
Classic TCP/IP applications: TELNET, FTP, SMTP,
NNTP and SNMP

Timo Harjunen
Antti Särkkä

02.11.1998

1

Contents

1 TELNET .. 2
1.1 Introduction ... 2
1.2 Telnet model .. 2
1.3 Options... 2
1.4 TELNET commands.. 4
1.5 TELNET for Client/Server applications .. 5
1.6 Telnet and security... 5

2 File Transfer Protocol .. 6
2.1 Purpose .. 6
2.2 FTP Model ... 6

2.2.1 FTP commands .. 7
2.2.2 FTP replies... 9

2.3 FTP Session example... 9
2.4 Trivial File Transfer Protocol .. 10

3 SMTP... 11
3.1 Purpose .. 11
3.2 Protocol and commands... 12

3.2.1 SMTP replies ... 12
3.2.2 Mail sending as dialogue between server and client.. 13

3.3 Timestamp and mail route ... 13
3.4 Extensions: MIME... 13

4 NNTP... 16
4.1 Protocol function ... 17

4.1.1 Command and response message format... 17
4.1.2 Control messages ... 18

4.2 News article format.. 19
4.3 Client programs ... 20
4.4 Server programs... 20

4.4.1 Statistics from news... 20
5 SNMP .. 21

5.1 Standardization .. 21
5.2 Protocol function ... 22
5.3 Message format.. 22
5.4 SMI and MIB... 24
5.5 Security.. 27
5.6 Implementations .. 28

2

1 TELNET

1.1 Introduction
Where the TCP protocol makes it possible to connect the remote computers, the TELNET
protocol makes it possible to use them. The TELNET protocol offers a user the possibility to
connect and log on to any other hosts in the network from user’s own computer by offering a
remote log on capability. Historically TELNET was the first TCP/IP application and still is
widely used as a terminal emulator. Today, while the applications are more and more
equipped with the graphical user interface, the terminal-based applications are becoming
minority among the applications, the TELNET has found its future as a toolkit lying below
several client/server software. E.g. FTP, SMTP, SNMP, NNTP and HTTP are more or less
dependent on the TELNET protocol.

1.2 Telnet model
For the connections, TELNET uses the TCP protocol. The TELNET service is offered in the
host machine’s TCP port 23. The user at the terminal interacts with the local telnet client. The
TELNET client acts as a terminal accepting any keystrokes from the keyboard, interpreting
them and displaying the output on the screen. The client on the computer makes the TCP
connection to the host machine’s port 23 where the TELNET server answers. The TELNET
server interacts with applications in the host machine and assists in the terminal emulation.

Figure 1. TELNET protocol model

As the connection is setup, the both ends of the TELNET connection are assumed to be
originated and terminated at the network virtual terminal (NVT). The NVT is a network wide
terminal which is host independent so that both the server and the client in the connection
may not need to keep any information about each others terminal’s characteristics as both sees
each other as a NVT terminal. As there are several types of terminals, which may be able to
provide additional services from those provided by the NVT, the TELNET protocol contains a
negotiation method for the user and the server to negotiate changes to the terminal provided in
the NVT. Typically the client and the server stays in the NVT just as long as it takes to
negotiate some terminal type to be emulated. [Fei96]

1.3 Options
The TELNET has a set of options and these options can be negotiated through a simple
protocol inside the TELNET. The negotiation protocol contains commands DO, WILL,
WON’T and DON’T. Following examples present the accepted command sequences:

DO (sender wants receiver to enable the option)

User
terminal

Telnet
Client

TCP

Telnet
Server

TCP

Application

3

WILL (receiver acknowledges)

DO (sender wants receiver to enable the option)
WON’T (receiver will not acknowledge the request)

WILL (sender wants to enable the option)
DO (receiver gives permission)

WILL (sender wants to enable the option)
DON’T (receiver does not give permission to do so)

WON´T (sender wants to disable option)
DON’T (receiver has to answer OK)

DON’T (sender wants receiver to disable option)
WON’T (receiver must say OK)

Mostly the options are used in the beginning of the connection to setup a desired set of
options for the TELNET. In some cases the options are changed during the session. The key
option to be negotiated is the terminal type.

The symmetry in the negotiation protocol indicates that some loops are possible. Without any
further restrictions, the following sequence could take place:

DO TERMINAL TYPE VT100
WILL TERMINAL TYPE VT100
DO TERMINAL TYPE VT100
…

For this situation and similar situations the protocol introduces set of rules:
1. Parties may only request a change in the option (this rule overcomes previous problem)
2. If a party receives a request enter some mode that it is already in, the request should not

be acknowledged
3. If the option affects the way, how the data is processed, the command must be inserted in

the data stream exactly in the place where it is desired to take effect.
4. The rejected request should not be repeated until something changes in the operating

environment E.G. the process runs other program or other user command is executed.
[RFC854]

The options are set through TELNET commands. To indicate that the next byte is a command
byte, the IAC (interpret as command) byte (0xFF) is sent. The data byte 0xFF is sent as two
consecutive 0xFF bytes.

The option negotiation requires 3 bytes: IAC, request (WILL, WON’T, DO, DON’T) and the
option ID byte to be enabled or disabled. The negotiations are either symmetrical or non-
symmetrical. With a symmetrical option both sides may start the negotiation sequence. A
nonsymmetrical option is always requested by the other part. As an example of a non-
symmetrical option can be the linemode option, which can only be requested by the client.
[Ste94]

The negotiation may require suboption negotiations. These negotiations take place when the
option does not have only two modes: enable and disable. An example for a such
subnegotiation is a terminal type negotiation. The Terminal type option is first enabled with a
normal 3 byte negotiation:

4

IAC, WILL, 24 (24 = terminal type)

The server responds hopefully:

IAC, DO, 24

The server then asks the terminal type of the client:

IAC, SB, 24, 1, IAC, SE
(SB = suboption, 24 = suboption terminal type, 1 = sent your terminal type, SE = suboption
end)

Client responds:
IAC, SB, 24, 0, ‘V´, ´T´, ‘1’, ‘ 0’, ‘ 0’, IAC, SE
(0 = my terminal type, string VT100)

1.4 TELNET commands
Typical for the terminals directly connected to a computer are that the keystrokes by the user
are immediately interpreted by the computer’s operating system. For the purpose certain
keystroke combinations were invented. For example by pressing ctrl+’z’, the processes were
suspended or ctrl+’c’ was used for killing current process. The TELNET cannot transmit such
codes as they are since the codes are commands containing two keystrokes and do not map to
the 7-bit ASCII chart used in the NVT. This requires that the client has to translate the
terminal’s control codes to the TELNET commands and transmit the commands to the server
host’s operating system.

As explained earlier, the TELNET commands are presented with IAC byte with a followed
command and parameters. All the TELNET commands are presented in the Table 1. The
TELNET command IP can be used for send what would be ctrl + ’c’ in the keyboard and the
command EC for what would be the backspace. The IP command is not always the right
choice for interrupting the process because it acts similarly with the command sent from real
terminal, which is interpreted right away while the IP signal may take some time to be
transmitted over the connection and through the buffered data. For overcoming this problem
the data mark (DM) command is introduced. With the DM command, the client gets server’s
attention faster and the client tells the server to throw away all the data but the commands.
The client uses the Synch Signal TCP segment for the purpose. The Synch signal is marked as
an urgent data. The server will throw away everything except the commands until DM is
reached. The DM marks the spot where the data is no longer discarded and the TELNET
resumes the normal operating mode.[Fei96]

5

Name Code Description
EOF
SUSP
ABORT
EOR
SE
NOP
DM
BRK
IP
AO
AYT
EC
EL
GA
SB
WILL
WONT
DO
DONT
IAC

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

End of file
Suspend process
Abort process
End of record
Suboption end
No operation
Data mark
Break
Interrupt process
Abort output
Are you there
Escape character
Erase line
Go ahead
Suboption
Option negotiation
Option negotiation
Option negotiation
Option negotiation
Interpret as command

Table 1. Telnet Commands. [RFC854]

1.5 TELNET for Client/Server applications
The TELNET can be used as a tool set to build the client/server applications. As a basis for
the application, TELNET rarely requires the terminal extensions and the negotiations but the
TELNET operates in the basic NVT mode. The NVT is bi-directional half-duplex device,
which contains a terminal and a keyboard. Basically the keyboard is the user keyboard. The
keyboard produces client’s outgoing data sent over the TELNET connection to the server. The
printer is the user’s display where the TELNET server sends the characters. The NVT is half-
duplex. This means that in the TELNET protocol either the client or the server has the control.
The control from the client to the server is changed by the CR/LF. The server uses the CR/LF
for changing the line – not for returning the control to the client. The client receives the
control after receiving the data from the server and accepting the GO AHEAD control code.

1.6 Telnet and security
Since the eavesdropping and the snooping are easy to implement to any machine connected to
a LAN and the fact that the password and the user ids are sent through the TELNET
connection uncrypted, if not otherwise required, the TELNET protocol is a security risk.
Therefore the TELNET protocol defines a option for the authentication. The actual
authentication is exchanged in the authentication subnegoation. The TELNET’s
authentication options support such authentication standards like Kerberos, SPX, RSA, LOKI
and SSA. [Fei96]

6

2 File Transfer Protocol

2.1 Purpose
The File Transfer Protocol (FTP) is used to copy files between two computer systems over the
TCP connection. The FTP overcomes the problem of different file systems used in the
network. The different types of file systems introduces problems in how:
• The file names are converted
• The directories are used
• The files are accessed under restrictions
• The data and the text are represented in the files.

2.2 FTP Model
In the FTP, the user communicates with a user interface in the local FTP client process. The
local FTP client process makes a control connection to the remote server’s FTP server
protocol. FTP server protocol is located in the TCP port 21. The local FTP client acts as a
protocol interpreter who interprets the user commands to the acronyms used between the
client and the server protocol. The control connection is basically a simple TELNET’s NVT
session. The control connection is used a very simple way: The client sends commands across
the control connection to the server. The server replies to the messages according to the server
protocol.

Figure 2. FTP protocol model

If the user request a data transfer, a special data connection is opened between the server and
the client and the files are sent through this connection. Separate data transfer process created
for the server and the client. The data connection exists until the command that it was created
for is executed. Other FTP commands that require a data connection a new connection is
created.

The data connection is used for three purposes:
1. For sending a file from the client to the server
2. To receive a file from the server
3. To receive listings of files or directories from the server

The data connection is created for each new file transfer. The data connection creation is
always initiated by the client since the client is the provider for the command to be executed.
The client selects a random (and free) TCP port number (over 1024) for the connection. The
port number with the client’s IP address identifies the client for the server. This address

User

File
System

Client Server

File
System

Data Transfer
Protocol

User Interface

FTP Client
Protocol

Data Transfer
Protocol

FTP Server
Protocol

Port
2323

Port
21

Port
2324

Port
20

7

information is transferred to the server across the control connection. This is done with the
PORT command on the client. The server receives the client’s address and opens the TCP
connection to the given port. [RFC959]

Before sending the data over the data connection the both ends of the connection have to
share the same view about the format of the data to be transferred. The FTP has several
options for the data representation, which has to be specified before the data is transferred.
The attributes to be specified are the data/file type, the data structure and the transmission
mode.

The file type can be ASCII, EBCDIC, Image or Local. The ASCII and the EBCDIC are
alternative ways to transfer text files. The image file type means continuos stream of bits and
is used while transferring the binary files. The local file type is used when transferring the
binary files between hosts with different byte sizes.

For the data structure there only two modes file or record. The file mode means that there is
no structure just a continuos streams of bytes where the record mode indicates that the file is a
sequence of records.

For the transmission modes the stream mode transmits the data as a stream of bytes. The FTP
relies in the stream mode to the TCP’s means to provide the data integrity. The additional
information in the stream is not necessary. Except for the file structure record where the end
of records and the end of files are transmitted. Otherwise server indicates that the end of file is
reached by closing the data connection.

In the block mode a file is transmitted as a series of data blocks. Each block is preceded by
the 3-byte header. The header contains a byte counter (16 bits) and descriptor codes (8 bits).
The byte counter indicates the total length of the data block (indicates also the start of the next
block). The descriptor codes contains the end of record, the end of file and the restart markers.
The EOF is used to indicate the last block in the file transfer. The EOR is used to mark the
record boundaries. The restart marker indicates whether the block contains a (NVT) text
string, which can be used to identify the restart point. If the transfer fails, the restart point can
be used for the retransmission.

The compression mode means that the files are compressed before the file transfer with a
method specified in the RFC. The compression method is simply based on the collapsing
strings of repeated bytes (like repeated spaces in the text files). [Fei96]

2.2.1 FTP commands

There are two types of commands in the FTP: the text-based dialogue and the file transfer
protocol commands. The text-based dialogue commands are interpreted to the file transfer
protocol commands, which are sent over the control connection to the server. The dialogue
commands includes commands for sending and receiving files, changing directories in the
remote host, for setting the transfer modes etc.

File transfer protocol contains set of command words and their parameters and numeric codes
as responses. The command words can be classified to the access control, file management,
data format setting, file transfer, site, error recovery and restart commands.

The Following table describes the command words used over the control connection

8

Command type Command Parameters Description
Access USER

PASS
ACCT
REIN
QUIT
ABOR

UserId
Password
AccountId
-
-
-

Identify user
Provide password
Provide account
Reinitialize start state
Logout
Abort previous command

File mngt CWD
CDUP
DELE
LIST
MKD
NLST
PWD
RMD
RNFR
RNTO
SMNT

Dir name
-
Filename
Dir name
Dir name
Dir name
-
Dir name
Filename
Filename
Filename

Change directory
Change to parent directory
Delete file
List information about files
Make a directory
List the files in the directory
Print the name of the working directory
Remove directory
Identify file to be renamed
Rename the file
Mount a different file system

Data format TYPE

STRU

MODE

A(scii),E(bcd
ic),I(mage),N
(nonprint),T(
elnet),C
(ASA)
F(ile),R(ecor
d)
S(tream),B(l
ock),C(ompr
essed)

Identify the data type for the transfer

Organization of the file

Transmission format

File transfer ALLO
APPE
PASV
PORT

REST
RETR
STOR
STOU

No. of bytes
Filenames
-
IP Addr+port

Marker value
Filename
Filename
Filename

Allocate storage for data
Append local file to remote file

Identify IP address and port for data
connection
Identify restart marker
Get a file
Put a file
Store unique: version of the file with
unique name

Misc. HELP
NOOP
SITE
SYST
STAT

-
-
-
-
-

Information about server implementation
Ask server to return an OK reply
Server specific subcommands
Identify servers operating system
Connection status request

Table 2. FTP commands. [RFC959]

9

2.2.2 FTP replies
The server uses reply codes for answering to the client’s request. The reply code consist of the
actual code (see Table 3) and the text message.
Reply Description
1yz
2yz
3yz
4yz
5yz

Positive preliminary reply
Positive completion reply
Positive intermediate reply, command OK other command required
Transient negative completion reply, command can be repeated later
Permanent negative completion reply, command should not retried

X0z
X1z
X2z
X3z
X4z
X5z

Syntax errors
Information
Connections (either control or data)
Authentication and accounting
Unspecified
Filesystem status

Table 3. FTP replies. [Fei96]

2.3 FTP Session example
The following example presents how the FTP is used to transfer a file from the remote host.
The file to be transferred is ASCII type.

Session print-outs Explanation
Cdlinux01> ftp
Ftp>open ftp.funet.fi

Connected ftp.funet.fi
220 – ftp.funet.fi FTP server … ready
Name (ftp.funet.fi):
Anonymous
331 Guest login ok, send your e-mail address
as password
Password:
230 Guest login ok
ftp> cd pub
250 CWD command successful.

Ftp> get index.txt

200 PORT command successful

150 opening ASCII mode data connection for
index.txt (130034 bytes)
226 Transfer complete
local: newfile remote: index.txt
132002 byte received in 1,22 seconds (xx
Kbytes/s)
ftp> quit
221 Goodbye.

Starting the FTP from command line
Open the control connection to host
ftp.funet.fi
Client informs that the connection is OK.
Server’s greeting reply
Local client asks for user id.
User types anonymous as user id

Local client prompts for the password
Server grants the access
User changes the remote directory to pub
cd command was sent to server as CWD
command the server directory is now
changed to pub directory
User asks for a copy of index.txt file. The
data connection will be created.
Local client has obtained a port and sent the
information about the port to the server as
PORT command, telling the server to connect
this port.
The data connection is opened for the
transfer.
The transfer is complete.
A new local file is created

Session closing command from client
Last server’s reply to indicate that the closing
is OK. Control connection is terminated

10

2.4 Trivial File Transfer Protocol
The Trial File Transfer Protocol (TFTP) provides a very simple protocol and the functionality
for transferring files. The TFTP may sound like it is some kind of simplified version of the
FTP. This is not the case. The only thing the TFTP and the FTP has in common is actually the
fact that both are capable of transferring files through the network. Due to simplicity, the
TFTP is mostly used for loading e.g. operating system for the diskless workstations or
download the initialization and configuration files for the software during the boot phase. The
TFTP transfers its data as UDP datagrams. The TFTP requires from the system only the UDP
and IP drivers to be able to operate and transfer files.

The TFTP sends data as 512 bytes blocks including 4 byte header. Each block is numbered in
the header. The numbering starts from 1. Either ASCII or binary information can be
transferred. The TFTP is capable of sending and receiving files. The receiving file is done
with the read request primitive and the sending with the write request primitive. The client
gets a free port and sends a read or write request primitive to the server’s UDP port 69. The
server changes the port to other, which it will use for the rest of the session while transferring
the files with the client. Since the all the blocks should be the size of 512 bytes, the end of file
block is indicated with a block, which size is less than 512 bytes. The read request is replied
with the DATA datagram from the server. The client acknowledges the DATA and the server
sends DATA again and the client acknowledges them as well. This is repeated until the end of
file is reached or an error is found. The write request on the other hand is acknowledged by
the server and the client can then start sending data. The server acknowledges the data until
the end of file is reached or error is found.

For the security aspects the TFTP protocol is not a secure protocol since it does not contain
any access control or authentication mechanisms. Therefore TFTP should not have an access
only to the public files in the system and the other files should not be seen. [RFC1350]

11

3 SMTP

3.1 Purpose
The simple mail transfer protocol (SMTP) provides a simple way to transfer electronic mails
between hosts. In the SMTP there are two different roles: sender and receiver. The sender is a
client and establishes a two-way transmission channel (TCP connection) to the receiver. The
receiver can be the “real” receiver or some intermediate host on the way to the “real” receiver.
The protocol commands are generated by the sender and are send to receiver, which replies
the responses. [RFC821]

Figure 3. SMTP Protocol model

The Sender and the receiver are called message transfer agents (MTA). The communication
between two MTAs uses the NVT ASCII like TELNET or FTP’s control protocol.

Figure 4. Mail delivery through mail transfer agents. [Ste94]

File
System

User Sender
SMTP

(message
transfer
Agent)

Receiver
SMTP

(message
transfer
agent)

File
System

User at
terminal

User agent Mail queue

Local MTA

Relay MTAQueue of
Mail

User mailbox

Local MTA

User at
terminal

User agent

Relay MTAQueue of
Mail

12

The MTA may pass the mail directly to the receiver by taking a direct contact to the receiver
host’s SMTP. The mail can be delivered through a relay MTAs like in
Figure 4. The relay MTA is centralized MTA under one organization and every outgoing or
incoming mail is transferred through the relay MTA. This is useful also for more simple local
MTA configuration and is useful for hiding the individual mail servers behind “mail hub”
(relay MTA). The relay MTA takes the direct connection to the receiver relay MTA, which
directs the mail to the local MTA on the receivers host.

3.2 Protocol and commands
The actual mail transfer takes place between sender and receiver SMTPs. Both the sender and
thereceiver uses the NVT terminal. The sender is the client in the protocol (and receiver acts
as a server). The client sends SMTP command to server, which replies with numerical
messages (with similar logic to FTP). A set of 12 commands that client can use is specified by
the RFC821.

Command Description
HELO
MAIL
RCPT
DATA

RSET
NOOP
QUIT
VRFY
EXPN
HELP
TURN
SEND

SOML
SAML

Identifies the sender to the receiver. Host name as an argument
Starts mail transaction and identifies the mail originator
Identifies the recipient (several recipients several RCPT lines)
Sender’s data in the text format. Each line terminated with CR/LF. The
mail ends with CR/LF.CR/LF
Abort transaction
Asks for positive reply
Ask for positive reply and close the connection
Verifies that receiver is valid
Asks receiver to confirm that name identifies a mailing list
Ask information about counterparts implementation and commands
Switch roles, Sender becomes receiver and other way around
If the recipient is logged in deliver the mail straight to the recipients
terminal
Send or mail.
Send and mail.

Table 4. SMTP commands

3.2.1 SMTP replies
SMTP uses similar technique for replying as FTP.

Reply Description
1yz
2yz
3yz
4yz
5yz

Positive preliminary reply
Positive completion reply
Positive intermediate reply, command OK other command required
Transient negative completion reply, command can be repeated later
Permanent negative completion reply, command should not retried

X0z
X1z
X2z
X3z
X4z
X5z

Syntax errors or unknown command
Reply to information request
Reply referring to a connection
Unspecified
Unspecified
Reply indicated the status of receiver mail system

Table 5. SMTP replies

13

The very basic mail sending sequence contains following steps:
1. Receiver announces its name to the sender
2. Sender announces its host name
3. Sender identifies the message originator
4. Sender identifies the recipients (one or several)
5. Sender transmits the mail data
6. Sender transmits CR/LF.CR/LF sequence indicating that sending is complete
After this sender can continue or quit the session.

3.2.2 Mail sending as dialogue between server and client
This example shows the dialogue between the server and the client during the mail exchange

220 goofy.gov Sendmail x.yz ready at Mon, 26 Oct 1998 18:00:21 –0400
HELO tpk.fi
250 Hello foobar.fi, Pleased to meet you
MAIL FROM: <mara@foobar.fi>
250 <mara@foobar.fi>… Sender ok
RCPT TO: <goofy@goofy.gov>
250 <goofy@goofy.gov>
DATA
354 Enter mail, end with “.” on a line by itself
qwerty
qwerty
qwerty
qwerty
.
250 Mail accepted
QUIT
221 goofy.gov delivering mail

3.3 Timestamp and mail route
The SMTP protocol adds the time when the mail is sent to each message. The format for the
timestamp may vary but newer implementations reports the time as local time followed by the
offset from the Greenwich time. The SMTP protocol keeps track on each mail transfer agent
that the message was relayed through. Each message transfer agent adds its own timestamp to
the header of the message. The timestamp contains the host that sent the message and the host
that received the message (current MTA) and the time when the mail was received. These
timestamps provide the exact route from the sender to the receiver and this information can be
used for E.G. tracing e-mail delivery problems. The timestamps may give strange time
sequences but normally this is due to the fact that the computer clocks are inaccurate. [Fei96]

3.4 Extensions: MIME
One shortage in the SMTP protocol is that it cannot send other types of messages but only
simple text messages. This problem is solved with either an extended SMTP message transfer
agents or with a standard SMTP by converting the file so that it looks like the ordinary NVT
text.

The Extended MTA needs one more command to the SMTP (e-MTA uses then extended
SMTP). The e-MTA sends EHLO command in the place of a HELO. If the server replies to
EHLO, the client will assume that the server is able to handle the MIME (Multipurpose
Internet Mail Extensions) messages. If the reply is the error message, the MTA can convert to
SMTP and send HELO. [RFC1425]

14

ESMTP ESMTP

ESMTP SMTP

SMTP SMTP

Figure 5. MIME coding solutions

The protocol dialogue differs a little from what was presented in the chapter 3.2.2. Aside with
the change from HELO to EHLO, the MAIL FROM field contains an additional BODY
parameter E.G. BODY=8BITMIME. The format of MIME message sent after DATA
command contains some additional headers from the normal internet text message’s normal
headers (from:, to: and subject, date). The MIME message contains additional sc. introductory
headers. These introductory headers contain information about the structure and the content of
the message. E.g. if there is several parts in the message, the boundary between parts is
announced so that the receiver can distinct the separate parts of the message. [RFC1521]

Actually MIME contain 5 other header fields (+ the BOUNDARY)
• MIME-version :
• Content-Type:
• Content-Transfer-Encoding:
• Content-ID:
• Content-Description:

The content-types presented in Table 6. The content type describes the content of the
message. The content type describes the supertype of the message. The subtype describes the
actual contents of the message by describing the message format. As seen in the Table 6 for
example the content type image indicates that the content is a picture of some format, where
the subtype describes the exact format of the picture.

MIME user
Agent

Extended
MTA

Extended
MTA

Extended
MTA

MIME user
Agent

MIME user
Agent

Extended
MTA

Extended
MTA

(converts)
Old

MTA

MIME user
Agent

(converts)

MIME user
Agent

(converts)

Old
MTA

Old
MTA

Old
MTA

MIME user
Agent

(converts)

15

Content-Type Subtype Description
Text Plain

Richtext
Enriched

Unformatted text
Text with simple formatting
Refinement of richtext

Multipart Mixed
Parallel
Digest
Alternative
Appledouble
Header-set

Multiple body parts processed sequentially
Multiple body parts processed parallel
An electronic mail digest (each part is message itself)
Several renditions (postscript or text for example)

Message Rfc822
Partial
External-body

Content is RFC822 mail message
Part of message
Pointer to actual message

Application Octet-stream
Postscript
(several others)

Arbitrary binary data
Formatted postscript file

Image Jpeg
Gif
Ief
Tiff

Jpeg file
Gif file

Audio Basic Encoded using 8-bit ISDN u-law format
Video Mpeg

QuickTime
ISO 11172 format
QuickTime format

Table 6. MIME content types

The content type table shows just current view to supported content types and subtypes. The
amount of content types and subtypes are expected to increase over time to contain e.g. new
file formats as subtypes. The new content types and subtypes are registered through Internet
Assigned Number Authority (IANA).

The Content-Transfer-Encoding field describes the encoding formats used for coding the
contents into message. These formats are:
• 7-bit, NVT ASCII (default value for coding)
• Quoted-printable, Is mostly 7-bit ASCII but characters from eight bit set can be used by

putting the equal mark (=) as a first letter followed by the two hexadecimal digits. The
hexadecimal digit is code’s value in 8-bit ASCII.

• Base64, coding where the entire content (binary or whatever) is mapped to a
representation, which looks like a text.

• 8-bit, A sequence of lines including the 8-bit characters.
• Binary, 8-bit data that need not contain lines.

The Content-ID and the Content-Description can be used for further describe the contents of
the message body.

16

4 NNTP
The Network News Transport Protocol (NNTP) is used in transferring news articles between
news clients and news servers, where news articles are stored. The NNTP was developed
because still widely used mailing list doesn’t scale easily for large amount users, for separate
copy are sent to everybody’s mailbox and this demands network bandwidth and disk space.

The NNTP is based on RFC977 [977], which is dated on February 1986. The news article
format is defined in the RFC 1036 [1036] which also describe the USENET news system. The
news article format is based closely to the general Internet message format defined in the
RFC 822 [822].

In the news system articles belong to the newsgroup(s) hierarchy e.g. comp.protocols.snmp.
These newsgroups form subnet hierarchy. Currently there exist about 560 main level Usenet
hierarchy groups [wmc] e.g. alt, comp or sfnet. These are further divided to the second level
groups and hierarchy like comp.protocols or sfnet.tietoliikenne. Currently in the Usenet news
system there exists over 20 000 different newsgroups. There exist also local news servers,
which can contain the hierarchy of their own. The news articles are separated with the unique
message ID, which include ASCII string followed by full domain name of the news server,
which originally received the article, e.g. 1a2b3@news.server.com. However in the
newsserver newsfeed articles are arranged according to the newsgroup hierarchy. Articles
have also server internal article number, which is used for client to identify the articles.

The Usenet is rather a logical network than a physical network. Domains, newsgroup
hierarchy, newsfeed and different physical networks form this logical network. The usenet is
directed graph, however newsfeed can be bi-directional.

Figure 6 News system

News
client

Host,
news
server NNTP

news feed

Internet

News
article
disk

Host,
news
server

Host,
news
server

News
client

Host Host

News
client

News
client

NNTP

17

4.1 Protocol function
The NNTP is typical server-client protocol, where a news client initiate connection over TCP
and send ASCII commands to a server which responds with a numeric response followed by
optional (depending on the command) ASCII data. The TCP port number for NNTP is 119.
The news server functions as interface between news database and news client just like other
common Internet applications. Server does not perform any presentation level functions, these
are left to the client programs.

4.1.1 Command and response message format
The NNTP has SMTP-like ASCII based commands and responses. Client sent command
words (case insensitive) can include in some case parameters, which are separated from
command by space or tab characters. The NNTP define two different responses: textual and
status. The text responses are meant to be displayed by the news client. Textual responses are
sent after numeric status response, which indicates that text response follows.

Status responses are sent by the server to response the last command received from the client.
The status response starts with three digits and can be followed by parameter(s) or text,
separated by space or tab character. Responses are not normally displayed, however the news
client may show certain informative, unusual or error condition status responses e.g. "no such
newsgroup" or "access permission denied". The numeric response codes have quite a same
meaning as with other TCP/IP applications.

Table 7 Response code allocation for NNTP

1xx Informative message

2xx Command ok

3xx Command ok so far, send rest of it

4xx Command was correct, but couldn’t be performed for some reason

5xx Command unimplemented, incorrect or serious program error

x0x Connection, set-up and miscellaneous messages

x1x Newsgroup selection

x2x Article selection

x3x Posting

x4x Distribution functions

x8x Non-standard extensions

x9x Debugging output

Commands can be 512 characters long and have to end with CR-LF (carriage return - line
feed). With the 8 bit transport channel 7 bit ASCII characters are transferred right justified
and high order bit set to zero. Possible command words [and parameters] are:

• Article, body, head or stat [message number or message-id] fetch entire news article,
header or body of article. The STAT command set "current active pointer" for that client.

• Group [group name] specify current default newsgroup of that client, the response include
number of articles of the group and also the first and last number of articles stored. The
last subtracted from the first are not necessarily same as number of articles due to different
expiration times or cancelled articles. The client program can fetch all subscribed groups
automatically and show all of them or only unread articles including groups.

• List command response include all (e.g. all 20000) groups of the server with name of the
group, first and last index number of the articles and are posting allowed for that group.

18

• Newgroups [date, time] command is used by client to check are there any new newsgroups
created after the date and time specified.

• Newnews [newsgroup, date, time] returns new articles (message-id) posted or received to
that group after specified time.

• Next and last is used to set "current article pointer" to the next or last article of the group.

• Post command is used to post articles, the article format should fulfil RFC 1036. The
response tells is article posted successfully, posting not allowed or posting failed.

• Quit command is responded by the server and the connection is closed.

• Slave command indicates that the client connection is to slave server not a normal
newsreader. This is used to separate the subsidiary servers from single user connection.

There are extensions to these basic commands, e.g. with xover command can be fetched
several article headers by one command.

4.1.2 Control messages
When article includes control field in the header, the body is interpreted as a control message.
The first word is the name of the control message and subsequent words are parameters.
Possible control messages are:

• Cancel [message-id] is used in cancelling news article. This message can be created by the
article original sender or administrator. This is checked from- or sender-field of the header.

• Ihave / sendme [message-id] are used in distributing articles. When host A tells with ihave
message to host B that it has the article with message-id, host B can ask to send it or reject
it with sendme command.

• Newgroup command is used by the news server or hierarchy administrator to create a new
newsgroup.

• Rmrgp is used correspondingly to remove a newsgroup.

• Sendsys command is used by a server (or anyone) to get sysfile from other server. Sysfile
lists all neighbours and newsgroups sent to these neighbours.

• Version of the software running in local system are mailed back to the originator of the
version command.

In the following table is presented a command line example for message interaction between
server (S) and news client (C):

Table 8 NNTP example

C "connect request to port 119" TCP/IP connection to server’s port 119
S 200 news.server ready posting ok connection succeed
C list client ask to list all newsgroups
S 215 list of newsgroups follows

alt.all 1234 1567 y
…

server accept command and sends all newsgroups
subscribed to server in format: name of the group;
first and last article number; posting allowed y/n

C group comp.protocols.snmp client selects group comp.protocols.snmp
S 211 78 2143 2233 comp.protocols.snmp command successful code: 211; total number of

articles: 78; first article index, last article index
C head 2143 client asks to send header of article 2143

19

S 220 2143 <6789@news.domain>
article retrieved header follows
<header>

server accept request and send article
header

C body 2143 client asks to send body of article
S 220 2143 <6789@news.domain>

article retrieved header follows
<body>

server accept request and send body of the article

C Quit client quit the connection
S 205 news.server closing connection. Goodbye server acknowledged closing

4.2 News article format
The USENET article format is defined in RFC 1036. Article format is based on mail message
format defined in RFC822. Required headers for the news article are:

• Relay-version defines the software version of the last relay server.

• Posting -version specifies the software of news client.

• From field tells originator of the article in normal Internet address format.

• Date specifies the date and time when article is sent to the news system by news client in
format: Wdy DD Mon YY HH:MM:SS TIMEZONE

• Newsgroups field specifies what newsgroup(s) article is posted to. Note that wildcards are
no allowed with this header.

• Subject of the article.

• Message-ID defines unique identifier of the article. This is generated by the host that first
received the article.

• Path specifies route that the article has propagated. The last system is marked the first in
header line.

Correspondingly optional headers are:

• Follwup-to specifies the newsgroup(s) to article are send, when it is a response to the other
article.

• Expires, with this header user can define then article are deleted from the news database
e.g. in case that article contain the information that obsolete in certain time. Normally
news servers have their own expiring policy based on disk space and newsgroup
importance defined by administrator.

• Reply-To defines the mail address if it is different from defined in from field.

• Sender field is present if user manually enters the from field. This is generated by host
software. However currently this field may also entered manually.

• References field includes message-id(s) which article is follow-up and response.

• Control field defines that body of the article containing this header is a control message.

• Distribution field alters distribution scope of the article defined in newsgroups field. The
receiving site must subscribe specified newsgroups AND belong to one of the specified
distribution.

• Lines field specifies amount of the article lines.

• Organisation field defines with a short phrase the organisation that sender belongs.

• Approved field is required for the article posted to moderate newsgroups. This is added by
the group moderator and it contains normally his/her mail address.

Also MIME type coding is coming more popular in Usenet environment, this have to be
present also with optional header fields.

20

4.3 Client programs
The NNTP related standards do not define anything about the presentation layer so this all is
left to the client programs. A news clients normally stores subscribed newsgroups and
information about already read news articles for that group in a .newsrc or corresponding file.
So then connected again only subscribed groups with unread articles can be fetched. A news
client can also contain some features like killfile. This file defines which articles are not
fetched or shown based on some header field like from, sender or subject.

Currently there exist dozen of different client programs i.e. newsreaders for different
operating systems. Most of them are separate programs but currently one of the most popular
way is to integrate news client to Web browsers e.g. Microsoft IE and Netscape. In the UNIX
environment GNUS with emacs and rn (ReadNews) and its variants (Trn/Tin, Xrn) are
popular client programs. In PC environment popular news clients are e.g. NewsXpress, Agent
or Outlook Express.

4.4 Server programs
In the UNIX environment most popular and in fact de facto server program for handling client
request and the Usenet newsfeed is INN (InterNetNews)[INN], which is provided by the ISC.
The INN provides both NNRP (Network News Reading Protocol) and newsfeed
(INNDaemon) servers. This software can be also compiled for the Linux. Only newsfeed
functionality including Diablo and Cyclone (from Highwind SW) are also popular newsfeed
server programs [Dia], [High]. NNTPcache, Leafnode and Newscache provide newsreader
server functionality for small implementation. There exist also server programs for other
operating systems e.g. Microsoft provide this kind a feature.

Expiring of the articles is important parameter for the news server, it defines when (amount or
time limit) articles of that group are deleted from the news database of that server. Normally
this is compromise from disk space and administrator policy. For storing older articles have
been created the system called Dejanews. The newsfeed parameters for timing and
newsgroups can also effect the service quality of the NNTP server. If articles are transferred
at nights or other minor load time, "real time" news discussion is not possible.

Currently the Web and HTTP based news systems and user interfaces are developed. In this
case news articles are retrieved by HTTP server from news database and user interface is
provided with server formatted HTML link page and with normal browser.

4.4.1 Statistics from news
Table 9 presents a server newsfeed statistics found from Web [cnic]. These statistics are from
cyclone.news.indirect.com newsfeed server during one day (20.10.98). This East Coast of US
located server is connected to 60 other newsfeed servers.

Table 9 Newsfeed statistics in articles [cnic]

In Connects Offered articles Accepted articles Bytes

18395 21,8 millions 782 000 20,5GByt

Out Connects Offered Accept Bytes

2954 29,2 millions 9,4 millions 75GByt

This table shows one example about level of the traffic in Usenet. However it shows that the
level of transferred bytes are quite a high, for with link of 34Mbit/s transmission of 75 GBytes
lasts 37 minutes.

21

5 SNMP
The Simple network management protocol (SNMP) is a standard defined by IETF for network
management of the TCP/IP based networks. The network management system is consists of
network management stations (NMS) and network elements (NE). The network management
stations (also referred as managers) are normally workstations used by network administrator.
Network elements can be anything that run TCP/IP suite e.g. host, switches, routers, X
terminals, printers and so on. The NE running management software is normally called as
agent [Ste96].

Whole network management system of TCP/IP networks consist of three entities:

• Management Information Base (MIB) defines variables what network element maintains
and network manager can query or set.

• Structure management information (SMI) defines a set of common structures and an
identification scheme used to reference the variables in MIB.

• Simple network management protocol itself defines protocol for communication between
network manager and agents. This protocol is simply request-reply protocol, which rely on
UDP as transport protocol.

5.1 Standardization
The SNMP has historic background in development of CMIP/CMIS (Common Management
Information Protocol/Services), which are defined by ISO. In the late 80’s when the Internet
started grow, it was found that this ISO/OSI based management system is too heavy and
complex for the TCP/IP based networks. So in the begin of 90’s in guidance of the IETF was
developed simpler version from this quite complex network management protocol, which was
mainly intended for traditional telephone networks. Currently in telephone networks widely
used Q-interfaces are however based on CMIP/CMIS.

For the TCP/IP networks management there exist currently two version: SNMP(v1) and
SNMPv2. The SNMPv1 is defined in RFC 1157 [1157]. The community based SNMPv2 is
defined in RFC 1901 [1901] and RFCs 1902-1909 contain more accurate definition for
SNMPv2 (also referred SNMPv2c). The user based security model for SNMPv2 is defined in
RFC 1910 [1910]. The SNMPv1 is in standard state and SNMPv2 still in draft or proposed
state. In the January 1998 released also proposed RFCs (2271-2275) for version three
(SNMPv3) [2271].

The basic structure of the MIB is defined in RFC 1212. In RFC 1213 are defined second and
more extended version called MIB-II [1213]. Both of these are currently in standard state.
There exist also extension RFCs for MIBs. These are often specific for some protocol, which
are released after MIB-II.

The original version of SMI [1155] is defined in RFC 1155. The SMIv2 is defined in various
different RFCs. These definitions have often followed some new protocol or feature.

This presentation is mainly based on version 1 and version 2 is referenced when major
differences exist. More efficient security model containing SNMPv3 is presented shortly.

22

5.2 Protocol function
The SNMP is a message based simply request-reply type protocol, which uses normally UDP
as transport protocol. There exist two basic type of message interaction between the manager
and the agent: the manager sent get and set messages and the agent sent trap messages. The
SNMP manager sends set and query messages to port 161 and SNMP agent response to this
message. Agent-initiated trap messages include information from some event and are sent to
manager port 162. Trap messages are not acknowledged. Because of two different port
numbers are used, one system can easily be the manager or agent [Ste96].

Figure 7 SNMP basic function

Because the SNMP normally rely on UDP as the transport layer, message or response can
disappear or corrupt. So normally timers and retransmission scheme are needed in the
manager side. The error check for SNMP message is handled at UDP level, i.e. optional
checksum field in UDP header is used. The SNMPv2 defines also usage of other transport
protocol than UDP e.g. AppleTalk, OSI and TCP.

The SNMPv1 (and community-based version of SNMPv2c) do not include any security
options, like authentication. Whole definition of SNMPv2 includes support for authentication,
encryption, authorisation and access control. Development of SNMPv3 is based mainly on
SNMPv2 defined security models. Security is one key issue, because with SNMP are
transferred important information for network function.

5.3 Message format
SNMP messages use formal specification called Abstract Syntax Notation number 1 (ASN.1).
Actual encoding of the bits of the SNMP message uses correspondingly Basic Encoding Rules
(BER). Because of this coding general bit level structure of SNMP message cannot present,
only message field positions can be drawn, (see Figure 8). In practise coding one integer byte
demand three bytes, one byte defining that value is integer (tag), one specifies number of
integer bytes and last byte is the real value.

In the Figure 8 are presented basic SNMPv1 message formats and encapsulation to IP and
UDP datagram. As seen get/set and trap messages have different SNMP header structure.

SNMP agentSNMP manager
get-request, get-next-request or set-request

get-response

UDP port 162

UDP port 161

trap

23

Figure 8 SNMPv1 message formats

The SNMP header includes common part for both types of messages. It consists of version
number, community information and PDU type. The SNMP version type numbering is started
from zero i.e. SNMPv1 has version number 0 in SNMP message header. The community is
character string, which can be used as plaintext password (SNMPv1, SNMPv2c) between the
manager and agent. This one of the main weakness of the SNMPv1 because this plaintext
password is quite a easy to capture and misuse. The PDU type defines SNMP message type.
In the SNMPv1 there exist five different messages:

• get-request command are used by network manager to fetch management data from the
SNMP agent of the network element. The data object to fetch are specified by the name in
message field, the value field are set to null in this query message. The get-request
operator can fetch only one variable in time e.g. one address of whole routing table.

• get-next-request, because data objects in MIBs are arranged in sequential order with get-
next-request can be fetched next variables by giving previously fetched variable name as
parameter. The exact name (and value) is included in the response.

• set-request command is used by the manager in setting management variables of the
network element.

• get-response is the agent response to manager’s get-, get-next- and set-request operators.
The response includes variable(s) field corresponding the command message.

• trap message is sent by the agent to the manager to inform that some event has happened.

And in SNMPv2 are defined two new message:

• get-bulk-request, with this message can be fetched larger variable groups. This was
developed because get and get-next operators are not very efficient in fetching large
amount of data e.g. routing tables.

• inform-request is used to change information between managers.

IP UDP communityversion
PDU
type
0-3

request
ID

error
status

error
index

name value name value …

common SNMP header get/set header variables to get/set

PDU
type

4
enterprise

agent
addr.

trap
type
0-6

specific
code

time
stamp

name value …

 trap header variables

24

Get/set request and response messages include request ID, error status and error index. The
request ID is generated by the manager for identification of certain message. The similar
identification is used in e.g. DNS messages. The error status is used in responses and it
specifies error that set/get message caused. Possible errors codes are e.g. too big message, no
such variable name exist, wrong value or wrong syntax for variable. The error index defines
correspondingly what variable was in error.

Variable field(s) (variable-bindings) of the message contain a name and a value. The name
field specifies object identifier for accessed variable of the network element and the value
field contains information. Variable names and data types of the values are defined in RFCs
for MIB and SMI.

Trap messages are sent to port 162 by the SNMP agent to inform manager from some event.
Trap messages are only informative so the manager does not response to them. The manager
can handle these traps or just ignore them. The SNMPv1 trap message header include
following fields:

• Enterprise field specifies exact type of the network element (vendor and model) with the
object identifier defined in the MIB enterprise group.

• Agent address is the IP address of the network element, which sent the trap message.

• Trap type, in the SNMPv1 are defined e.g. following different type of traps:
• cold start
• warm start
• link down
• link up
• authentication failure, message is received from invalid SNMP manager
• EGP neighbours loss
• enterprise specific trap

• Specific code are used with enterprise type traps

• Timestamp is time in hundredths of second (10 ms) since the agent last time initialised.

5.4 SMI and MIB
The Structure Management Information (SMI) is a set of common structures and an
identification scheme used to reference the variables in the MIB. In the (Figure 9) is presented
basic structure of management information defined by ISO and internet SMI structure. The
SMI-I define with ASN.1 basic data types for defining MIB variables [Ste94]:

• Integer
• Octet string
• DisplayString, 8 bit bytes from NVT ASCII character set.
• OBJECT IDENTIFIER , which specifies group, simple variable or table identifier of MIB

tree
• NULL
• IpAddress, specific data type for IP addresses
• PhyAddress, specific data type for physical addresses
• Counter, SNMPv1 define 32 bit counter (SNMPv2 has also 64 bit counter)
• Gauge, counter which is not wraparound
• TimeTicks is time counter in hundredths of second (10 ms)
• SEQUENCE or SEQUENCE OF are used specify more complex variable structures like

tables

25

Figure 9 SMI and MIB-I

The Management Information Base (MIB) defines the exact structure and formats of the
management data, which a network element stores and maintains. The MIB is a tree like
structure, just like the DNS or UNIX file system. The MIB structure is based on ISO
definition of CMIP and CMIS (common management information protocol/services) so it is
part of ISO/OSI defined management structure. The MIB can be understood as a virtual
database, for real implementation inside network element are not defined or restricted by
standards. Often same information is part of several variables, so relational database can be
used. In the SMI defined Object identifier is a data type specifying an authoritatively named
object and it consist of sequence of integers separated by decimal points. These object
identifiers specify nodes of the management tree. All variables in the Internet MIB start with
object identifier 1.3.6.1.2.1 because of the ISO background. For human readability all nodes
have also the textual name, e.g. object identifier 1.3.6.1.2.1.4 have name
iso.org.dod.internet.mgmt.mib.ip. The SNMP manager accesses to nodes or leafs of the tree
by these object identifiers in variable name field of the SNMP message. [wcun]

With the SNMPv2 is defined new MIBs: MIB-II and manager to manager MIB. In the MIB-II
some groups are extended to have more specific subgroups. The SNMPv2-SMI defines also
64 bits counters. Manager to manager MIB makes possible to use more hierarchical structure
for the network management.

Under Internet node there exist enterprise group, which contains a vendor specific groups and
leaves. This tree structure can include the specific management information for that vendor or
its some specific product. Currently there is registered about 3700 different enterprises [fie].
The Internet Assigned Number Authority (IANA) handles this enterprise group name
registration as normally in the Internet community.

root

iso(1)

org(3)

dod(6)

internet(1)

directory(1) mgmt(2) experimental(3) private(4)

mib(1)

system(1) interfaces(2) at(3) ip(4) icmp(5) tcp(6) udp (7)

Ï 1.3.6.1.2.1 enterprises(1)

ccitt(0) joint-iso-ccitt(2)

…

… … … … … ……

internet SMI

snmp(11)

…

26

Under Internet node located MIB is divided into the groups named: system, interfaces, at
(address translation), ip, icmp, tcp, udp, egp, and snmp. These groups include a simple
variables and/or tables, which correspondingly include variables. In the MIB each variable
contain object-type, syntax, access, status and textual description clauses. Also the index
clause can be included. The object type defines the name of the object identifier. The syntax
defines the data type of the variable according to the SMI. The access right in the SNMPv1
can be read-only or read-write. In the MIB-II the access type is extended to the max-access
field mainly for the get-bulk-request operator. The status can be mandatory or optional (MIB-
I). The index clause defines table indexing. Variables are referenced with .0 after the variable
textual name or the object identifier. The simple variables store normally a counter values or
integer type configuration information. For example a simple variable in the MIB-I snmp
group can be presented:

snmpInGetRequests OBJECT-TYPE
SYNTAX counter
ACCESS read-only
STATUS mandatory
DESCRIPTION

" The total number of SNMP Get-Request PDUs which have been
 accepted and processed by the SNMP protocol entity"

: : = { snmp 15}

Table entries have one or more indexes depending on the container, e.g. the address
translation table is indexed with the internal physical interface number (not address) and net
address. In the definition of tables are used SEQUENCE and SEQUENCE OF data types. All
entries of the tables are arranged in the lexicographic order. This mean that the manager is
accessed tables in the column-row order, so with tables get-next operator has as a response
e.g. all physical addresses of the address translation table entries before accessing
corresponding net (IP) addresses.

In the Figure 10 is presented the UDP group structure as for example. The UDP group is very
simple and it has four simple variables and one table, e.g. the IP group (MIB-I) contains 20
variables and three tables.

The UDP group contains a UDP listener table (udpTable) and a counters for transmitted
(udpOutDatagrams) and received (udpInDatagrams) datagrams, received datagrams with no
application process at the destination port (udpNoPorts) and undeliverable datagrams for
some other reason (udpInErrors). The UDP table contains under node entry (udpEntry) UDP
address (udpLocalAddress) and port (udpLocalPort). The local address specifies listened
address and the local port defines the listened port for that address.

Figure 10 UDP group structure

udp(7)

mib(1)

udpInDatagrams(1) udpNoPorts(2) udpInErrors(3) udpOutDatagrams(4) udpTable(5)

udpEntry(1)

udpLocalAddress(1) udpLocalPort (2)

27

The system group (see Figure 9) includes general variables like vendor’s ID in enterprise
subtree, system textual name, system full domain name, services node provide (OSI model
based) and system up time from the last reboot.

The Interface group contains for each interface a internal index, interface type (e.g. Ethernet),
interface MTU (maximum transmission unit), speed (bits/s), physical address and state of
interface (up, down, testing). Various counters are also specified e.g. received and transmitted
packets and bytes, error in and discarded packets and number of packets in output queue.

In the MIB-I used at group includes address translation tables, where physical address (e.g.
Ethernet), net address (IP) and internal index of the interface is mapped. In the MIB-II at-
group is divided into several separate groups based on the used protocol.

The IP group (in MIB-I used) includes three tables: IP address, IP routing and IP address
translation tables. The IP address table contains one row for each IP address on the system
and includes IP address, interface index, subnet mask and maximum datagram can be
reassembled. The IP routing table contains e.g. IP destination address, interface index,
routing metrics, IP address of next-hop router (gateway) and routing protocol (e.g. OSPF,
BGP). The IP group contains also variables for network element IP forwarding state, default
TTL (time-to-live) and various counters e.g. received and transmitted datagrams, fragmented
and reassembled datagrams and discarded packets due to routing, protocol, fragmenting or
reassembling error.

The ICMP group contains counters for transmitted and received ICMP messages and errored
messages. Also counters for transmitted and received different (11) message types exist.

The TCP group includes one table for TCP connections and several protocols related
variables and counters. The TCP connection table includes for each connection state (e.g.
syn_sent, established or close_wait), local IP address, local TCP port number, remote IP
address and remote port number information. Variables contain information of used RTO
(retransmission time-out) algorithm, minimum and maximum RTO value and counters e.g. for
active and passive connections, transmitted and received segments and errors.

The EGP group contain the EGP neighbors table, which include e.g. state, IP address,
autonomous system information, polling mode (active or passive), interval for polling (for
hello message) and also counters for transmitted and received messages and errors.

The SNMP group includes counters for transmitted and received SNMP messages (total and
separated by PDU type) and counters for messages with different type of errors.

MIB-II structure is basically the same as MIB-I. However different protocols are normally
defined in own subgroups in the address translation.

5.5 Security
In the reality the SNMPv1 does not provide any security option and the SNMPv2 definition
has not clear enough security features. For the SNMPv2 are proposed RFCs for security
model which provide authentication, privacy (encryption), authorisation and access control
(referred also SNMPv2u) but currently RFCs are in the proposed or the draft state and are not
widely in use. In the RFC 2271 was defined framework developing of SNMP version three
[2271], which main intention is to clear the standard situation and to improve the security
models of the SNMP. In the user based security model (USM) the authentication is based on
the digest authentication protocol (MD5 algorithm) with the private keys. The timestamping

28

of messages is also provided. The DES (data encryption standard) can optionally be used for
encryption [wsc].

It is possible to use the HTTP (hypertext transfer protocol) and the SSL (secure socket layer)
in the transport of SNMP messages. In this case the SNMP network element has to implement
basic functionality of the HTTP-server. This method has authentication and ciphered
messages, so security is better than with the community based versions.

5.6 Implementations
Many network element manufactures and vendors have however own specific implementation
for managing their devices. These are often based on the SNMP and MIB definition, but do
not fulfil the entire standard. In the SNMPv1 based systems it is often allowed only to query
variables of the network element. The setting and configuration of the network element are
done with some other method e.g. also quite an unsure telnet is used in some
implementations.

Basic SNMP and MIB with object identifier notation is not very user friendly so it is obvious
that there have been developed graphical user interfaces. Quite a popular way to implement
SNMP manager is to use the HP OpenView as platform [hpov]. The SNMPv2 makes possible
to use any Web browser as the manager interface. In this case agent has to implement basic
HTTP server functionality.

References

[Fei96] Feit, S., TCP/IP, second edition, 1996, McGraw-Hill.

[RFC821] Postel, J.B., Simple Mail Transfer Protocol, Request for comments 821,
August 1982

[RFC854] Postel, J., Reynolds, J., TELNET protocol specification, Request for
comments 854, May 1983.

[RFC959] Postel, J., Reynolds, J., File Transfer Protocol (FTP), Request for
comments: 959, October 1985.

[RFC1350] Sollins, K., The TFTP protocol (revision2), Request for comments 1350,
July 1992.

[RFC1425] Klensin, J., et al, SMTP service extensions, Request for comments 1425,
1993

[RFC1521] Borenstein, Freed, Multipurpose Internet Mail Extensions, Request for
comments 1521, 1993.

[Ste94] Stevens, R., TCP/IP illustrated volume 1 the protocols, 1994, Addison-
Wesley.

[822] D. Crocker. Standard for the Format of ARPA Internet Text Messages.
RFC 822, IETF, 1982.

[977] B. Kantor, P Lapsley. Network News Transfer Protocol. RFC 977, IETF,
1986.

[1036] M. Horton, R. Adams. Standard for Interchange of USENET Messages.
RFC 1036, IETF, 1986.

[wmc] http://www.magmacom.com/~leisen/master_list.html, Oct. 1998

29

[INN] http://www.isc.com/inn/, Oct. 1998

[Dia] http://www.backplane.com/diablo/, Oct. 1998

[high] http://www.highwind.com/, Oct. 1998

[cnic] http://cyclone.news.idirect.com/stats/archive/, Oct. 1998

[1155] K. McCloghrie, M. Rose. Structure and Identification of Management
Information for TCP/IP-based Internets, RFC 1155, IETF, 1990.

[1157] J. Case et al., A Simple Network Management Protocol, RFC 1155, IETF,
1990

[1213] K. McCloghrie, M. Rose. Management Information Base for Network
Management of TCP/IP-based Internets: MIB-II , RFC 1213, IETF, 1991

[1901] J. Case, K. McCloghrie, M. Rose. Introduction to Community-based
SNMPv2, RFC 1901, IETF, 1996.

[1910] G. Waters, User-Based Security Model for SNMPv2, RFC 1910,
IETF,1996

[2273] P. Presuhn, B. Wijnen. An Architecture for Describing SNMP
Management Frameworks, RFC 2271, IETF, 1998.

[wsc] http://www.snmp.com/, Oct. 1998

[wcun] http://wwwsnmp.cs.utwente.nl/, Oct. 1998

[fie] ftp://ftp.isi.edu/in-notes/iana/assignments/enterprise-numbers, Oct. 1998

[Ste96] W.R. Stevens. TCP/IP Illustrated, Volume 3, TCP/IP for Transactions
HTTP, NNTP and the UNIX Domain Protocols. Addison-Wesley, 1996.

[hpov] http://www.hp.com/openview/, Oct. 1998

