1 Extra exercise round - notes and a solution

1.1 Task 1

There were three states identified:

1. The call in progress or being established exists consistently in the spare unit (state P_{0}).
2. The call has been successfully disconnected in the active and the spare unit (state P_{1}).
3. There has occured an inconsistency in the spare unit (state P_{2}).

The Markov model for these states with the parameters described looks like in Figure 1

Figure 1: Markov model

And the steady-state probabilities are counted with

$$
\begin{aligned}
(\alpha+\mu) P_{0} & =1-(\alpha+\mu) P_{0} \\
\mu P_{2} & =\alpha P_{0} \\
P_{0}+P_{1}+P_{2} & =1
\end{aligned}
$$

which when solved gives

$$
\begin{aligned}
P_{0} & =\frac{1}{2(\alpha+\mu)} \\
P_{1} & =\frac{2 \mu-1}{2 \mu} \\
P_{2} & =\frac{\alpha}{2 \mu(\alpha+\mu)}
\end{aligned}
$$

Inserting $\mu=5000$ calls cleared per minute and $\alpha=\frac{1}{10080}$ errors occuring per minute we get the following average times in each of the states for one years time.

Table 1: Time spent in each of the states in one year's time

P_{0}	52 minutes
P_{1}	364 days 23 h 7 min
P_{2}	0,00006 seconds

1.2 Tasks 2-4

The solutions may be found from the exercise solution material distributed via Otapaino. Note that in task 2 you should first solve for the slip occurence and then insert appropriate probability values to get the slip occurence as a function of the probability. In task 4 look for the formulas for rearrangeably non-blocking and symmetric Clos network. You can choose p and q freely, as long as their product is $N=p q=30$.

