
S38.121/RKa s-01 8-1

Multicast routing principles in Internet

Motivation

Recap on graphs

Principles

S38.121/RKa s-01 8-2

Multicast capability has been and is under
intensive development in the 1990’s

• MBONE used to multicast IETF meetings from 1992

• Extends LAN broadcast capability to WAN in an
efficient manner

• Valuable applications
– resource discovery

– network load minimization by replacing many pt-to-pt
transmissions

– multimedia conferencing

S38.121/RKa s-01 8-3

Multicast addresses
32 bits

MSB(t) hostnetwork

1110
1111

28 bits - multicast group address
experiments

Class

D
E

224.0.0.0 - 239.255.255.255

Note: + Sender does not need to belong to G.
+ Address space is flat!

Ethernet MAC address: MACprefix+G --> no lookup, no ARP

224.0.0.1
224.0.0.2
224.0.0.4
224.0.0.1 - 224.0.0.255
239.0.0.0 - 239.255.255.255
239.192.0.0 - 239.195.255.255

All systems
All routers
All DVMRP routers
Local segment usage only
Admin scoped multicast (local significance)
Organisation local scope

S38.121/RKa s-01 8-4

Resource discovery by MC simplifies network
management

OSPF router

RIP router

OSPF hello[all ospf routers]

RIP response

• No need for lists of neighbors, just use std MC address
• How to find corporate DNS -server --> MC to all nodes

in corporate network.
• Network is easily flooded with messages.
• TTL can be used for Broadcast scope limitation

--> find nearest DNS or whatever
-- when TTL=0, router does not return ICMP msg!

S38.121/RKa s-01 8-5

Conferencing requirements include

• Multiple sources, multiple recipients, multiple media

• Variable membership

• Small conferences with intelligent media control (what is
sent to where)

• Large conferences require media processing in special
devices

S38.121/RKa s-01 8-6

Multipoint sessions differ from point-to-point
communication

S
• Participants may join and leave the session.

• Receiver-makes good principle instead of
session parameter negotiation.

• Window based flow control does not apply:
-- use UDP / connectionless protocols

M

S38.121/RKa s-01 8-7

Flooding is the simplest MC algorithm

Flooding algorithm is

Receive M from L

Search M in DB

found

Accept M

Send M to all
links but L

No

DB older
yes

Update DB

Send M to all
links but L

yes
Build m from DB

Send M to sender
on L

No
DB(I) = M

no

stop

Yes = M is a duplicate

• Need to keep state (DB) in nodes!
• No group membership: target is all nodes

• Examples: OSPF, usenet news...

S38.121/RKa s-01 8-8

Alternative to DB in flooding is trace info in
the message

• Trace info in Message lists all passed nodes

• Avoids a costly DB reads but may accept same M several
times.

• If neighbor is in trace, does not send

Flooding guarantees that node will not forward the same
packet twice. It does not guarantee that node will receive
the same packet only once! --> Greedy algorithm.
+++Does not depend on routing tables -->robust

S38.121/RKa s-01 8-9

Networks are modeled as Graphs.

G = (V, E),
V - set ofvertices or nodes(non-empty, finite set)
E = {ej | j = 1, 2, … M} - set ofedges or links.

ej = (vi, vk) = (i, k)

Nodesi andk areadjacent if link (i, k) exists.
Nodesi andk are also calledneighbors.

S38.121/RKa s-01 8-10

Links are bi-, arcs are unidirectional

Degree of a nodeis the number
of its neighbors or
the number of linksincident on
the node.

Undirected grapth

Unidirectional links,
aj = (vi, vk) = [i,k] are calledarcs.
If links and nodes have properties,
the graph is called anetwork.

Directed graph

S38.121/RKa s-01 8-11

Graphs with parallel links are called
multigraphs

s

vu

t Links between a node and itself
areself loops.

Graph with no parallel links and
no self loops is asimple graph.

A path in a network is a sequence of links beginning
at some node s and ending at some node t. =s,t-path.
If s = t, path is called acycle. If an intermediate node
appears no more than once, it is asimple cycle.

S38.121/RKa s-01 8-12

Graph isConnectedif there is at least one
path between every pair of nodes.

• A subset of nodes with paths to one another is a
connected component.

Reflective: By def.∃ i,i-path
Symmetric: ∃ i,j-pathÿ ∃ j,i-path
Transitive: ∃ i,j-path and∃ j,k-pathÿ ∃ i,k-path

Components are equivalence classes and the
component structure is a partition of the graph.

Partition applies to links and nodes alike.

S38.121/RKa s-01 8-13

A directed graph isstrongly connectedif
there is adirected path from every node to

every other node.

• Directed connectivity is not symmetric.

• A subset of nodes with directed paths
from any one node to any other is a
strongly connected component.

• A node belongs to exactly one strongly
connected c. An arc is part ofat most one
strongly connected c.

A

D

CB

E

F

HG

S38.121/RKa s-01 8-14

A tree is a graph without cycles

• Given a GraphG = (V, E), H is a subgraph ofG if
H = (V ,́ E)́ whereV´ ⊂ V andE´ ⊂ E

• A spanning treeis a connected graph without
cycles.

• If graph is not necessarily connected, we talk
abouta forest.

S38.121/RKa s-01 8-15

Spanning trees model minimally connected
networks

• ST is a minimum cost network.

• Only a single path exists between any two nodes
in a ST --> routing is trivial.

• If a graph hasN nodes, any tree spanning the
nodes has exactlyN - 1 edges.

• Any forest withk components has exactly
N - k edges. (proof by induction starting from
graph with no edges).

S38.121/RKa s-01 8-16

A set of edges whose removal disconnects a
graph is called adisconnecting set.

• XY-cutset partitions a graph to subgraphs
X and Y.

• In a tree any edge isa minimal cutset.

• A minimal set of nodes whose removal partitions
the remaining nodes into two connected
subgraphs is calleda cut.

S38.121/RKa s-01 8-17

Suomalaiset graafitermit

Vertex, node - kärki,solmu
Edge, link - syrjä, linkki, sivu,

kaari, haara
Adjacent - viereinen
Neighbor - naapuri
Degree of - solmun aste(?)

a node
Arc - kaari
Cycle, Loop - silmukka
Path - polku
Directed path - suunnattu polku
Connected - yhteydellinen, yhdistetty
Strongly - vahvasti yhteydellinen

connected

Subgraph - aligraafi
Tree - puu
Spanning tree - virittäjäpuu
Forest - metsä
Disconnecting - erotusjoukko

set
Cut - leikkaus
XY-cutset - XY-leikkaus-

joukko

S38.121/RKa s-01 8-18

Adjacency and Incidence Matrices are used to
present Graphs

NodeA

E

DC

B
1

2 3
4

5 6
N
o
d
e

A B C D E
A
B
C
D
E

0 1 1 0 0
1 0 0 1 0
1 0 0 1 1
0 1 1 0 1
0 0 1 1 0

Adjacency Matrix

For an undirected graph
Adjacency matrix is symmetric.

N
o
d
e

A
B
C
D
E

1 2 3 4 5 6

1 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 1 0
0 0 1 1 0 1
0 0 0 0 1 1

Incidence Matrix

For directed graphs +1 is
source and -1 is sink of an arc

Link

S38.121/RKa s-01 8-19

For graph algorithms linked list presentation
of adjacency is convenient

A

E

DC

B
1

2 3
4

5 6

A
B
C
D
E

Node

Link Next

1 B A 3 D B

d

S38.121/RKa s-01 8-20

A Tree can be traversed by Breadth-first-search

A

HG

DCB

FE

I

KJ

L

Void <- BfsTree(n, root, n_adj_list)
dcl n_adj_list [n, list] /* array of lists of neighbors

scan_queue [queue]
InitializeQueue(scan_queue)
Enqueue(root, scan_queue)
while NotEmpty(scan_queue)

node <- Dequeue(scan_queue)
Visit (node)
for each (neighbor, n_adj_list[node])

Enqueue(neighbor, scan_queue)

Works for directed links

S38.121/RKa s-01 8-21

A Tree can also be traversed by Depth-first-
search

A

LK

JIB

DC

E

F H

G

Void <- DfsTree(n, root, n_adj_list)
dcl n_adj_list [n, list]

Visit (root)
for each (neighbor, n_adj_list[node])

DfsTree(n, neighbor, n_adj_list)

Works for directed links

S38.121/RKa s-01 8-22

An undirected graph can be traversed by Depth-
first-search

Void <- Dfs (n, root, n_adj_list)
dcl n_adj_list [n, list]

visited[n] /* keeps track of progress
void <- DfsLoop(node)

if not visited[node]
visited[node] <- TRUE
Visit (node)
for each (neighbor, n_adj_list[node])

DfsLoop(neighbor)
visited <- FALSE
DfsLoop(root)

S38.121/RKa s-01 8-23

We can now find and label the connected
components of an arbitrary graph

Void <- LabelComponents(n, n_adj_list)
dcl n_component_nr[n], n_adj_list[n, list]
void <- Visit(node)

n_component_nr[node] <- ncomponents
n_component_nr <- 0
ncomponents <- 0
for each (node, nodeset)

if (n_component_nr[node] = 0
ncomponents +=1
Dfs(node, n_adj_list)

S38.121/RKa s-01 8-24

Minimum Spanning Tree is the ST with
minimum cost

• We assign a length to each edge of the graph. “Length”
can be distance, cost, a measure of delay or reliability.

• We look for minimum total length/cost, thus we talk
about MST.

• If the graph is not connected, we may look for a
minimum spanning forest.

n = c + e ,wheren is the number of nodes,c the number of
components ande number of edges selected so far
holds always.

S38.121/RKa s-01 8-25

MC to aspanning treeleads to reception only
once in each node

A C

ED

B1 2

3 4 5

6

A C

ED

B1 2

3 4 5

6

• Requires on/off bit (∈ ST) per link

• No group membership

• Concentrates traffic to the STlinks

• Ideal would be a tree that
- spans the group members only
- minimizes state information in nodes
- optimizes routes based on metrics

S38.121/RKa s-01 8-26

A Greedy MST algorithm
List <- Greedy(properties)

dcl properties [list, list],
candidate_set[list], solution[list]

void <- GreedyLoop(*candidate_set, *solution)
dcl test_set[list], candidate_set[list], solution[list]

element <- BestElementOf(candidate_set) /* for MST: shortest edge
test_set <- element∪ solution
If test_set is feasible /* for MST: no cycles

solution <- test_set
candidate_set <- candidate_set \ element
If candidate set is not Empty

Greedy_Loop(*candidate_set, *solution)

solution <-∅
If (candidate_set <- ElementsOf(properties)) is not Empty

GreedyLoop(*candidate_set, *solution)
return(solution)

S38.121/RKa s-01 8-27

Reverse-Path Forwarding computes an
implicit spanning tree per source, is OK for

dense trees
• RPF was first used in MBone

Receive M

S=Source
I=Interface

Forward to
all interf but I

I∈shortest
path to S

yes

no

Note: path is computed
from S to node.
In symmetric networks =
path from node to S

Looking one step further: send only if
our Node is on shortest path
from S to next Node.
Requires 1 bit/source and /link
in link state DB

Stop

S38.121/RKa s-01 8-28

Reverse path forwarding properties

• No group membership but can be
scoped by TTL

• Guarantees fastest possible
delivery since uses shortest paths
only

• Different tree for each source -->
traffic is spread over multiple
links leading to better network
utilization

A C

ED

B1 2

3 4 5

6

A C

ED

B1 2

3 4 5

6

A C

ED

B1 2

3 4 5

6

S38.121/RKa s-01 8-29

“Flood and prune” introduces dynamic group
membership

S
B Leaf

Flood m

∃ Group
members

NoPrune =

Do not send
to group G on this interface

If prunes on all interfaces,
forward prune up the RPF
tree

Drawbacks:
- first packet is flooded to the whole net
- nodes must keep state per S and G.
- state is transient (timed out)

source

S38.121/RKa s-01 8-30

Steiner tree spans the group with the minimal
cost according to link metrics

• Has never actually been used, only simulated:
– Finding the mimimum Steiner tree in a graph has exponential

complexity and result is not necessarily optimal

– The tree is undirected: links must be symmetrical

– Algorithm is monolithic, can’t be distributed

– The tree is unstable when changes occur: traffic routes change
dramatically when e.g a member leaves.

• Popular because of its mathematical complexity

• Leads to Center based approach (CBT, PIM)

