
S38.122/RKa s-00 8-1

Multicast routing principles in Internet

Motivation

Recap on graphs

Principles

S38.122/RKa s-00 8-2

Multicast capability has been and is under
intensive development in the 1990’s

• MBONE used to multicast IETF meetings from 1992

• Extends LAN broadcast capability to WAN in an
efficient manner

• Valuable applications
– resource discovery

– network load minimization by replacing many pt-to-pt
transmissions

– multimedia conferencing

S38.122/RKa s-00 8-3

Multicast addresses

MSB(t) hostnetwork

1110
1111

28 bits - multicast group address
experiments

Class

D
E

32 bits

224.0.0.0 - 239.255.255.255

Note: + Sender does not need to belong to G.
 + Address space is flat!

Ethernet MAC address: MACprefix+G --> no lookup, no ARP

224.0.0.1
224.0.0.2
224.0.0.4
224.0.0.1 - 224.0.0.255
239.0.0.0 - 239.255.255.255
239.192.0.0 - 239.195.255.255

All systems
All routers
All DVMRP routers
Local segment usage only
Admin scoped multicast (local signifigance)
Organisation local scope

S38.122/RKa s-00 8-4

Resource discovery by MC simplifies network
management

OSPF router

RIP router

OSPF hello[all ospf routers]

RIP response

• No need for lists of neighbors, just use std MC address
• How to find corporate DNS -server --> MC to all nodes
 in corporate network.
• Network is easily flooded with messages.
• TTL can be used for Broadcast scope limitation
 --> find nearest DNS or whatever
 -- when TTL=0, router does not return ICMP msg!

S38.122/RKa s-00 8-5

Conferencing requirements include

• Multiple sources, multiple recipients, multiple media

• Variable membership

• Small conferences with intelligent media control (what is
sent to where)

• Large conferences require media processing in special
devices

S38.122/RKa s-00 8-6

Multipoint sessions differ from point-to-point
communication

S
• Participants may join and leave the session.

• Receiver-makes good principle instead of
 session parameter negotiation.

• Window based flow control does not apply:
 -- use UDP / connectionless protocols

M

S38.122/RKa s-00 8-7

Flooding is the simplest MC algorithm

Flooding algorithm is

Receive M from L

Search M in DB

found

Accept M

Send M to all
links but L

No

DB older
yes

Update DB

Send M to all
links but L

yes
Build m from DB

Send M to sender
on L

No
DB(I) = M

no

stop

Yes = M is a duplicate

• Need to keep state (DB) in nodes!
• No group membership: target is all nodes

• Examples: OSPF, usenet news...

S38.122/RKa s-00 8-8

Alternative to DB in flooding is trace info in
the message

• Trace info in Message lists all passed nodes

• Avoids a costly DB reads but may accept same M several
times.

• If neighbor is in trace, does not send

Flooding guarantees that node will not forward the same
packet twice. It does not guarantee that node will receive
same packet only once! --> Greedy algorithm.
+++Does not depend on routing tables -->robust

S38.122/RKa s-00 8-9

Networks are modeled as Graphs.

G = (V, E),
 V - set of vertices or nodes (non-empty, finite set)
 E = {ej | j = 1, 2, … M} - set of edges or links.

ej = (vi, vk) = (i, k)

Nodes i and k are adjacent if link (i, k) exists.
Nodes i and k are also called neighbors.

S38.122/RKa s-00 8-10

Links are bi-, arcs are unidirectional

Degree of a node is the number
of its neighbors or
the number of links incident on
the node.

Unidirectional links,
aj = (vi, vk) = [i,k] are called arcs.
If links and nodes have properties,
the graph is called a network.

Undirected grapth

Directed graph

S38.122/RKa s-00 8-11

Graphs with parallel links are called
multigraphs

s

vu

t Links between a node and itself
are self loops.

Graph with no parallel links and
no self loops is a simple graph.

A path in a network is a sequence of links beginning
at some node s and ending at some node t. = s,t-path.
If s = t, path is called a cycle. If an intermediate node
appears no more than once, it is a simple cycle.

S38.122/RKa s-00 8-12

Graph is Connected if there is at least one
path between every pair of nodes.

• A subset of nodes with paths to one another is a
connected component.

Reflective: By def. ∃ i,i-path
Symmetric: ∃ i,j-path ⇒ ∃ j,i-path
Transitive: ∃ i,j-path and ∃ j,k-path ⇒ ∃ i,k-path

Components are equivalence classes and the
component structure is a partition of the graph.

Partition applies to links and nodes alike.

S38.122/RKa s-00 8-13

A directed graph is strongly connected if
there is a directed path from every node to

every other node.

• Directed connectivity is not symmetric.

• A subset of nodes with directed paths
from any one node to any other is a
strongly connected component.

• A node belongs to exactly one strongly
connected c. An arc is part of at most one
strongly connected c.

A

D

CB

E

F

HG

S38.122/RKa s-00 8-14

A tree is a graph without cycles

• Given a Graph G = (V, E), H is a subgraph of G if
H = (V ,́ E)́ where V´ ⊂ V and E´ ⊂ E

• A spanning tree is a connected graph without
cycles.

• If graph is not necessarily connected, we talk
about a forest.

S38.122/RKa s-00 8-15

Spanning trees model minimally connected
networks

• ST is a minimum cost network.

• Only a single path exists between any two nodes
in a ST --> routing is trivial.

• If a graph has N nodes, any tree spanning the
nodes has exactly N - 1 edges.

• Any forest with k components has exactly
N - k edges. (proof by induction starting from
graph with no edges).

S38.122/RKa s-00 8-16

A set of edges whose removal disconnects a
graph is called a disconnecting set.

• XY-cutset partitions a graph to subgraphs
X and Y.

• In a tree any edge is a minimal cutset.
• A minimal set of nodes whose removal partitions

the remaining nodes into two connected
subgraphs is called a cut.

S38.122/RKa s-00 8-17

Suomalaiset graafitermit

Vertex, node - kärki,solmu
Edge, link - syrjä, linkki, sivu,

 kaari, haara
Adjacent - viereinen
Neighbor - naapuri
Degree of - solmun aste(?)
 a node
Arc - kaari
Cycle, Loop - silmukka
Path - polku
Directed path - suunnattu polku
Connected - yhteydellinen, yhdistetty
Strongly - vahvasti yhteydellinen
 connected

Subgraph - aligraafi
Tree - puu
Spanning tree - virittäjäpuu
Forest - metsä
Disconnecting - erotusjoukko
 set
Cut - leikkaus
XY-cutset - XY-leikkaus-
 joukko

S38.122/RKa s-00 8-18

Adjacency and Incidence Matrices are used to
present Graphs

Node LinkA

E

DC

B
1

2 3
4

5 6
N
o
d
e

A B C D E
A
B
C
D
E

0 1 1 0 0
1 0 0 1 0
1 0 0 1 1
0 1 1 0 1
0 0 1 1 0

Adjacency Matrix

N
o
d
e

A
B
C
D
E

 1 2 3 4 5 6

1 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 1 0
0 0 1 1 0 1
0 0 0 0 1 1

Incidence Matrix

 For directed graphs +1 is
 source and -1 is sink of an arc

For an undirected graph
Adjacency matrix is symmetric.

S38.122/RKa s-00 8-19

For graph algorithms linked list presentation
of adjacency is convenient

A

E

DC

B
1

2 3
4

5 6

A
B
C
D
E

Node

Link Next

1 B A 3 D B

d

S38.122/RKa s-00 8-20

A Tree can be traversed by Breadth-first-search

A

HG

DCB

FE

I

KJ

L

Void <- BfsTree(n, root, n_adj_list)
 dcl n_adj_list [n, list] /* array of lists of neighbors

 scan_queue [queue]
 InitializeQueue(scan_queue)
 Enqueue(root, scan_queue)
 while NotEmpty(scan_queue)
 node <- Dequeue(scan_queue)
 Visit (node)
 for each (neighbor, n_adj_list[node])
 Enqueue(neighbor, scan_queue)

Works for directed links

S38.122/RKa s-00 8-21

A Tree can also be traversed by Depth-first-
search

A

LK

JIB

DC

E

F H

G

Void <- DfsTree(n, root, n_adj_list)
 dcl n_adj_list [n, list]

 Visit (root)
 for each (neighbor, n_adj_list[node])
 DfsTree(n, neighbor, n_adj_list)

Works for directed links

S38.122/RKa s-00 8-22

An undirected graph can be traversed by Depth-
first-search

Void <- Dfs (n, root, n_adj_list)
 dcl n_adj_list [n, list]
 visited[n] /* keeps track of progress
 void <- DfsLoop(node)
 if not visited[node]
 visited[node] <- TRUE
 Visit (node)
 for each (neighbor, n_adj_list[node])
 DfsLoop(neighbor)
 visited <- FALSE
 DfsLoop(root)

S38.122/RKa s-00 8-23

We can now find and label the connected
components of an arbitrary graph

Void <- LabelComponents(n, n_adj_list)
 dcl n_component_nr[n], n_adj_list[n, list]
 void <- Visit(node)
 n_component_nr[node] <- ncomponents
 n_component_nr <- 0
 ncomponents <- 0
 for each (node, nodeset)
 if (n_component_nr[node] = 0
 ncomponents +=1
 Dfs(node, n_adj_list)

S38.122/RKa s-00 8-24

Minimum Spanning Tree is the ST with
minimum cost

• We assign a length to each edge of the graph. “Length”
can be distance, cost, a measure of delay or reliability.

• We look for minimum total length/cost, thus we talk
about MST.

• If the graph is not connected, we may look for a
minimum spanning forest.

n = c + e , where n is the number of nodes, c the number of
 components and e number of edges selected so far
 holds always.

S38.122/RKa s-00 8-25

MC to a spanning tree leads to reception only
once in each node

A C

ED

B1 2

3 4 5

6

A C

ED

B1 2

3 4 5

6

• Requires on/off bit (∈ ST) per link

• No group membership

• Concentrates traffic to the STlinks

• Ideal would be a tree that
 - spans the group members only
 - minimizes state information in nodes
 - optimizes routes based on metrics

S38.122/RKa s-00 8-26

A Greedy MST algorithm
List <- Greedy(properties)
 dcl properties [list, list],
 candidate_set[list], solution[list]

 void <- GreedyLoop(*candidate_set, *solution)
 dcl test_set[list], candidate_set[list], solution[list]

 element <- BestElementOf(candidate_set) /* for MST: shortest edge
 test_set <- element ∪ solution
 If test_set is feasible /* for MST: no cycles
 solution <- test_set
 candidate_set <- candidate_set \ element
 If candidate set is not Empty
 Greedy_Loop(*candidate_set, *solution)

 solution <- ∅
 If (candidate_set <- ElementsOf(properties)) is not Empty
 GreedyLoop(*candidate_set, *solution)
 return(solution)

S38.122/RKa s-00 8-27

Reverse-Path Forwarding computes an
implicit spanning tree per source, is OK for

dense trees
• RPF was first used in MBone

Receive M

S=Source
I=Interface

 Forward to
 all interf but I

I∈shortest
path to S

yes

no

Note: path is computed
from S to node.
In symmetric networks =
path from node to S

Looking one step further: send only if
our Node is on shortest path
from S to next Node.
Requires 1 bit/source and /link
in link state DB

Stop

S38.122/RKa s-00 8-28

Reverse path forwarding properties

• No group membership but can be
scoped by TTL

• Guarantees fastest possible
delivery since uses shortest paths
only

• Different tree for each source -->
traffic is spread over multiple
links leading to better network
utilization

A C

ED

B1 2

3 4 5

6

A C

ED

B1 2

3 4 5

6

A C

ED

B1 2

3 4 5

6

S38.122/RKa s-00 8-29

“Flood and prune” introduces dynamic group
membership

S
B Leaf

Flood m

∃ Group
members

NoPrune =

Do not send
to group G on this interface

If prunes on all interfaces,
forward prune up the RPF
tree

Drawbacks:
- first packet is flooded to the whole net
- nodes must keep state per S and G.
- state is transient (timed out)

source

S38.122/RKa s-00 8-30

Steiner tree spans the group with the minimal
cost according to link metrics

• Has never actually been used, only simulated:
– Finding the mimimum Steiner tree in a graph has exponential

complexity and result is not necessarily optimal

– The tree is undirected: links must be symmetrical

– Algorithm is monolithic, can’t be distributed

– The tree is unstable when changes occur: traffic routes change
dramatically when e.g a member leaves.

• Popular because of its mathematical complexity

• Leads to Center based approach (CBT, PIM)

