Teletraffic theory
(for beginners)

Samuli Aalto
samuli.aalto@hut.fi

Contents

• Purpose of Teletraffic Theory
 • Network level: switching principles
 • Telephone traffic models
 • Data traffic models
Traffic point of view

- Telecommunication system from the traffic point of view:

- Ideas:
 - the system serves the incoming traffic
 - the traffic is generated by the users of the system

Interesting questions

- Given the system and incoming traffic, what is the quality of service experienced by the user?

- Given the incoming traffic and required quality of service, how should the system be dimensioned?

- Given the system and required quality of service, what is the maximum traffic load?
Teletraffic theory (for beginners)
Samuli Aalto

General purpose

- Determine **relationships** between the following three factors:
 - quality of service
 - traffic load
 - system capacity

Example

- Telephone traffic
 - system = telephone network
 - traffic = telephone calls by everybody
 - quality of service = probability that the connection can be set up, i.e., “the line is not busy”
Teletraffic theory (for beginners) Samuli Aalto

Relationships between the three factors

- Qualitatively, the relationships are as follows:

<table>
<thead>
<tr>
<th>System Capacity</th>
<th>Quality of Service</th>
<th>Quality of Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Load</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- With given quality of service
- With given system capacity
- With given traffic load

- To describe the relationships quantitatively, **mathematical models** are needed

Teletraffic models

- Teletraffic models are **stochastic** (= probabilistic)
 - Systems themselves are usually deterministic
 - But traffic is typically stochastic
 - "You never know, who calls you and when"
- It follows that the variables in these models are **random variables**, e.g.
 - Number of ongoing calls
 - Number of packets in a buffer
- Random variable is described by its **distribution**, e.g.
 - Probability that there are n ongoing calls
 - Probability that there are n packets in a buffer
- **Stochastic process** describes the temporal development of a random variable
Practical goals

- Network planning
 - dimensioning
 - optimization
 - performance analysis
- Network management and control
 - efficient operating
 - fault recovery
 - traffic management
 - routing
 - accounting

Contents

- Purpose of Teletraffic Theory
- Network level: switching principles
- Telephone traffic models
- Data traffic models
A simple model of a telecommunication network consists of:
- **nodes**
 - terminals
 - network nodes
- **links** between nodes

Access network
- connects the terminals to the network nodes

Trunk network
- connects the network nodes to each other

Switching modes

- **Circuit switching**
 - telephone networks
 - mobile telephone networks, e.g. GSM

- **Packet switching**
 - data networks
 - two possibilities
 - **connection oriented**: e.g. X.25, Frame Relay
 - **connectionless**: e.g. Internet (IP), SS7 (MTP)

- **Cell switching**
 - fast (connection oriented) packet switching with fixed length packets (called cells), e.g. ATM
 - integration of different traffic types (voice, data, video)
 - ⇒ multiservice networks
Circuit switching (1)

- **Connection oriented**:
 - connections *set up* end-to-end before information transfer
 - resources *reserved* for the whole duration of connection
 - e.g. telephone call reserves one (two-way) channel from each link along its route (time division multiplexing)
- Information transfer as continuous stream

Circuit switching (2)

- Before information transfer
 - delay (to set up the connection)
- During information transfer
 - no overhead
 - no extra delays (besides the propagation delay)
- Efficient only if
 - connection holding time \gg connection set up time
Time division multiplexing (TDM)

- Used in digital circuit switched systems
 - information conveyed on a link transferred in frames of fixed length
 - fixed portion (time slot) of each frame reserved for each channel
 - location of the time slot within the frame identifies the connection
- TDM multiplexer
 - input: \(n \) 1-channel physical connections
 - output: 1 \(n \)-channel physical connection

Connectionless packet switching (1)

- **Connectionless:**
 - no connection set-up
 - no resource reservation
- Information transfer as **discrete packets**
 - varying length
 - including header with global address (of the destination)
 - packets compete dynamically for processing capacity of nodes (next hop from routing table) and transmission capacity of links (statistical multiplexing)
Connectionless packet switching (2)

- Before information transfer
 - no delays
- During information transfer
 - overhead (header bytes)
 - packet processing delays
 - packet transmission delays
 - queueing delays (since packets compete for joint resources)

Statistical multiplexing

- Used in digital packet/cell switched systems, e.g. Internet, ATM
- Statistical multiplexer combines the packet flows of n incoming links to a joint outgoing link
 - capacity of the outgoing link reserved dynamically as packets arrive asynchronously and randomly
 \Rightarrow need for buffering
Contents

• Purpose of Teletraffic Theory
• Network level: switching principles
 • Telephone traffic models
 • Data traffic models

Classical model for telephone traffic (1)

• Loss models have traditionally been used to describe (circuit-switched) telephone networks
 - pioneering work made by Danish mathematician A.K. Erlang (1878-1929)
• Consider a link between two telephone exchanges
 - traffic consists of the ongoing telephone calls on the link
Classical model for telephone traffic (2)

- Erlang modelled this as a **loss system** with \(n \) servers
 - customer = (telephone) call
 - \(\lambda \) = call arrival rate
 - service time = (call) holding time
 - \(h \) = average holding time
 - server = channel on the link
 - \(n \) = number of parallel channels on the link
Traffic intensity

- In telephone networks:

Traffic ↔ Calls

- The amount of traffic is described by traffic intensity a
- By definition, traffic intensity a is the product of the arrival rate λ and the mean holding time h:

$$a = \lambda h$$

- Note that the traffic intensity is a dimensionless quantity
- Anyway, the unit of traffic intensity a is called erlang

Example

- Consider a local exchange. Assume that,
 - on the average, there are 1800 new calls in an hour, and
 - the mean holding time is 3 minutes
- It follows that the traffic intensity is

$$a = 1800 \times \frac{3}{60} = 90 \text{ erlang}$$

- If the mean holding time increases from 3 minutes to 10 minutes, then

$$a = 1800 \times \frac{10}{60} = 300 \text{ erlang}$$
Blocking

- In a loss system some calls are lost
 - a call is lost if all \(n \) channels are occupied when the call arrives
 - the term \textit{blocking} refers to this event
- There are (at least) two different types of blocking quantities:
 - \textbf{Call blocking} \(B_c \) = probability that an arriving call finds all \(n \) channels occupied = the fraction of calls that are lost
 - \textbf{Time blocking} \(B_t \) = probability that all \(n \) channels are occupied at an arbitrary time = the fraction of time that all \(n \) channels are occupied
- The two blocking quantities are not necessarily equal
 - If calls arrive according to a Poisson process, then \(B_c = B_t \)
- Call blocking is a better measure for the quality of service experienced by the subscribers but, typically, time blocking is easier to calculate

Teletraffic analysis

- System capacity
 - \(n \) = number of channels on the link
- Traffic load
 - \(\lambda \) = (offered) traffic intensity
- Quality of service (from the subscribers’ point of view)
 - \(B_c \) = probability that an arriving call finds all \(n \) channels occupied
- If we assume an \textbf{M/G/\(n \)/\(n \) loss system}, that is
 - calls arrive according to a \textbf{Poisson process} (with rate \(\lambda \))
 - call holding times are independently and identically distributed according to any \textbf{distribution} with mean \(\mu \)
- Then the quantitative relation between the three factors is given by the \textbf{Erlang’s blocking formula}
Erlang’s blocking formula

\[B_c = \text{Erl}(n, \alpha) = \frac{n^n \alpha^n}{\sum_{i=0}^{n} \frac{\alpha^i}{i!}} \]

- **Note:** \(n! = n \cdot (n-1) \cdot \ldots \cdot 2 \cdot 1 \)
- **Other names:**
 - Erlang’s formula
 - Erlang’s B-formula
 - Erlang’s loss formula
 - Erlang’s first formula

Example

- Assume that there are \(n = 4 \) channels on a link and the offered traffic is \(\alpha = 2.0 \) erlang. Then the call blocking probability \(B_c \) is

\[B_c = \text{Erl}(4, 2) = \frac{2^4}{1 + 2 + \frac{2^2}{2!} + \frac{2^3}{3!} + \frac{2^4}{4!}} \approx 9.5\% \]

- If the link capacity is raised to \(n = 6 \) channels, \(B_c \) reduces to

\[B_c = \text{Erl}(6, 2) = \frac{2^6}{1 + 2 + \frac{2^2}{2!} + \frac{2^3}{3!} + \frac{2^4}{4!} + \frac{2^5}{5!} + \frac{2^6}{6!}} \approx 1.2\% \]
Required capacity vs. traffic

- Given the quality of service requirement that $B_c < 20\%$, required capacity n depends on traffic intensity a as follows:

$$n(a) = \min\{N = 1,2,\ldots \mid \text{Erl}(N,a) < 0.2\}$$

Required quality of service vs. traffic

- Given the capacity $n = 10$ channels, required quality of service $1 - B_c$ depends on traffic intensity a as follows:

$$1 - B_c(a) = 1 - \text{Erl}(10,a)$$
Given the traffic intensity $a = 10.0$ erlang, required quality of service $1 - B_C$ depends on capacity n as follows:

$$1 - B_C(n) = 1 - \text{Erl}(n, 10.0)$$
Classical model for data traffic (1)

- Queueing models are suitable for describing (packet-switched) data networks
 - pioneering work made by ARPANET researchers in 60’s and 70’s (e.g. L. Kleinrock)
- Consider a link between two packet routers
 - traffic consists of data packets transmitted on the link

Classical model for data traffic (2)

- This can be modelled as a waiting system with a single server and an infinite buffer
 - customer = packet
 - λ = packet arrival rate
 - L = average packet length (data units)
 - server = link, waiting places = buffer
 - R = link’s speed (data units per time unit)
 - service time = packet transmission time
 - $1/\mu = L/R$ = average packet transmission time
Traffic process

- state of packets in the system (waiting/being transmitted)
- packet arrival times
- link utilization
- packet transmission time
- number of packets in the system

Traffic load

- In packet-switched data networks:
- The amount of traffic is described by traffic load ρ
- By definition, traffic load ρ is the quotient between the arrival rate λ and the service rate $\mu = \frac{R}{L}$:

$$\rho = \frac{\lambda}{\mu} = \frac{\lambda L}{R}$$

- Note that the traffic load is a dimensionless quantity
- It can also be interpreted as the probability that the server is busy.
- So, it tells the utilization factor of the server
Example

- Consider a link between two packet routers. Assume that,
 - on the average, 10 new packets arrive in a second,
 - the mean packet length is 400 bytes, and
 - the link speed is 64 kbps.
- It follows that the traffic load is
 \[\rho = \frac{10 \times 400 \times 8}{64,000} = 0.5 = 50\% \]
- If the link speed is increased up to 150 Mbps, the load is just
 \[\rho = \frac{10 \times 400 \times 8}{150,000,000} = 0.0002 = 0.02\% \]
 - 1 byte = 8 bits
 - 1 kbps = 1 kbit/s = 1,000 bits per second
 - 1 Mbps = 1 Mbit/s = 1,000,000 bits per second

Teletraffic analysis

- System capacity
 - \(R \) = link speed in kbps
- Traffic load
 - \(\lambda \) = packet arrival rate in packet/s (considered here as a variable)
 - \(L \) = average packet length in kbits (assumed here that \(L = 1 \) kbit)
- Quality of service (from the users’ point of view)
 - \(P_z \) = probability that a packet has to wait “too long”, i.e., longer than a given reference value \(z \) (assumed here that \(P_z = 0.1 \) s)
- If we assume an M/M/1 queueing system, that is
 - packets arrive according to a Poisson process (with rate \(\lambda \))
 - packet lengths are independent and identically distributed according to exponential distribution with mean \(L \)
- Then the quantitative relation between the three factors is given by the following waiting time formula
Waiting time formula for an M/M/1 queue

\[P_z = \text{Wait}(R, \lambda, L, z) = \begin{cases} \frac{R}{L} \exp(-\frac{R}{L} z) \lambda, & \text{if } \lambda L < R (\rho < 1) \\ 1, & \text{if } \lambda L \geq R (\rho \geq 1) \end{cases} \]

• Note:
 – The system is stable only in the former case (\(\rho < 1 \)). Otherwise the queue builds up without limits.

Example

• Assume that packets arrive at rate \(\lambda = 50 \) packet/s and the link speed is \(R = 64 \) kbps. Then the probability \(P_z \) that an arriving packet has to wait too long (i.e., longer than \(z = 0.1 \) s) is

\[P_z = \text{Wait}(64, 50; 1, 0.1) = \frac{50}{64} \exp(-1.4) = 19\% \]

• Note that the system is stable, since

\[\rho = \frac{\lambda L}{R} = \frac{50}{64} < 1 \]
Teletraffic theory (for beginners) Samuli Aalto

Required link speed vs. arrival rate

- Given the quality of service requirement that $P_z < 20\%$, required link speed R depends on arrival rate λ as follows:

$$R(\lambda) = \min \{ r > \lambda L \mid \text{Wait}(r, \lambda; 1.0.1) < 0.2 \}$$

![Graph showing required link speed vs. arrival rate]

Required quality of service vs. arrival rate

- Given the link speed $R = 50$ kbps, required quality of service $1 - P_z$ depends on arrival rate λ as follows:

$$1 - P_z(\lambda) = 1 - \text{Wait}(50, \lambda; 1.0.1)$$

![Graph showing required quality of service vs. arrival rate]
Given the arrival rate $\lambda = 50$ packet/s, the required quality of service $1 - P_z$ depends on the link speed R as follows:

$$1 - P_z(R) = 1 - \text{Wait}(R, 50; 1, 0.1)$$