S-38.110 Telecommunication Switching Technology I, E xercise 5

Brax/llvesmäki, 9.3.2000

The answers are to be returned before the exercise begins either to the exercise assistant (in person or via email to lynx@tct.hut.fi) or to a box underneath the lab's noticeboard.

Task 1

Standby passiveredundancy: In the normal case the both sides A and B are working parallely so, that another of the sides, A or B, is taking care of the whole load, and the other one is standing by. F or both sides is the failure rate $=\lambda$ and the repair rate is μ. When the active side fails, and the standby side takes care of the load. W hen both sides are failed, the system is failed. When the whole system is failed, there is no repair function done. D raw the M arkow state model for the system.

Task 2

Paralle activeredundancy: In the normal case the both sides A and B are working parallelly, and they are sharing the load. F or both sides is the failure rate $=\lambda$ and the repair rate is μ. Then one of the sides, A or B, fails, and after that the working side is taking care of the whole load. That means, that it has now larger failure rate $\lambda^{\prime}>=\lambda$. When both sides are failed, the whole system is failed. When the whole system is failed, there is no repair function done. Draw the M arkow model for the system.

Task 3

D efine the M arkov model and write the equations for steady state probabilities for the following parallel duplication arrangement. The system fails when both of the elements have failed.

Task 4

D efine the M arkov model and write the equations for steady state probabilities for the following serial and parallel duplication arrangements. The system fails, if one of theelements A1 or A2 on side 0 , or element B on side 1 fails.

