IP and Ethernet: Master and Slave?

TKK
Espoo, Finland
November 23, 2004

Seppo Borenius
R&D Director
Tellabs Oy

Outline

> Developing regional and access networks
 > Case Tellabs Oy
> Concepts
> Trends
> Implementation case
 > Tellabs 8600 managed network solution
> Summary

Statements made in this document relating to future status or circumstances, including future performance and other projections are forward-looking statements. Such statements are based on our current expectations and are inherently subject to certain risks and uncertainties. For more information on these risks and uncertainties, please read our SEC and other filings, earnings reports and press releases.

Copyright © 2004 Tellabs Oy
Developing regional and access networks
Case Tellabs Oy

Tellabs

> Tellabs worldwide
 > Turnover 980 MUSD in 2003, employees 3100
 > Headquarters in Naperville, Illinois, USA
 > Listed in NASDAQ
> Tellabs in Finland
 > 600 employees in Espoo and Oulu
 > Over 250 networks delivered in 100 countries
 > Products: Tellabs 8100 and 8600 telecommunication networks
Tellabs 8100 networks

Concepts in regional and access networks
Basic Terminology

MPLS (Multiprotocol Label Switching)
- Hard QoS
- Traffic Engineering
- Reliability and Protection

Ethernet Header	MPLS Label	Layer 3 Header	Data
Ethernet Header | MPLS Label | Ethernet Header | Layer 3 Header | Data

Virtual Private Network Types (VPNs)

VPN Types
- Network Based VPN
- Customer Equipment Based VPN

VPN Types
- L2 VPN
 - VPWS
 - VPLS
- L3 VPN
 - RFC 2547bis
 - IPSec

VPWS = Virtual Private Wire Service
VPLS = Virtual Private LAN Service

Copyright © 2004 Tellabs Oy

7 Copyright © 2004 Tellabs Oy

8 Copyright © 2004 Tellabs Oy
Application types

- IP/VPN
 - RFC 2547bis

- Ethernet Services
 - Point-to-point VPWS
 - Multipoint-to-multipoint VPLS

- Broadband service aggregation
 - MTU access
 - DSLAM access

MTU = Multi-Tenant Unit
SOHO = Small Office, Home Office
DSLAM = DSL Access Multiplexer

Ethernet services

- Virtual Private Wire (PWE3) Service
- Virtual Private LAN Service
Virtual Private Wire Service (PWE3)

More Detailed

L2 PDU, e.g., Native Ethernet or VLAN Service

PSN Tunnel LSP

Penultimate Hop Popping

L2 PDU = Layer 2 Protocol Data Unit
PSN = Packet Switched Network
PE = Provider Edge
CE = Customer Edge

IP VPN services

Standard RFC 2547bis model

Distributed RFC 2547bis model
Broadband service aggregation
DSLAM, MTU and WiFi access

IP/Ethernet/MPLS
Regional/Access network

MTU and WiFi access

ISP = Internet Service Provider
CSP = Content Service Provider
ASP = Application Service Provider
MTU = Multi-Tenant Unit
DSLAM = DSL Access Multiplexer

Trends in regional and access networks
Traffic Trends

> Traffic growth 100% annually. This is due to residential broadband access.
> Digital media content and media convergence to accelerate
> Enterprise data has modest growth figures
> Cell based mobile traffic very limited compared to residential broadband
 > Mobile vs fixed
 > One or several handsets
> Pricing models are hard to change

Current Metro Ethernet Networks

> Benefits for Operator
 > Well known technology
 > Ease of use
 > Plug-and-play
 > Cost-efficiency
 > Low-cost interface for the customer located equipment
 > On-demand bandwidth
 > Flexibility
 > One interface for many services
 > Bandwidth available incrementally
> Pain points
 > How to provide QoS
 > Scalability
 > Carrier-class quality
MPLS in Regional and Access Networks

- Guaranteed service level
- Management of service
- Fast recovery operations
- Enabling management of capacity

VRF = Virtual Routing and Forwarding (table)
VSI = Virtual Switching Instance
PW = Private Wire / Pseudo Wire

Common Infrastructure

- The driver is cost efficiency
- Packet based
- Ethernet interface
- Fiber to home
- Intelligence – routing – closer to customer
Implementation case
Tellabs 8600 managed network solution

Tellabs 8600 Network Components

- IP
- MPLS (Multiprotocol Label Switching)
- Ethernet

- Best-In-Class network management enabling operational efficiency
- Hardware based forwarding
- Sophisticated Quality of Service (QoS) features

Tellabs 8600 is a managed network solution for regional and access networks that cost-efficiently brings:
- MPLS in the regional network level
- Ethernet or MPLS in the access
- Optimizes the capex (capital expenses) and opex (operational expenses)
 - Pay-as-you grow model in network growth phase
 - Each network element and service managed through integrated Network Management System
- Facilitates migration from existing services to new packet based services

Virtual Private Wire Service
- Ethernet p2p as wholesale or retail service
- DSLAM aggregation to Internet over MPLS network (ATM/Ethernet)
- Implemented as PWE3 connections

Copyright © 2004 Tellabs Oy
VPLS – Virtual Private LAN Service

- U-PE-rs and N-PE-rs are switching capable network provider edge routers

Router Roles in Distributed IP VPN Implementation

- N-PE Router
 - Network Provider Edge
 - Edge of the core network (PE router)
 - Full IP/MPLS capability

- U-PE Router
 - User-facing provider edge
 - Local exchange or POP (Point of Presence)
 - Full IP/MPLS capability
 - Also in customer premises

- P-a
 - IP/MPLS capable LSR in access network
 - No service end-points
Distributed IP VPN Implementation

- Customer routing across core → BGP (Border Gateway Protocol)
- Customer routing across access → BGP for all customers in one BGP session

VRF = Virtual Routing and Forwarding (table)

IP VPN Implementation with Tellabs 8600

- Tellabs 8600 Solution benefits
 - Hard quality of service in access
 - Network scalability
 - Routing
 - Operational efficiency
 - Cost-efficiency
Tellabs 8600 - Easy and automated network and service management

- Main operational advantages
 - Point-and-click service provisioning
 - Automated VPN testing even with SLA (Service Level Agreement) parameters
 - Service level fault and performance monitoring

- Values
 - First time right
 - Fast service delivery
 - Proactive response to changes or faults
 - Automatic documentation of network configuration

Tellabs 8600 Managed Edge System
User friendly management of service

- Extensive use of CLI (Command line based)
- Management on element level
- Graphical and centralized network building
- Fully documented network

Easier and cost efficient way of building networks and services
Summary: IP, Ethernet and MPLS

- Ethernet has grown from office to public telecom network
- Ethernet interface, transmission and switching
- Proven, flexible and cost-efficient technology
- Challenges in scalability, carrier-class quality and QoS

IP
- IP provides
- Scalability
- Basis for applications
- Basis for interoperability

Ethernet
- Ethernet has grown from office to public telecom network
- Ethernet interface, transmission and switching
- Proven, flexible and cost-efficient technology
- Challenges in scalability, carrier-class quality and QoS

MPLS
- Network enabled VPNs
- MPLS enables QoS and traffic engineering

Both IP and Ethernet have their roles

Our Vision
Deliver to customers technology that transforms the way the world communicates™