arrived at the server. What is the 

probability that it takes more than 30 seconds before next request arrives?

• Consider the process as a point process. The interarrival time follows

exponential distribution with parameter .

• Consider the process as a counter process, cf. slide 29. Now we can

restate the question above as ”What is the probability that there are no 

arrivals during 30 seconds?”.
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