S-38.110 Telecommunication Switching Technology I, E xercise 3

Brax/Ilvesmäki 10.2.2000

The answers are to be returned before the exercise begins either to the exercise assistant (in person or via email to lynx@tct.hut.fi) or to a box underneath the lab's noticeboard.

Task 1

U sing heuristic reasoning show the dimensions of a 3-stage switching fabric if it is to be non-blocking. U se symmetric switching fabric with equal number of inputs(N) and outputs(M). A switch has m or n inputs which are grouped to x or y groups. Assume that a first (and a thrid) stage switch may be connected only once to a single second stage switch. Start from the worst-case scenario where all of the inputs but one on a particular primary switch A and all of the outputs but one on a particular tertiary switch B are each connected via a different secondary switch matrix. C ount al so the number of cross-points for the switching matrix. Assume in all cases that $N=M, n=m$ and $x=y$.

Task 2

C ompute the crosspoint complexity and the logical depth (the number of logical gates in a path) for the following networks:
A) The full $N \times N$ crosspoint switch.
B) The three stage rearrangable Clos network contstucted using $\sqrt{N} \times \sqrt{N}$ switches.
C) The Benes network
(Hui: Chapter 3. Exercise 1 a,b and c)

Task 3

C onsider the crosspoint complexity of three stage C los networks.
A) Show that the strict-sense network has roughly twice the complexity of the rearrangeable network.
B) F or the rearrangeable network, show that the optimal choice of p (figure 12 of Hui) for minimizing crosspoint count is $\sqrt{N / 2}$, which gives a crospoint complexity $2 \cdot \sqrt{2 N^{3 / 2}}$
C) F or the strict-sence network, show that the minimum crosspoint count is roughly given by $4 \cdot \sqrt{2 N^{3 / 2}}$
Hui: Chapter 2. Exeraise2abc, 5ab

