
AB HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Engineering Physics and Mathematics

Vesa Timonen

Simulation Studies on Performance of Balanced Fairness

Master’s thesis submitted in partial fulfillment of the requirements for the

degree of Master of Science in Technology

Supervisor: Professor Jorma Virtamo

Instructor: Professor Jorma Virtamo

Espoo, 28th October 2003



Helsinki University of Technology Abstract of Master’s Thesis

Author: Vesa Timonen

Department: Department of Engineering Physics and Mathematics

Major: Systems and Operations Research

Minor: Teletraffic Theory

Title: Simulation Studies on Performance of Balanced Fairness

Date: 28th October 2003 Number of pages: 63

Chair: S-38 Teletraffic Theory

Supervisor: Professor Jorma Virtamo

Instructor: Professor Jorma Virtamo

Most traffic in current data networks is elastic, i.e. the rates of traffic flows adjusts
to use all bandwidth available. Concurrent flows compete for the finite resources
or capacity of a network and the rate allocated for flows has to be regulated by
some control mechanism to avoid congestion and to reduce packet losses in the
network.

One essential objective of the bandwidth sharing policies is to assure fairness
of the realized rate allocation. Different fairness criteria favor or discriminate
sources or traffic classes on different basis. As a mathematical notion fairness can
be generalized to an optimization problem. These classical, utility-based fairness
criteria are considered in a static network scenario. In a dynamic network scenario
using the optimal bandwidth sharing policy adapted from a static scenario can
lead to non-optimal results. Also analysis of flow-level characteristics becomes
difficult excluding most simple network cases. Utility-based fairness criteria have
been proven to be sensitive in the sense that the steady state distribution depends
on detailed traffic characters.

Balanced fairness is a new allocation policy that can be considered as the most
efficient insensitive allocation. When bandwidth allocation is based on balanced
fairness, the distribution of the number of flows in progress and expected through-
put depend only on the average traffic load of each flow class. In some cases the
exact probability distribution of the number of concurrent flows of different flow
classes can be calculated and performance metrics can be evaluated.

In this thesis the utility-based fairness criteria and their generalization to opti-
mization problem is presented. Also the notion of balanced fairness and its main
features are described. The effect of allocation policies on flow-level characters
is studied via simulations under different network topologies. Three different al-
location policies are used in simulations – balanced, max-min and proportional
fairness.

In all the cases examined the differences in throughputs provided by different
fairness criteria were comparatively small. Generally max-min fairness provided
better throughput on the long routes and penalized the shorter ones more
than balanced fairness. It was verified that proportional fairness coincides with
balanced fairness in homogenous hypercubes, and with max-min fairness in trees.
The insensitivity of balanced fairness was verified via sensitivity simulations.
Also the sensitivity of max-min fairness and proportional fairness seem to be
quite weak. Results attained via simulations follow exactly the analytical results.
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Nykyisten tietoverkkojen liikenne on valtaosin ns. elastista liikennettä. Liiken-
nelähteet säätävät lähetysnopeutensa siten, että kaikki käytössä oleva kapasiteet-
ti tulee hyödynnettyä. Samanaikaiset vuot kilpailevat verkon rajallisista resurs-
seista. Ruuhkautumisen ja pakettihäviöiden estämiseksi lähteiden nopeutta on
kontrolloitava jollakin ruuhkanhallintamekanismilla.

Ruuhkanhallintamekanismien yksi keskeinen tarkoitus on taata toteutuvan
kaistanjaon reiluus. Eri reiluuskriteerit suosivat tai syrjivät liikennelähteitä tai
liikenneluokkia eri perustein. Reiluuden käsite voidaan yleistää optimointiongel-
maksi, jossa pyrikimys on löytää kriteerikohtaisen kohdefunktion maksimoiva tai
minimoiva kaistanjako. Nämä klassiset utiliteettipohjaiset reiluuskriteerit raken-
tuvat staattisen verkkomallin varaan. Dynaamisessa verkkoskenaariossa staat-
tisessa mallissa optimaalinen kaistanjako saattaa kuitenkin johtaa epäedulliseen
tulokseen. Myös vuotason tunnuslukujen tarkastelu on vaikeaa joitakin yksinker-
taisimpia verkkotopologioita lukuunottamatta. Utiliteettipohjaisten reiluuskri-
teerien tapapainojakauma on riippuvainen liikenteen tunnusluvuista, mikä tekee
vuotason tarkastelut vaikeaksi.

Tasapainotettu reiluus on uusi kaistanjakomenetelmä, jota voidaan pitää
tehokkaimpana insensitiivinä kaistanjakona. Kaistanjaon noudattessa tasapaino-
tettua reiluutta aktiivisten voiden lukumäärän jakauma sekä läpäisyn odotusarvo
riippuvat vain jokaisen vuoluokan keskimääräisestä kuormasta. Joissakin tapauk-
sissa nämä suureet voidaan laskea eksaktisti.

Tässä työssä esitellään keskeisimmät utiliteettipohjaiset reiluuskriteerit sekä nii-
den yleistys optimointiongelmaksi. Tasapainotetun reiluuden käsite sekä sen omi-
naisuuksia esitellään. Kaistanjakomenetelmien vaikutusta vuotason suureisiin
tutkittiin simuloimalla eri verkkotopologiossa sekä pyrittiin verifioimaan kirjal-
lisuudessa esitettyjä tuloksia. Käytettyjä menetelmiä olivat tasapainotettu, suh-
teellinen sekä max-min-reiluus.

Kaikissa tarkastelluissa tapauksissa eri kriteerien tuottamat erot läpäisyssä
olivat melko vähäiset. Yleisesti ottaen max-min-reiluus suosii pitkiä vuoluokkia
tasapainotettua reiluutta enemmän. Simulaatiot tukivat lauseita, joiden mukaan
suhteellinen reiluus yhtyy tasapainotettuun reiluuteen homogeenisissa hyperkuu-
tioissa ja vastaavasti max-min-reiluuteen puutopologioissa. Simuloinnit vahvis-
tavat tasapainotetun reiluuden insensitiivisyyden. Myös max-min-reiluuden sekä
suhteellisen reiluuden sensitiivisyys oli vähäistä. Simuloidut tulokset vastasivat
tarkasti analyyttisia.

Avainsanat: Reiluuskriteerit, tasapainotettu reiluus, läpäisy, simulointi
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Chapter 1

Introduction

1.1 Background

Most traffic in current data networks is elastic, i.e. the rates of traffic flows
adjusts to use all bandwidth available. Concurrent flows compete for the finite
resources or capacity of a network and the rate allocated for flows has to be
regulated by some control mechanism to avoid congestion and to reduce packet
losses in the network. Because of the finite resources, the bandwidth share or,
equally, the rate allocation is a compromise that should be fair, which leads to
the concept of fairness.

The notion of fairness has no unique definition. It may depend on several dif-
ferent session priorities and service requirements, e.g. a session can require a
minimum guaranteed rate for sending data or has a maximum on allowed net-
work delay. It is generally accepted that traffic with the same priority should
be treated equally. The simplest definition is to allocate the same share to each
connection. Different fairness criteria favor or discriminate sources or traffic
classes on different basis. The objective can be to use the network capacity
as efficiently as possible without considering a single source (the throughput
maximization [2, 10, 19, 25]), or on the contrary, the goal can be to ensure as
equal sharing of the resources as possible (max-min fairness [2, 10, 19, 25]).

As a mathematical notion fairness can alternatively be thought of as an op-
timization problem, where the objective is to find a rate allocation that min-
imizes or maximizes a utility function specific for the used fairness criterion
[10, 11, 16]. In this approach e.g. a cost for achieved rate allocation can be
easily added to the examination. Further, the optimization approach provides
a generalization of the concept of fairness.

The optimal allocation provided by some fairness criteria is considered in a
static network scenario where number of flows is fixed. However, in a dynamic
network scenario using the optimal bandwidth sharing policy adapted from a
static scenario can lead to non-optimal results concerning, e.g. the throughput

1



Chapter 1. Introduction

of different flow classes. In most cases these allocation policies are sensitive and
necessitate that traffic characteristics are known in detail (e.g. distributions of
flow sizes and interarrival times). Also analysis of flow-level characteristics be-
comes difficult excluding most simple network cases [4]. Utility-based fairness
criteria have been proven to be sensitive in the sense that the steady state dis-
tribution depends on detailed traffic characters, which explains the difficulty
of flow-level analysis [6].

Insensitivity is a desirable property of an allocation policy. Knowing the mean
values of distributions of traffic characteristics provides enough information
to derive the flow-level characteristics in a fixed network scenario. Balanced
fairness [6] represents a new allocation policy that can be considered as the
most efficient insensitive allocation. When bandwidth allocation is based on
balanced fairness, the distribution of number of flows in progress and expected
throughput depend only on the average traffic load of each flow class.

With balanced fairness it is sometimes possible to calculate the exact proba-
bility distribution of the number of concurrent flows of different flow classes,
and further evaluate performance metrics.

1.2 Objectives

Objectives of this thesis can roughly be divided into two parts. Firstly, our aim
is to discuss the notion of fairness and the present different fairness criteria. In
the same context, the generalized fairness criteria of these utility-based fairness
criteria is presented as an optimization problem. Focus is set on a survey of the
concept of balanced fairness. We describe the main features of this allocation
policy and present some analytical results.

Secondly, we study the effect of allocation policies on flow-level characters
via simulations under different network topologies. Three different allocation
policies are used in simulations – balanced, max-min and proportional fairness.

Our objective is to examine the throughputs, compare policies used and ver-
ify results presented in the literature. Also the sensitivity of max-min and
proportional fairness and insensitivity on balanced fairness is investigated.

As a new aspect, we study the flow-specific throughputs in comparison to the
throughput that is defined as a quotient of expected flow size and expected flow
duration. We also examine the flow durations and statistics of this distribution,
including notably the variance of the flow duration.

2



Chapter 1. Introduction

1.3 Structure of the thesis

The thesis is organized as follows: in Chapter 2 the general network model
is presented and main features and simplifications are listed. In Chapter 3
the concept of fairness is discussed in general and the most common static
fairness criteria are defined. The optimization problem that generalizes the
utility-based fairness criteria is presented. Chapter 4 introduces the concept
of balanced fairness. Main assumptions and analytical results are presented.

In Chapter 5 the simulation setups are described and implementation is dis-
cussed in brief. In Chapter 6 simulation results are presented and analyzed.
Comparison to analytical results is made.

Conclusions are drawn and some further work considerations are presented in
Chapter 7.

3



Chapter 2

Flow level model of network

This Chapter presents the most important simplifications and assumptions
made concerning the traffic and its characteristics. Also a mathematical model
of general network model, basic restrictions, feasibility and traffic conditions,
and user performance are studied. This Chapter is based on the model pre-
sented in [4, 5, 6, 7, 8].

2.1 Traffic assumptions

Most of the traffic in current data networks is elastic and is composed of flows
transferring digital documents such as files or web pages. This traffic takes
place under the control of transmission control protocol (TCP) that controls
the sending rates in trying to prevent network congestion.

TCP is carried out on packet level, the control mechanism (i.e. TCP-agent)
in the end system measures packet round trip times (RTT) and controls the
sending rate of each concurrent flow. The sending rate does not depend only
on the resources in use and the amount of flows in progress, but also on a multi-
plicity of different parameters, e.g. TCP parameters and version and queueing
policies in bottleneck links.

Elastic traffic is not time critical at the packet level, i.e. the transfer time
of the document does not have a stringent time limit. Also the flow level
time-scale is notably long in comparison to packet-level time-scale. Thus, in
flow-level considerations the effects of the packet-level time-scale variations are
negligible. In this study we focus on flow-level behavior and characteristics,
which justifies following simplifications:

x 

 
Packet level observations are discarded.

x 

 
Assume a fluid model; the flow is transferred through the network as a
continuous stream; no storing of data in links or queues.

4



Chapter 2. Flow level model of network

x 

 
Propagation delays discarded; changes in network state are immediate;
no delays at transfers.

x 

 
When a flow starts, it is immediately received at the destination at the
same rate as it is being sent.

2.2 Network model

A network is considered as a set of links L, where each link l ∈ L has a finite
capacity Cl > 0. A random number of flows compete for the access to these
links. There are K flow classes, each class k uniquely identified by a route rk.
Let us denote the set of flow classes, or equally, the set of all routes with R.
Each route rk is a non-empty subset of the set L. Let us denote r ∈ l if route
r ∈ R traverses through link l ∈ L, and conversely, l ∈ r when link l belongs
to the set of links used by route r.

A single flow is characterized by the volume of information to be transferred,
i.e. the flow size, on the flow’s route. The duration of this transfer depends
on the flow rate that varies in time, i.e. rate increases when other flows cease
and vice versa. Relation between the flow size s and the time tend when flow
is transferred on route r is as follows:

s =

∫ tend

tstart

c(t)dt,

where tstart is the arrival time of the flow and c(t) denotes the flow rate at
time t, i.e. the capacity allocated to this flow on each link l ∈ r at time t,
t ∈ [tstart, tend]. The allocated capacity c(t) is additionally limited by condition
c(t) ≤ Cl for all l ∈ r.

The state of the network is denoted by x = (x1, . . . , xK), where xk is the
number of active flows of class k. The aggregated capacity φk is the capacity
allocated for all flows of class k. This capacity allocation depends only on
the bandwidth sharing policy and the network state x. Within a class k the
capacity φk is shared equally between flows, i.e. each flow of class k is given
the capacity of φk/xk.

The capacity allocation φ = (φ1, . . . , φK) is considered feasible when the fol-
lowing condition holds:

∑

k:l∈rk

φk(x) ≤ Cl ∀l ∈ L. (2.1)

That is, the aggregated capacity of flow classes traversing through link l may
not exceed the link capacity Cl. Let us denote the set of all feasible allocations

by F , i.e. F def
= {φ | φ is feasible}.
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Chapter 2. Flow level model of network

Pareto-efficiency [4, 5, 6, 8] of a capacity allocation is defined as follows:

∀k s.t. xk > 0 ∃l ∈ rk,
∑

k′:l∈rk′

φk′(x) = Cl. (2.2)

That is, every active flow traverses through at least one saturated link.

The traffic intensity of class k is denoted by ρk, which corresponds to mean
volume of information offered by flows of class k per unit of time. The traffic
conditions are given by the inequalities:

∑

k:l∈rk

ρk(x) ≤ Cl, l ∈ L. (2.3)

The mean time of flow transfer can be considered as an essential performance
measure for the users. Thus, the class k user performance can be evaluated
in terms of throughput, defined as the ratio of the mean flow size 1/µk to the
mean flow duration sk in the steady state. Assuming network stability and
applying Little’s formula, the throughput of an arbitrary class k with arrival
rate λk of flows is

γk =
1/µk

E[sk]
=

λk/µk

λkE[sk]
=

ρk

E[xk]
, (2.4)

that is, the throughput of flows of class k is the ratio of the traffic intensity to
the expected number of flows of class k.

In the simplest case, in which the network reduces to a single link and one
traffic class, the network is modelled as a processor sharing queue. When the
traffic condition (2.3) is realized, that is, ρ < C, where ρ is the traffic intensity
of the flow class and C the link capacity, the steady state distribution of the
number of flows is geometric with mean ρ/C. Thus, the throughput γ is given
by

γ = C − ρ. (2.5)

A link can be considered as a processor sharing queue, where the the flows
correspond to the customers and the service rate is proportional to the link
capacity. All customers in the queue are served with the same rate. For the
M/M/1/PS system, the variance of the flow duration T conditioned on the
flow size s, as presented in [18, 22], is

Var(T | S = s) =
2λs

µ2(1− λ
µ
)3
− 2λ

µ3(1− λ
µ
)4

(
1− e−(µ−λ)s

)
,

and the variance of the flow duration is [18, 22]

Var(T ) =
(2 + λ

µ
)

µ2(1− λ
µ
)2(2− λ

µ
)

=
1

µ2(1− ρ)2

2 + ρ

2− ρ
, (2.6)

where λ is the arrival rate of flows and 1/µ is the mean flow size.
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Chapter 3

Fairness

In this chapter the notion of fairness is discussed in general. Static fairness
criteria and the general concept of utility-based allocation policies are presented.
Some results are gathered and some drawbacks are highlighted motivating the
aim to find insensitive allocation policies.

3.1 Notion of fairness

The notion of fairness has no unique definition. Fairness can be considered
as a criterion, and its functionality is usually measured with some flow-level
characteristic like throughput.

The main objective of bandwidth sharing is to use all the available bandwidth
without violating the constraints and maintain a certain fairness. The achieved
fairness depends closely on the used fairness criterion. Different fairness criteria
favor or discriminate single sources or whole traffic classes on different basis.

A straightforward objective for bandwidth allocation is to find a feasible rate
allocation that maximizes the total throughput [2, 10, 11, 19, 25]. In a way,
it would be the most efficient way to use the network resources. However,
the throughput maximization can be considered as an unfair allocation policy.
Usually it leads to bandwidth share in which some users are given as much
resources as possible and others are neglected. For instance, in a linear network
topology (Figure 4.2) allocation maximizing the total throughput allocates
capacity for the long route only, if all the other routes have no traffic [29].

The fairness of a single rate allocation can be considered to have different
value depending on the viewpoint. Can a single source be ignored if the overall
performance of the network gets better? Or should the treatment of the sources
be as equal as possible, even if it leads to poor overall performance?

7



Chapter 3. Fairness

3.2 Max-Min fairness

Max-min fairness [2, 10, 11, 19, 25] is the most common definition for the
concept of fairness. Its objective is to maximize the minimum of the given
bandwidths, i.e. the rate of any source cannot be increased without decreasing
the rate of some other source that already has a smaller rate.

Definition 3.2.1 (Max-min fairness). A rate allocation φ is max-min fair
if φ ∈ F and

∀r ∈ R ∃ l ∈ r such that
∑

k3l

φi = Cl and φr = max
k3l

φk. (3.1)

Definition 3.2.1 is equivalent with the definition that a rate allocation is max-
min fair, if every flow class has a bottleneck link [2, 10]. That is, every flow
traverses through a saturated link. Thus, max-min fair allocation realizes (2.2)
and is pareto-efficient policy.

The bandwidth allocation fulfilling Definition 3.2.1 can be proved to be unique
[19, 24, 25].

In the following two different algorithms for calculating the max-min fair rate
allocation are described. The first one, a global algorithm, necessitates that
the network topology and routes and number of flows are known. In practice,
however, maintaining global information is impractical, even impossible. The
second algorithm presents a distributed algorithm that finds iteratively the
max-min fairness without any centralized control mechanism and thus can be
implemented in actual networks fairly easily.

Global algorithm

If the network and flow classes are known, there is a simple algorithm for
computing the max-min fair allocation [2], the so-called filling algorithm.

The idea is to start with zero rate allocation, i.e. all the flows have no band-
width allocated. In the first step the rate allocation of all the flows is increased
equally until either at least one of the links becomes saturated or at least one of
the sources reaches its maximum sending rate. Sending rates of these sources
are fixed at the reached level.

At the next step, sending rates of all the non-fixed sources and flows are
incremented equally as in previous phase. This step is repeated until either all
flows traverse through a saturated link or maximum sending rates are reached.

The algorithm is described in detail in Table 3.1. Following notation is used:
Ak is the set of links not saturated at the beginning of step k. P k denotes the
set of flows not passing through any saturated link at the beginning of step

8



Chapter 3. Fairness

Table 3.1: Global algorithm for max-min fair allocation [2].

Initial conditions: k = 1, F l
0 = 0, r0

p = 0, P 1 = P , and A1 = A
1. nk

l
def
= number of flows p such that p ∈ P k and p ∈ l

2. δk def
= minl∈Ak

(
Cl − F k−1

l

)
/nk

l

3. rk
p

def
=

{
rk−1
p + δk for p ∈ P k,

rk−1
p otherwise

4. F k
l

def
=

∑
p∈l r

k
p

5. Ak+1 def
=

{
l | Cl − F k

l > 0
}

6. P k+1 def
=

{
p | p 6∈ l for any link l ∈ Ak+1

}

7. k
def
= k + 1

8. If P k = ∅, then stop; else go to 1.

k. nk
l is the number of flows using link l and belonging to set P k. This is the

number of flows that share the the unused capacity of link l. δk denotes the
increment of rate added to sessions in P k at the kth step.

This algorithm was implemented for the simulations described in Chapter 5.

Distributed algorithm

An asynchronous distributed algorithm for optimal rate calculation across the
network is here described following the presentation in [13]. A description in
detail can be found in [12].

Congestion management is controlled by control packets that contain two
fields: a one bit long underloading bit called u-bit and a field called stamped
rate containing the next sending rate estimate. Each source of flow class sends
a control packet through flow class specific route and the destination sends it
back. Links change the control packet information if needed, and flow class
source gets information how to change its sending rate.

Each link observes traffic traversing through and calculates the capacity avail-
able per flow, called the advertised rate. A flow class source sets the stamped
rate to its current sending rate, clears the u-bit and sends the control packet.
The link compares the stamped rate with the advertised rate. If the stamped
rate is greater than the advertised rate, the link resets the stamped rate to the
value of the advertised rate and sets the u-bit. Otherwise, the control packet
information remains intact.

When the control packet reaches its destination, it is sent back to the source.
At this moment the stamped rate carries the minimum sending rate estimate
for the source. If the u-bit is set, some link has decreased the stamped rate

9



Chapter 3. Fairness

and is a bottleneck link for this flow class. In this case the source reduces its
sending rate to stamped rate of the control packet. Otherwise, the source can
increase its sending rate.

All links maintain a list of flows traversing through and their last stamped
rates, called recorded rates. Link l ∈ L divides flows into two separate sets,
SRl and SUl . The first set contains flows that have stamped rate smaller than
or equal to the link’s advertised rate. These flows are assumed already to have
a restricting link. The latter set contains flows that have stamped rate higher
than the link’s advertised rate and are thus considered as unrestricted flows.

The advertised rate µl of link l ∈ L is calculated as follows:

µl =
Cl − CR

l

nl − nRl
,

where Cl is the capacity of the link l, nl is the number of flows traversing
through link l, nRl is the number of flows in the set SRl and CR

l =
∑

r∈SRl φr,

i.e. the total capacity allocated for flows not constrained by link l.

3.3 Proportional fairness

Proportional fairness was proposed in [16]. In proportional fairness deviation
from the fair allocation causes a negative average proportional change.

Definition 3.3.1 (Proportional fairness). A rate allocation φ is propor-
tionally fair if φ ∈ F and

∑
r∈R

φ′r − φr

φr

≤ 0 ∀ φ′ ∈ F . (3.2)

The bandwidth allocation fulfilling the Definition 3.3.1 can be proved to be
unique [19, 25].

The proportional fairness penalizes long routes more than max-min fairness
with tendency to achieve greater total throughput [19, 25, 29].

3.4 Other fairness criteria

In addition to max-min and proportional fairness, there is a large number
of different fairness criteria, e.g. throughput maximization [2, 10, 11, 19, 25],
the potential delay minimization [19], α-fairness [20], fA-fairness [15] and fh

A-
fairness [30].

10
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The objective in potential delay minimization is to minimize the time delay
needed to complete transfers [19]. The time delay is thought to be inversely
proportional to the sending rate of the source. The provided rate allocation is
between max-min and proportional fairness allocation.

Throughput maximization, max-min fairness, proportional fairness and poten-
tial delay minimization all have a weighted version, in which a single flow or a
flow class is given a weight. This leads to different rate allocations.

fA-fairness and fh
A-fairness are fairness criteria that are derived to describe

the bandwidth sharing policy provided by TCP [14, 15, 30]. In these criteria,
the basis for the criterion has been the congestion control based on additive
increase and multiplicative decrease algorithm (AIMD). The rate allocation
provided by AIMD for TCP connections is between max-min fair and propor-
tional fair allocations. When assuming equal RTTs, the realized fairness is
shown to be fA-fair. Further, when flow classes are assumed to have different
RTTs, the realized allocation is fh

A-fair.

All these classical fair allocation schemes can be formulated as optimization
problems maximizing a given utility function. In the case of max-min fairness
and proportional fairness the connection between the criteria and the opti-
mization problem were considered in [16, 17]. The concept of α-fairness [20]
provides a generalized criterion that realizes different fairness depending on the
value of the parameter α. Thus, the α-fairness is essentially an optimization
problem with a specific objective function. The following section deals with
this representation of fairness in more detail.

3.5 Utility-based fairness

Utility approach is a more general concept of fairness [10, 11]. Every source
has a utility function us, where us(φs) indicates the value to source s of having
the rate φs. Every link l ∈ L has a cost function gl, where gl(fl) indicates the
cost to the network of supporting an amount of flow fl on link l. A utility fair
allocation is defined as solution to following optimization problem:

maximize H(φ) =
∑
r∈R

ur(φr)−
∑

l∈L
gl(fl) (3.3)

subject to
∑

k:l∈rk

φk(x) ≤ Cl, l = 1, . . . , L,

where

fl =
∑

k:l∈rk

φk(x)

and L is the set of all links and R is the set of all flow classes or routes.

11
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Table 3.2: Relation of value of α and the realized fairness.

Value of α Realized fairness
α → 0 Throughput maximization
α → 1 Proportional fairness
α → 2 Potential delay minimization
α → ∞ Max-min fairness

Different fairness criteria can be presented with specific utility and cost func-
tions, and the fair rate allocation is found by the above constrained optimiza-
tion problem. A common cost function gl guarantees the feasibility of a rate
allocation:

gl(fl) =

{
0 for fl ≤ Cl,

∞ for fl > Cl.

Violating feasibility constraint causes an infinite cost and thus forces the rate
allocation into the feasible region.

All essential static fairness criteria can be obtained by a proper formulation
of the utility function. The following form of the objective function was intro-
duced in [4], based on the criterion introduced in [20]:

ur
α(φr) =





wrxr log (φr/xr) if α = 1,

wrxr
(φr/xr)

1−α

1− α
otherwise.

(3.4)

Using (3.4) a general utility function is defined as follows:

uGen(φ)
def
=

∑
r∈R

ur
α(φr). (3.5)

The optimization problem (3.3) has a unique global optimum as proved e.g. in
[29].

With different values of α and wr different fairness criteria are achieved [4, 20].
Let us consider the case wr ≡ 1. Now, when α → 0, the solution of the
optimization problem (3.3) is the allocation that maximizes the throughput.
When α → 1 the solution of (3.3) is proportionally fair [20]. In the case α → 2
the solution of the optimization problem (3.3) minimizes the potential delay.
In the case α → ∞ the solution of (3.3) produces max-min fair allocation
[20]. Weighted versions of proportional fairness and potential minimization
are achieved when wr 6= 1.

12
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3.6 Drawbacks

The optimal allocation provided by some fairness criteria is considered in a
static network scenario where number of flows is fixed. However, in a dynamic
network scenario using the optimal bandwidth sharing policy adapted from
static scenario can lead to non-optimal results concerning, e.g. the throughput
of different flow classes. In most cases these allocation policies are sensitive and
necessitate that traffic characteristics are known in detail (e.g. distributions
of flow sizes and arrival times, session structure). Also the analysis of flow-
level characteristics becomes difficult excluding most simple network cases [4].
Utility-based fairness criteria have been proven to be sensitive in the sense
that the steady state distribution depends on detailed traffic characters, which
explains the difficulty of flow-level analysis [6].
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Balanced fairness

The concept of insensitive bandwidth sharing is discussed, necessary and suf-
ficient conditions for insensitivity are presented. Notion of balanced fairness
and its main features are described. Some analytical results are presented. This
Chapter is based on the definitions and results presented in [4, 5, 6, 7, 8, 9]

4.1 Background

Classical fairness criteria are determined in a static state of network in which
no time scale is considered. These allocation policies give allocation for the
current state of network. Even though an allocation is optimal in a static
scenario, in a dynamic scenario the situation can be the opposite, e.g. max-
imizing throughput leads instability in dynamical scale when the number of
flows tends to infinity [4]. Utility-based allocations are sensitive (steady state
distributions depend on detailed traffic characters) and thus an analysis of the
flow-level dynamics is difficult.

Bonald and Proutière have introduced an alternative notion of fairness, bal-
anced fairness [6]. When bandwidth allocation is based on balanced fairness,
the distribution of number of flows in progress and expected throughput de-
pend only on the average traffic load on each flow class. The performance is
insensitive to detailed traffic characteristics such as the distribution of flow
sizes and think time durations. The name derives from the set of detailed
balance relations satisfied by the instantaneous rates allocated to individual
flows, which constitute necessary and sufficient conditions for insensitivity in
the underlying stochastic networks [26].

With balanced fairness it is possible to calculate the exact probability distri-
bution of the number of concurrent flows of different flow classes, and further
evaluate performance metrics.
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4.2 Balance property

Let us define vector ek as unit vector with value 1 in the kth component and 0
elsewhere, k = 1, . . . , K. The balance property is defined as follows:

Definition 4.2.1 (Balance property). Capacity allocation φ = (φ1, . . . , φK)
is balanced if the following equation holds:

φk(x)φk′(x− ek) = φk′(x)φk(x− ek′), ∀k, k′ ∀x : xk > 0, xk′ > 0. (4.1)

Let 〈x, x − ek1 , . . . , x − ek1 − . . . − ekn−1 , 0〉 be a direct path from state x to
state 0 (Figure 4.1). This path has length n ≡ |x|, that is, the length is equal
to the number of flows in state x. The balance property (4.1) implies that the
expression

Φ(x) =
1

φk1(x)φk2(x− ek1) · · ·φkn(x− ek1 − . . .− ekn−1)
(4.2)

is independent of the considered direct path [6]. A positive function Φ : ZK
+ 7→

R+, referred as balance function, defines the capacities unambiguously:

φk(x) =
Φ(x− ek)

Φ(x)
, ∀x : xk > 0. (4.3)

Conversely, if there exists a positive function Φ such that the capacities satisfy
(4.3), these capacities are balanced.

x

xi

xj

fj fi

0

x

xi

xj

fj fi

0

Figure 4.1: Path from state 0 to state x in two-dimensional case.

The balance property (4.1) implies that

φk(x− ek′)

φk(x)
=

φk′(x− ek)

φk′(x)
, ∀x : xk > 0, (4.4)

which is an alternative way of writing the balance property. This means that
the experienced relative change in allocation of one flow class caused by the
removal of a flow of the other class, is equal for all flow class pairs.

In a balanced system the linear property holds [7]:

γi =
s

E[T | S = s]
, ∀s > 0. (4.5)
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When assuming Poisson flow arrivals and exponential flow size distribution,
the invariant measure π is shown to be [9]

π(x1, . . . , xK) = Φ(x1, . . . , xK)ρx1
1 · · · ρxK

K . (4.6)

The function π corresponds to an invariant measure of the Markov process
that describes the evolution of the number of flows of each flow class.

It is shown in [26], that the bandwidth sharing network can be identified
with a Whittle network of processor sharing services. Thus, the insensitivity
properties of the Whittle networks implies that the flow sizes and think times
can have rather general distributions without the requirement of independence,
and the invariant measure (4.6) remains valid. Only the Poisson arrivals of
the sessions are necessitated.

Sufficient condition for insensitivity

The insensitivity of an allocation is implied by the balance property (4.1). The
balance property is the sufficient condition for the insensitivity.

Necessary conditions for insensitivity

Also the converse holds, that is, an allocation is balanced if the invariant
measures of the number of flows of each class are insensitive to any traffic
character excluding the traffic intensities ρ. The balanced property is implied
by each of the following forms of insensitivity [6, 8]:

 1. Insensitivity to the flow size distribution: Assuming Poisson flow arrivals
and identically and independently distributed (i.i.d.) flow sizes, the Pois-
son flow arrival process of any flow class can be changed to any phase-type
distribution with the same expected value, and the invariant measures of
the process of the number of flows remains unchanged.

 2. Insensitivity to the flow arrival process: Assuming i.i.d. flow sizes, the
Poisson flow arrivals process of any flow class can be changed to Poisson
session arrivals, and the invariant measures of the process of the number
of flows remains unchanged.

 3. Time-scale insensitivity : Assuming Poisson flow arrivals and exponential
i.i.d. flow sizes, the flow inter-arrival times and flow sizes of any flow class
can be multiplied by the same constant, and the invariant measures of
the process of the number of flows remains unchanged.

Any allocation satisfying one of the previous properties is balanced.

16



Chapter 4. Balanced fairness

4.3 Balanced fairness

There are infinitely many insensitive allocations. In sight of (4.3), each of these
allocations is defined by the balance function Φ. Every of these allocations has
to be feasible. Thus, (2.1) and (4.3) give

∑

k:l∈rk

Φ(x− ek) ≤ Φ(x)Cl ∀x ∀l ∈ L,

and further,

Φ(x) ≥ 1

Cl

∑

k:l∈rk

Φ(x− ek) ∀x ∀l ∈ L.

An unambiguous balanced allocation, denoted as balanced fairness, exists sat-
isfying all the capacity constraints (2.1) and at least one with equality at any
network state x [5, 6, 8]. The balance function for this allocation is obtained
from recursion

Φ(x) = max
l∈L

{
1

Cl

∑

i:l∈ri

Φ(x− ei)

}
(4.7)

with the initial assumption Φ(0) = 1. Any link realizing the maximum in (4.7)
is called saturated in state x.

4.4 Throughput calculation

The normalization constant is sum of the invariant measure over all possi-
ble states. Let us denote the normalization constant with G. Function G is
mapping from set RK

+ to R+:

G(ρ) =
∑
x∈Ω

π(x) =
∞∑

x1=0

· · ·
∞∑

xK=0

π(x1, . . . , xK)

=
∞∑

x1=0

· · ·
∞∑

xK=0

Φ(x1, . . . , xK)ρx1
1 · · · ρxK

K , (4.8)

where traffic load vector is denoted ρ = (ρ1, . . . , ρK) and Ω = ZK
+ is the state

space. The function G(ρ) is the generating function of the balance function
Φ(x) and thus contains the same information. That is, function Φ(x) and the
performance measures can be derived from function G(ρ).

Throughput γk of class k can now be obtained using the normalization con-
stant. From (2.4) we get

γk =
ρk

E[xk]
=

G(ρ)
∂

∂ρk
G(ρ)

=
1

∂
∂ρk

log G(ρ)
. (4.9)
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Calculation of the normalization constant or further, the throughput still re-
mains problematic in most of the network topologies. In [9] an effective way to
calculate the normalization constant based on the decomposition of the state
space is presented. The normalization constant can also be decomposed to
corresponding parts, an further, the normalization constant is sum over these
parts. In following, this recursive method is described more in detail.

The state space Ω is decomposed as

Ω =
K∑

k=0

∑
Ik

ΩIk
,

where sets ΩIk
and Ik are defined as follows: Ik

def
= {i1, . . . , ık} is a k-tuple of

unequal indices such that 1 ≤ i1 < . . . < ik ≤ N , k ≤ N . The set ΩIk
⊂ Ω

is a k-dimensional set of states such that ΩIk

def
= {x | xi > 0 ⇔ i ∈ Ik}

and Ω∅
def
= {(0, . . . , 0)}. Now, the normalization constant G(ρ) can also be

decomposed into a sum over partial sums

G(ρ) =
K∑

k=0

∑
Ik

GIk
(ρ),

where GIk

def
=

∑
x∈Ik

Φ(x1, . . . , xK)ρx1
1 · · · ρxK

K .

For the calculation of the normalization constant G(ρ) the following recursion
is derived

GI(ρ) =

∑
i∈I′ ρiGI\{i}(ρ)

Cσ(I) −
∑

i∈I′ ρi

,

where I is an arbitrary set of flow classes and sets σ(I) and I ′ are defined as

σ(I)
def
={l ∈ L | ∃x ∈ ΩI such that l is saturated}, and

I ′ def
={i ∈ I | σ(I) ∈ ri}.

If the set σ(I) contains more than one link, any of those can be the basis for
the recursion.

For general tree topologies this algorithm is implemented for Mathematica-
program in Qlib traffic theory function library [23].

4.5 Analytical results

In general, the calculation of the explicit form of the function Φ(x) is complex
and even impossible. Further, the derivation of the normalization constant
G(ρ) and the throughputs can turn out to be difficult. In the following sections,
some basic network configurations are presented and analytical results in these
topologies are gathered from the literature or derived.
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4.5.1 Hypercube, grid and line

Line

A n-link linear network, depicted in Figure 4.2, consists of L = n links with
capacities Ci and K = n + 1 flow classes, where class 0 flows traverse through
all the links and class k flows traverse only through link k, k = 1, . . . , n.

x0
C1 C2

Cn

x1 x2 xn

x0
C1 C2

Cn

x1 x2 xn

Figure 4.2: Linear network configuration.

Linear network is one the of the most used network topologies in fairness
studies. In context of balanced fairness it is considered in [4, 8, 9].

On the contrary to general hypercube, the balance function can be derived for
the linear network with unequal link capacities. Let us assume that minl∈L Cl =
1, i.e. the smallest capacity of the links has value 1. The balance function has
now following form [6, 8]:

Φ(x) =
∑

y:
P

l:xl>0 yl≤x0

∏

l:xl>0

(
xl + yl − 1

yl

)
1

Cxl+yl
.

Further, the normalization constant and the throughputs can be derived as
shown in Section 4.4. Let us define the minimum link capacity is denoted with
C, i.e. C = minl∈L Cl. The normalization constant is now [9]





G0(ρ) =
1

1− ρ0

C

,

Gi(ρ) =
1− ρ0

Ci

1− ρ0+ρi

Ci

·Gi−1(ρ).
(4.10)

Applying (4.9) to (4.10) gives the throughput [8, 9]




γ0 =

(
1

C − ρ0

+
n∑

l=1

(
1

Cl − ρl − ρ0

− 1

Cl − ρ0

))−1

,

γi = Ci − ρi − ρ0,

(4.11)

where i = 1, . . . , n.

Proportional fairness has been shown to be insensitive in homogenous linear
networks [4].
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Grid

An obvious generalization to the linear network configuration is the grid net-
work topology. In the grid network there are two groups of flow classes per-
pendicular to each other. Flow classes in the same group do not have common
links, but each flow class shares one link with every flow class of the other
group. Grid network configuration is considered in [4, 5, 6] and is depicted in
Figure 4.3.

x1,1

x1,2 x1,3 x1,n

x 2 ,1

xm,1

x1,1

x1,2 x1,3 x1,n

x 2 ,1

xm,1

Figure 4.3: Grid network configuration.

For a general grid network the derivation of the balance function or further, the
normalization constant and throughput, is difficult. The grid network setup is
a special case of a hypercube network.

Proportional fairness has been shown to be insensitive in homogenous grid
networks [4].

Hypercube

Hypercube network configuration, considered in [5, 6], is defined as follows:

Definition 4.5.1 (Hypercube). Hypercube of dimension n is a network of
n sets of routes (referred to as directions) such that the set of links is the set
of intersections of n routes of different directions.

By Definition 4.5.1, lines and grids are hypercubes of dimension 2. One-
dimensional hypercube reduces to a single link.

Figure 4.4 depicts a three-dimensional hypercube network setup consisting 12
links and 16 flow classes.

In the case of general link capacities, the derivation of analytical formula for
the balance function turns out to be difficult. However, assuming unit capacity
links, the balance function can be derived.

Let us denote by D1, . . . ,Dn the corresponding directions in a hypercube of
dimension n, n ≥ 2. If the hypercube has unit capacity links, the balance
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Figure 4.4: Tree-dimensional hypercube configuration.

function is defined as a multinomial coefficient [5, 6]

Φ(x) =

( ∑
k xk∑

k:rk∈D1
xk, . . . ,

∑
k:rk∈Dn

xk

)
. (4.12)

The balanced allocation follows from (4.3):

φi(x) =

(
P

k xk)!

(
P

k:rk∈D1
xk)!···(

P
k:rk∈Dn

xk)!

(
P

k xk−1)!

(
P

k:rk∈D1
xk)!···(

P
k:rk∈Di

xk−1)!···(
P

k:rk∈Dn
xk)!

=

∑
k:rk∈Di

xk∑
k xk

.

It is proven that proportional fairness coincides with balanced fairness in ho-
mogenous hypercubes [6]. This implies the insensitivity of the proportional
fairness in homogenous hypercubes. In [6] it is proven that it is the only
network topology for which an insensitive utility-based allocation exists.

4.5.2 Hypercycle

Hypercycle configuration, considered in [5, 6], is defined as follows:

Definition 4.5.2 (Hypercycle). A n-link hypercycle is a network consisting
n links and n routes crossing all links except one.

Definition 4.5.2 determines the flow classes unambiguously – a route traversing
through n− 1 of n possible links can be constructed in

(
n

n−1

)
= n ways.

Figure 4.5 depicts two hypercycle network configurations.

The derivation of the explicit balance function for hypercycle topology turns
out to be awkward. Even in the simplest three-link case with equal unit
capacity links the explicit formula is still to be derived.

Balanced fairness is not Pareto-efficient in hypercycles [5, 6].

In [6] it is proven, that utility-based allocations are not balanced in homoge-
nous hypercycle network topologies.
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C1

C4

C2

C3

x1
x2

x3

x4

C1

C4C4

C2C2

C3

x1
x2

x3

x4

(a) Configuration with four links.

x2

x3

x4

x5

x1
C1C2

C3 C5

C4

x2

x3

x4

x5

x1
C1C2

C3 C5

C4

(b) Configuration with five
links.

Figure 4.5: Hypercycle network configurations.

4.5.3 Parking lot

Parking lot network configuration, considered in [9], is illustrated in Figure
4.6. Parking lot network is a special case of tree network topology.

x1

C1 C2
Cn

x2
xn

x1

C1 C2
Cn

x2
xn

Figure 4.6: Parking lot network configuration.

In n-link parking lot network, there are L = n links with capacities C1 ≤ . . . ≤
Cn and K = n flow classes, where class k flows traverses through the set of
links {k, . . . , n}, k = 1, . . . , n.

For the parking lot setup the normalization constant is [9]





G0(ρ) =
1

1− ρ1

C1

,

Gi(ρ) =
1− ρ1+···+ρi−1

Ci

1− ρ1+···+ρi

Ci

·Gi−1(ρ).

Denoting the link i load by Ri =
∑i

j=1 ρj, we get from the previous

G(ρ) =
1

1− R1

C1

n∏
i=2

1− Ri−1

Ci

1− Ri

Ci

. (4.13)

22



Chapter 4. Balanced fairness

Now, applying (4.9) to (4.13) gives the throughput [9]

γi =

(
1

Ci −Ri

+
n∑

l=i+1

(
1

Cl −Rl

− 1

Cl −Rl−1

))−1

, (4.14)

where i = 1, . . . , n.

4.5.4 Trees

A general n-level tree network consists of L links and K flow classes. Let us
denote the link of route ri at level k with lki . Link capacities fulfill the condition
Ck

i ≤ Ck−1
j , where Ck

i is the capacity of the link lki . All the routes ri share the
trunk link l0, i.e. l0l ≡ l0. The following condition assures the tree structure:
if lki = lkj for flow classes i and j, then lk

′
i = lk

′
j for all k′ = 0, . . . , k.

Tree network configurations are considered in [6, 8, 9], and further, the deriva-
tion of the normalization constant and throughputs in [9]. For normalization
constant and throughput calculation Qlib traffic theory function library [23]
provides useful tools to be used within Mathematica.

The derivation of the normalization constant and the throughput for an ar-
bitrary tree can be carried out as described in Section 4.4. In following we
set the focus on concentration trees, two-level trees having K flow classes and
K + 1 links (Figure 4.7).

C2

CK

C1

C0

x1

x2

xK

C2C2

CK

C1C1

C0

x1

x2

xK

Figure 4.7: Concentration tree network configuration.

Let us assume that the trunk has capacity C0 = 1 and further, that Cl ≤ 1 for
all l = 1, . . . , K and the equality holds at most for one l. If

∑
r:xr>0 Cr < 1,

we have [6, 8]

Φ(x) =
∏
r∈R

1

Cxr
r

,
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and otherwise

Φ(x) =
∑

z:zr≤xr∀r
I(z)6=∅

(∑
r(xr − zr)− 1∑
r 6∈I(z)(xr − zr)

)(∑
r 6∈I(z)(xr − zr)

xr − zr, r 6∈ I(z)

)(∑
r∈I(z)(xr − zr)

xr − zr, r ∈ I(y)

)∏
r∈R

1

Czr
r

,

where z is a K-dimensional vector of integers and set I(z) is defined as follows:

I(z)
def
=

{
∅, if

∑
r:zr>0 Cr > 1,

{r}, if zr = 0, xr > 0 and Cr +
∑

r′:zr′>0 Cr′ > 1.

For a two-branch tree the balance function reduces to form [6, 8]

Φ(x) =
∑

zr≤xr

(
x1 − z1 + x2 − 1

x1 − z1

)
1

Czr
1

+

(
x1 + x2 − z2 − 1

x2 − z2

)
1

Cz2
2

.

For the two-branch tree, let us assume that C1 ≤ C0, C2 ≤ C0 and C1 + C2 >
C0

1. The normalization constant is [9]

G(ρ) =
1

1− ρ1+ρ2

C0

(
1− ρ1

C0

1− ρ1

C1

+
1− ρ2

C0

1− ρ2

C2

− 1

)
,

and applying (4.9) to previous gives

γi =
Ci(C0 − ρ1 − ρ2)(1− ρi

Ci
)2G(ρ)

C0 − Ci + Ci(1− ρi

Ci
)2G(ρ)

, i = 1, 2. (4.15)

For a concentration tree with more than two branches, the examination of the
normalization has to be divided based on how the sums of link capacities over
different link subgroups relate to capacity of the trunk link.

For future purposes, let us examine the case of three-branch tree with such
link capacities that Ci ≤ C0 and Ci + Cj > C0, for all i, j ∈ {1, 2, 3}, i 6= j.
The normalization constant has form [9]

G(ρ) =
1

1− ρ1+ρ2+ρ3

C0

(
1− ρ1

C0

1− ρ1

C1

+
1− ρ2

C0

1− ρ2

C2

+
1− ρ3

C0

1− ρ3

C3

− 2

)
,

and further, the throughput is

γi =
Ci(C0 − ρ1 − ρ2 − ρ3)(1− ρi

Ci
)2G(ρ)

C0 − Ci + Ci(1− ρi

Ci
)2G(ρ)

, i = 1, 2, 3. (4.16)

In [6] it is proven, that utility-based allocations are not balanced in tree net-
work topologies and that utility-based allocations coincides in tree networks.

1If C1 > C0, the link C1 never bounds the traffic and can be omitted, and the network
reduces to a simpler topology. Respectively this holds for the link C2. If C1 + C2 ≤ C0, the
link C0 never bounds traffic and thus the network reduces to two separate links and flow
classes.
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Simulations

In this section simulations are discussed in general. Objectives of the simu-
lations are presented and used network and simulation setups are introduced.
The implementation is commented in brief.

5.1 Simulations in general

In simulations three different bandwidth allocation policies were studied —
balanced fairness, max-min fairness and proportional fairness. The aim of
the simulations was to verify some previous results concerning the throughput
and compare the allocation policies in focus. As a new aspect the differences
between the results provided by the definition of throughput (2.4) and flow-
specific throughput were studied. Also the variance of flow durations was
studied.

Sensitivity simulations provide information on the insensitivity of the band-
width allocation policies in focus. To verify the linear property in balanced
systems slow-down factor is measured.

To measure throughputs, flow-specific throughputs, flow durations, and slow-
down factors each simulation run contained 1001000 flows traversing through
the network. 1000 first flows were ignored as warmup period, and to calculate
the deviations the simulation run was divided into 25 batches. In the simu-
lations for the sensitivity inspections each simulation run contained 5001000
flows with 1000 flow warmup period. This increase in flow count observed
necessary to reduce the variation in the results.

In simulations, the flows arrived to the network with exponentially distributed
interval times, i.e. arrivals constitute a Poisson arrival process. Excluding the
sensitivity simulations, the flow size distribution was assumed exponential in
all other cases.
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Following scenarios were studied via simulations:

x 

 
Homogenous traffic

x 

 
Heterogenous traffic

x 

 
Unimodal, bimodal and uniform flow size distributions

x 

 
Constant demand with varying ratio of flow size and arrival rate

In the homogenous case the expected traffic load was the same for all the flow
classes. In each simulation the traffic load of all flow classes was increased with
the same rate until the demand met the limit set by the traffic condition (2.3).

In the heterogenous case the expected traffic load of one traffic class was varied
and all the others were kept constant at value called as the base load. The
objective was to explore how the the throughputs of different flow classes
behave when the traffic of one class differs from the others. As in the case of
homogenous traffic, the traffic load of the flow class was increased until the
demand met the limit set by the traffic condition (2.3).

In the sensitivity studies two cases were concerned. In the first case, the traffic
load of all the traffic classes were kept constant, but the the expected flow size
and arrival times of one flow class were varied. This time scale change was
carried out so that the ratio of the expected flow size of the varied flow class to
the corresponding quantity of the other flow classes was increased from value
0.01 up to value 100.

In the second case, the distribution of the flow size was set to be unimodal,
bimodal and uniform instead of exponential distribution. All these three dis-
tributions had the same expected value than the used exponential distribution,
which was set to be 1. The obtained results concerning the throughput were
compared to the throughput obtained with the exponential flow size distribu-
tion.

The unimodal distribution is a deterministic distribution, i.e. it gives the ex-
pected value with probability 1. The bimodal distribution has two possible
values. The first possible value 0.5 has probability 1/3 and the second value
1.25 probability 2/3. In the uniform distribution all the values at range (0, 2)
have probability 1/2.

5.1.1 Flow specific throughput

The throughput of the flow class r ∈ R is defined as the ratio of the expected
flow size and the expected flow duration (2.4):

γr =
E[Sr]

E[Tr]
.
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However, the throughput can be calculated for a single flow. In this context
we denote this single flow throughput as a flow specific throughput. Our aim
is to find out, how the throughput provided by the common definition differs
from the expectation of the flow specific throughputs at corresponding flow
class:

γfl
r

def
= E

[
Sr

Tr

]
, (5.1)

where r ∈ R.

5.1.2 Slow-down factor

Slow-down factor ς can be defined as a ratio of the expected flow duration
and the expected flow size. Let us denote the slow-down factor of a flow class
r ∈ R as follows:

ςr
def
= E

[
Tr

Sr

]
. (5.2)

Linear property (4.5) can be written as

1

γr

=
E[Tr| Sr = s]

s
= E

[
Tr

s

∣∣∣∣Sr = s

]
= E

[
Tr

Sr

∣∣∣∣Sr = s

]
, ∀s > 0,

from which it follows that

E

[
Tr

Sr

]
= E

[
E

[
Tr

Sr

∣∣∣∣Sr = s

]]
=

1

γr

,

where the first equality follows from the conditioning rule E[X] = E [E[X|Y ]].

That is, in a balanced system the linear property holds and thus the inverse
of the throughput is equal to the slow-down factor for all flow classes. It is
worth noting that conversely this is not necessarily valid, i.e. if ςr is equal to
1/γr for all flow classes, it does not imply that the system is balanced.

5.2 Simulation setups

In this section the specific network setups used in the simulations are presented.
Most of these network topologies are defined in detail in Section 4.5.

Line

The linear network is illustrated in Figure 4.2.

Two linear networks were used in simulations. The first linear network consists
of L = 2 links with capacities Ci ≡ 1 and three flow classes. The second linear
network is composed of L = 5 links with capacities Ci ≡ 1 and six flow classes.
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Grid

The grid network is illustrated in Figure 4.3.

Two-dimensional 2× 2 grid network used in simulations consists of four iden-
tical links with capacities Ci ≡ 1 and four flow classes.

Parking lot

The parking lot network topology is depicted in Figure 4.6.

Three parking lot networks were used in simulations, where the number of
links were L1 = 3, L2 = 4 and L3 = 5. In all the cases the link capacities were
Ci = i, i = 1, . . . , Lj, where j is the case index.

Hypercycle

The hypercycle network topology is shown in Figure 4.5.

Three hypercycle networks were used in simulations, where the number of links
were L1 = 3, L2 = 4 and L3 = 5. In all the cases the link capacities were set
to Ci ≡ 1.

Trees

Simulations were ran for four different tree topologies. Two first tree network
setups are illustrated by Figure 4.7. In case of tree 1 the link capacities were
C0 = 1 and C1 = C2 = 0.7. In case of tree 2 the link capacities were C0 = 1
and C1 = C2 = C3 = 0.5.

Figures 5.1 and 5.2 depict the tree setups 3 and 4. In these cases the link
capacities were C1 = 0.5, C2 = 0.7 and C3 = 1.

C1

C1

C2

x1

x2

C1

x3
C3 C1

C1C1

C2

x1

x2

C1

x3
C3

Figure 5.1: Tree topology 3.
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Figure 5.2: Tree topology 4.

5.3 About implementation

The simulations were carried out with a simulation program implemented with
C++ programming language [28] and the standard template library (STL) [21].
The simulations were event driven. The event handling and scheduling, the
random number generation and part of the statistical analysis where were
implemented using the Communication Networks C++ Library (CNCL) [27].

Simulations were run on Sun Microsystems Fire 280R platform with Operating
system Solaris 8 and 2 x UltraSPARC-III 750MHz processor.

The simulator and the simulation run is initialized by an input file. The
input file contains the information about the length of the simulation run and
warmup period, number of batches and the output file name. The network
topology is presented as a connection matrix, in which each row profiles a single
flow class and column corresponds to a single link in the network. Element
1 in an entry corresponds to case that the flow class traverses through the
corresponding link, otherwise the element is set to 0. Also link capacities, the
expected flow size and the the flow arrival rate of each flow class is in the input
file. The used allocation policy is a command line parameter.

The simulator output consists of the following information: flow class specific
demand, mean flow size and variance of the flow size, mean flow duration and
the variance of the flow duration, throughput, flow specific throughput and
slow-down factor.

Basically the simulator consists of three different parts. The main part reads
the input file and initializes the simulator, creates the network topology, links
and flow classes. Scheduler generates the flows and takes care of the event
handling and scheduling. Allocator calculates the capacity allocation for the
flow classes in given state of the network. When the network state changes,
that is, a flow is generated or removed from the system, the allocator is called
by the scheduler. The statistics are gathered at the same time when a flow is
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removed from the system.

For the balanced and max-min fair allocation calculations general allocators
were implemented. The allocator for the balanced fair allocation is based on
the recursive precalculation of the values of the balance function Φ (4.7) and
then using (4.3). The number of precalculated values per flow class has to be
fixed in the beginning of the simulation. This defines the size of table allocated
for the balance function. If the number of flows in some flow class exceeds the
number of precalculated values, the corresponding balance function value and
allocation is calculated with (4.7).

Max-min fair allocator was implemented as described in Chapter 3.2 (Table
3.1), based on presentation in [2].

Proportionally fair allocator was implemented by solving the optimization
problem (3.3) in line, grid and hypercycle network topologies. Also the pro-
portionally fair allocation for the 3-link parking lot topology was solved to
verify the result that utility-fair allocations unite in tree topologies, A general
solver was not implemented 1. The guideline of solving the proportionally fair
allocation in the hypercycle network topology is described in Appendix A.

The allocator for the balanced fair allocation turned out to be a bottleneck
in the simulation runs. The table of the balance function values, for which
the allocator allocates memory, becomes huge even with a quite small number
of states per flow class when the number of flow classes increases. That is, if
there are K flow classes and the number of precalculated values is n, the size
of the allocated table is nK double-type variables.

Another issue was the calculation of the values of the balance function during
the simulation, which turned out to be slow. In practice, when the load of
the system increased so much that all the needed balance function values were
not precalculated, the constant recursive evaluating of these values stalled the
simulation.

For these reasons the simulation setups were restricted to setups with six flow
classes at most.

1Probably the most efficient algorithm type for this general optimization task would have
been gradient projection method [1, 3].
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Results and analysis

In this section the results attained via simulations are gathered and analyzed.
Comparison with analytical results is made.

6.1 Throughput

In this section different fairness policies are compared and and examined via
throughputs they provide. In each case the throughputs of flow classes are
measured in two different traffic scenarios. In the first one the traffic is ho-
mogenous, i.e. all the flow classes have equal expected demand of traffic. The
demand is increased from zero to the saturation of the bottleneck links.

In the second scenario the expected demand is set to a constant for all the flow
classes except for one. For that flow class, the expected demand is increased
from zero to the saturation of the bottleneck link.

It following figures Demand denotes the demand of flow class, or flow classes,
under examination.

In all the cases examined the differences in throughputs provided by different
fairness criteria are comparatively small. Generally max-min fairness provides
better throughput on the long routes and penalizes the shorter ones more
than balanced fairness. It is verified that proportional fairness coincides with
balanced fairness in homogenous hypercubes, and with max-min fairness in
trees.

6.1.1 Line

Figure 6.1 presents the linear network configurations used in the simulations.

In Figures 6.2 and 6.3 the upper group of lines refers to the shorter routes and
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(a) 2-link line. (b) 5-link line.

Figure 6.1: Linear network configurations used in simulations.

the lower to the long route. In the case of heterogenous traffic (Figures 6.2(b)
and 6.3(b)), base load refers to the load of short flow classes which was kept
as constant.
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(a) Homogenous traffic.
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(b) Heterogenous traffic, base load 0.40.

Figure 6.2: Throughput in 2-link line.
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(a) Homogenous traffic.
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(b) Heterogenous traffic, base load 0.20.

Figure 6.3: Throughput in 5-link line.

Results in both cases are similar. Balanced fairness and proportional fairness
provide the same throughput, which stands up for the statement that propor-
tional fairness coincides with balanced fairness in homogenous hypercubes [6].
Max-min fairness provides better throughput on the long route and penalizes
the shorter ones. The difference between max-min fairness and balanced fair-
ness as well as proportional fairness is more pronounced in the 5-link network.
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6.1.2 Parking lot

Figure 6.4 represents the parking lot network configurations used in the sim-
ulations.

(a) 3-link parking lot. (b) 4-link parking lot. (c) 5-link parking lot.

Figure 6.4: Parking lot network configurations used in simulations.

In Figures 6.5 and 6.6 the uppermost group of lines refers to the shortest route
and the lowest group to the longest route. In the case of heterogenous traffic
(Figures 6.5(b) and 6.6(b)), base load refers to the constant load 0.40 of all
routes excluding the shortest one.
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(a) Homogenous traffic.
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(b) Heterogenous traffic, base load 0.40.

Figure 6.5: Throughput in 3-link parking lot.

In the three link case (Figure 6.5(a)) balanced fairness provides greater through-
put for the shortest flow class, and max-min fairness for the long flow class.
For the middle flow class the throughput is almost equal — with low load the
balanced fairness gives slightly better throughput, and with heavy load vice
versa. The throughput provided by proportional fairness and max-min fairness
are the same. This stands up for the statement that max-min and proportional
fairness, and further, all utility-based allocations coincides in tree networks [6].

In the four link case (Figure 6.6(a)) the results are similar with the three
link case. For the flow class traversing through three links balanced fairness
provides better throughput with low load, but when the demand reaches the
value 0.70, the curves unite. For the two link flow class the difference is more
evident; with demand greater than 0.20, the max-min fairness gives greater
throughput.

With heterogenous traffic the differences become more obvious (Figures 6.5(b)
and 6.6(b)). Balanced fairness favors shorter routes, and with heavy link load

33



Chapter 6. Results and analysis

0.2 0.4 0.6 0.8 1
Demand

1

2

3

4

Throughput Throughput - 4-link parking lot

Max-Min

Balanced

(a) Homogenous traffic.
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(b) Heterogenous traffic, base load 0.40.

Figure 6.6: Throughput in 4-link parking lot.

the shortest route is the only one having greater throughput than what max-
min fairness provides.

The five link case was excluded, because the results are similar to the presented
ones.

6.1.3 Grid

Figure 6.7 presents the grid network configuration used in the simulations.

x1

x3 x4

x2

x1

x3 x4

x2

Figure 6.7: 2× 2 grid network configuration used in simulations.

Figure 6.8 shows the throughput in a 2 × 2 grid. In the case of heterogenous
traffic, the base load of flow classes 2 to 4 was 0.20 and the load of flow class
1 was varied.

With homogenous traffic all the three allocation policies provide the same
throughput. The throughputs do not decrease linearly as a function of demand,
but the curves are slightly convex. In Figure 6.8(b) the group of throughputs
with the deepest downward trend corresponds to flow class 1. The other group
of downward lines corresponds to flow classes 3 and 4, and the third group to
flow class 2.

Heterogenous traffic brings out some differences in throughputs provided by
different criteria. The load of flow class 1 is varied, and the other classes are set
to the base load of 0.20. Balanced fairness and proportional fairness provide
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(a) Homogenous traffic.
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(b) Heterogenous traffic, base load 0.20.

Figure 6.8: Throughput in 2× 2 grid.

the same throughput, but in comparison, max-min fairness provides smaller
throughput for flow classes 1 and 2 when the demand is below 0.20, and smaller
throughput for flow classes 2, 3 and 4 when the demand is above 0.20. For
the flow classes 3 and 4 the throughput of max-min fairness becomes smaller
and unites with balanced and proportional fairness for flow class 1, when the
demand is above 0.20. When demand is 0.20, all the throughputs unite. At
this point the traffic is homogenous.

The slight upward trend in the throughput of flow class 2 is explained by the
fact that flow classes 1 and 2 do not share any links. When the load of class 1
increases, the bandwidth allocated for classes 3 and 4 decreases. Flow classes
2 and 3, as well as classes 2 and 4 have common link, and thus the allocation
for class 2 is increased with all policies.

6.1.4 Hypercycle

Figure 6.9 represents the hypercycle network configurations used in the simu-
lations.

(a) 3-link hyper-
cycle network
configuration.

(b) 4-link hyper-
cycle network
configuration.

(c) 5-link hypercy-
cle network configu-
ration.

Figure 6.9: Hypercycle network configurations used in simulations.

Figure 6.10 depicts the throughput in hypercycles. In the case of heterogenous
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traffic, the load of flow class 1 was varied and loads of all the others was kept
constant. In the 3, 4 and 5 link cases the base loads were 0.20, 0.15 and 0.10,
respectively.
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(a) Homogenous traffic.
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(b) Heterogenous traffic, base load 0.20.
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(c) Heterogenous traffic, base load 0.15.
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(d) Heterogenous traffic, base load 0.10.

Figure 6.10: Throughput in hypercycles.

If Figure 6.10(a) throughputs provided by the homogenous traffic in all the
tree cases are shown. The steepest group of curves corresponds to the 5 link
case and the flattest group to the 3 link case, respectively. All the allocation
policies provide the same throughput.

In the three link case (Figure 6.10(b)) balanced fairness and proportional fair-
ness give the same throughput. When the load of the varied flow class 1 is
below the base load 0.20, the fixed classes get higher throughput and above
value 0.20 vice versa. At point 0.20, the traffic is homogenous and all the
throughputs are equal.

Differences between max-min fairness and balanced fairness (as well as with
proportional fairness) are minor. With demand below 0.20 throughputs unite
for flow class 1, for other classes balanced fairness and proportional fairness
provide slightly better throughput. Above value 0.20 balanced fairness and
proportional fairness provide greater throughput for class 1, but max-min fair-
ness for the other classes.
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6.1.5 Trees

Figure 6.11 illustrates the tree network configurations used in the simulations.
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(d) Tree topology 4.

Figure 6.11: Tree topologies used in simulations.

The throughputs in the tree network setups are shown in Figures 6.12, 6.13,
6.14 and 6.15. In the case of heterogenous traffic, the load of flow class 1 was
varied in all the cases. The base load was set to the values 0.40, 0.30, 0.30 and
0.20 in the cases of tree 1, 2, 3 and 4, respectively.
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(a) Homogenous traffic.
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(b) Heterogenous traffic, base load 0.40.

Figure 6.12: Throughput in tree 1.
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(a) Homogenous traffic.
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(b) Heterogenous traffic, base load 0.30.

Figure 6.13: Throughput in tree 2.

In the symmetric cases, trees 1, 2 and 4, the throughput provided by balanced
fairness and max-min fairness seem to be the same. In tree 3 the throughput
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(a) Homogenous traffic.
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(b) Heterogenous traffic, base load 0.30.

Figure 6.14: Throughput in tree 3.
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(a) Homogenous traffic.

0.1 0.2 0.3
Demand

0.05

0.1

0.15

0.2

0.25

0.3

Throughput Throughput - Tree 4

Max-Min

Balanced

(b) Heterogenous traffic, base load 0.20.

Figure 6.15: Throughput in tree 4.

provided by both policies is greater for the shortest flow class 3. Balanced
fairness gives smaller throughput for the flow classes 1 and 2 in comparison to
max-min fairness. For the flow class 3 the result is reversed.

In case of heterogenous traffic some differences come out also in the symmetric
cases. In trees 1 and 2 results are similar (Figures 6.12(b) and 6.13(b)). For
the varied flow class the throughput decreases almost linearly for both of the
allocation policies. When the load of the varied class meets the base load, the
curves cross. Below the base load balanced fairness provides higher through-
put for the varied flow class and max-min fairness for the other flow classes,
respectively.

Above the base load differences are minimal. Both policies provide slightly
better throughput for the varied flow class. Balanced fairness gives slightly
greater throughput for the varied class, and max-min fairness for the others.

In the case of tree 3 (Figure 6.14(b)) the throughput of the varied flow class
1 is highest when the load is below 0.15, but above this, flow class 3, which
shares only the trunk link with flow classes 1 and 2, gets the best throughput.
Balanced fairness provides better throughput for the flow class 3, and max-min
fairness for classes 1 and 2.
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In the case of tree 4 (Figure 6.15(b)) the varied flow class 1 gets the best
throughput with both policies, when the demand is below the base load 0.20.
Also the flow class 2 belonging to the same branch with class 1 gets better
throughput with demand below the base load. When the load of the class 1
gets the value 0.20, all curves unite. This point corresponds to a homogenous
case. With load above the base load, classes 3 and 4 get the best throughput.

Balanced fairness provides higher throughput for classes 1 and 2 and max-min
fairness for classes 3 and 4, when the load is below base load. When load
increases, the result gets reversed.

6.2 Sensitivity

In this section the sensitivity of allocation policies is studied via throughput
measurements. In each case the expected demand is set to be constant for
all flow classes. However, for one flow class, the ratio of the expected flow
size and the expected arrival rate is varied so that the demand still remains
constant, i.e. the time scale of the flow class is varied. For the flow class under
observation, the ratio of the expected flow size and the expected flow size of
the other flow classes is increased from value 0.01 to value 100. In the following
figures this ratio is denoted as FSize Ratio.

By the theory balanced fairness is insensitive. This is verified by the simulation
results. Also the sensitivity of max-min fairness and proportional fairness seem
to be quite weak.

6.2.1 Line

Figure 6.16 depicts the throughputs in linear network topologies. The base
load of all flow classes is set to 0.20. Flows on the long route is varied, thus
FSize Ratio is the expected flow size on the long route in proportion to the
expected flow size on the short routes.

In Figures 6.16(a) and 6.16(b) the upper group of curves refers to the short
flow classes, and the lower group to the long flow class.

For balanced fairness and proportional fairness the throughput remains con-
stant as a function of flow size ratio. In the case of max-min fairness, the
throughput is equal to that of balanced fairness for the short route classes,
when the flow size ratio is small. Correspondingly, when the flow size ratio
increases, the throughput of the long route class approaches that of the bal-
anced fairness. That is, when a flow class is slowed down, i.e. expected flow size
is increased and arrival rate decreased, the throughput provided by max-min
fairness approaches the throughput given by balanced fairness.
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Figure 6.16: Sensitivity in line networks.

Max-min fairness is sensitive in linear network topologies, whereas balanced
fairness and proportional fairness remain insensitive.

6.2.2 Parking lot

In Figures 6.17(a) and 6.17(b) the throughputs in parking lot network topolo-
gies are shown. The base load of all flow classes is set to 0.40. Flows on
the shortest route are varied and FSize Ratio is the expected flow size on the
shortest route in proportion to the expected flow size of the other classes.
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(b) Sensitivity in 4-link parking lot. Base load
0.40.

Figure 6.17: Sensitivity in parking lot networks.

The throughput provided by balanced fairness stays constant. Max-min fair-
ness provides constant throughput for flow classes that are not varied. For the
shortest class the throughput increases and approaches the throughput given
by balanced fairness.

In parking lot network topologies balanced fairness is insensitive and max-min
fairness is sensitive.
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6.2.3 Grid and hypercycle

Throughputs in 2× 2 grid and in four link hypercycle are depicted in Figures
6.18(a) and 6.18(b), respectively. For the grid network the base load of all the
flow classes is set to value 0.20. The base loads for hypercycle topologies are
0.20, 0.125 and 0.10 for three, four and five link cases, respectively.
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(a) Sensitivity in 2× 2 grid. Base load 0.20.
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(b) Sensitivity in 4-link hypercycle. Base load
0.125.

Figure 6.18: Sensitivity in grid and hypercycle networks.

In the grid case balanced fairness and proportional fairness provide the same
constant throughput. When the flow size ratio is small, the throughput pro-
vided by max-min fairness for the non-varied flow classes is equal to the
throughput provided by balanced fairness. As the ratio increases, the through-
put of the varied class approaches the throughput curve of balanced fairness
and the curve of non-varied classes recedes. That is, slowing down a flow class
leads to same throughput with balanced fairness.

In grid networks max-min fairness is sensitive, whereas balanced fairness and
proportional fairness are insensitive.

In the hypercycle case all the allocation policies give a constant throughput.
Thus, in hypercycle networks balanced fairness, max-min fairness as well as
proportional fairness are insensitive.

6.2.4 Trees

Throughputs in the tree network setups are shown in Figure 6.19. Base loads
were set as follows: 0.30 for trees 1, 2 and 3, and 0.20 for tree 4.

In all the cases balanced fairness provides constant throughput.

In the case of tree 1, the throughput of the varied flow class given by max-min
fairness decreases and approaches the the throughput provided by balanced
fairness. For the non-varied class the result is opposite. Again, slowing down
a flow class leads to the same throughput with balanced fairness.
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(c) Sensitivity in tree 3. Base load 0.30.
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(d) Sensitivity in tree 4. Base load 0.20.

Figure 6.19: Sensitivity in tree networks.

In cases 2 and 4 the max-min fairness provides a constant throughput for
all flow classes. In case 3 the throughput of the varied flow class traversing
through two links remains constant, but the throughput of the non-varied flow
classes slightly degreases when the flow size ratio increases.

As stated in the case of parking lot topology, in tree topologies balanced fair-
ness is insensitive, and max-min fairness is sensitive.

6.3 Flow size distributions

To study the sensitivity with respect to the flow size distribution, three differ-
ent flow size distributions (in addition to the exponential distribution ) were
used in the simulations – unimodal, bimodal and uniform flow size distribu-
tions.

On the grounds of Section 6.2 the examination is predefined to the linear and
parking lot network scenarios in which the time scale change was evident, and
thus the sensitivity of the allocation policies seem to be most significant. The
used traffic was homogenous.

However, the throughputs provided by these three different flow size distribu-
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tion seem to be pretty much the same as obtained with the exponential flow
size distribution. Thus, in place of throughput the difference to the through-
puts obtained in Section 6.1 is examined.

If Figure 6.20 the the difference in the throughputs is depicted in the case of
unimodal flow size distribution. Respectively, Figures 6.21 and 6.22 illustrate
the difference in cases of bimodal and uniform flow size distributions.
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Figure 6.20: Unimodal flow size distribution.
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Figure 6.21: Bimodal flow size distribution.

In the all the cases the difference to the throughput provided by the exponential
flow size distribution is negligible and seems to be just numerical noise with
approximately same amplitude. This implies that the balanced fairness is
insensitive in sense of the flow size distribution, as it was supposed to be. Also
the utility-based allocations, max-min fairness and proportional fairness, do
not seem to be sensitive with respect to the flow size distribution.

This result implies that the flow size distribution is not significant factor when
the sensitivity of utility based allocation policies is considered. These policies
are more sensitive with respect to the time-scale changes.
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Figure 6.22: Uniform flow size distribution.

6.4 Flow specific throughput

In simulations the common throughput (2.4) was compared to the flow specific
throughput defined by (5.1). Figure 6.23 depicts these throughputs provided
by different allocation policies in line, hypercycle and tree network topologies.
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(b) Hypercycles, balanced fairness.
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(c) Trees 1, 2 and 4, max-min fairness
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(d) Trees 1, 2 and 4, balanced fairness

Figure 6.23: Throughput and flow specific throughput.

The main difference is readily seen, the flow specific throughput is notably
greater than the classic throughput in all the cases and with all the allocation
policies.
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The explanation to this result is quite straightforward. Calculation of the mean
of the flow durations evens the effect of the smallest values. In the sequence
of the inverses of the flow durations, the smallest durations produce relatively
high inverse values. Thus, the mean of the inverses of the flow durations is
higher than the inverse of the mean of the flow durations.

The maximum flow specific throughput is attained when a flow traverses
through an empty network and gets the the maximal possible capacity. When
the load of the network is below the maximum, statistically some of the flows
reach relatively high throughput, even the maximum with a finite probability.
In the sequence of the flow specific throughputs small flow durations provide
high throughputs, and thus the mean of this sequence remains relatively high
in comparison to the ratio of the expected flow size and the expected flow
duration.

When the demand is not vanishingly small or near the maximal, these two
throughputs approach each others. With a very small load the network is
practically empty, and in sight of an arriving flow the network reduces to
a single constraining link. Thus, the classical throughput is the link capacity
brought down with the load, as stated by (2.5). Correspondingly, in the case of
the flow specific throughput, the flows get practically the maximal throughput
on average.

In the case of a heavy load, the flow durations approach infinity on average,
and both throughput definitions tend to value zero.

6.5 Slow-down factor

The slow-down factor is defined by (5.2). The slow-down factors and the in-
verses of throughputs are illustrated in Figure 6.24 concerning line, hypercycle
and tree network topologies. These results are in the case of heterogenous
traffic.

For the balanced fairness (Figures 6.24(b) and 6.24(d)) the observed quantities
unite as was expected. Figure 6.24(a) depicts the same result for a 2-link line
in the case of proportional fairness. It it known that proportional fairness
coincides with balanced fairness in homogenous hypercubes [5], thus the curves
are supposed to coincide. In the case of max-min fairness in trees 1, 2 and
4 (Figure 6.24(c)), the slow-down factors and the inverses of the throughputs
unite also.

Actually this recurs in all the other cases — the slow-down factor and the
inverse of throughput coincide for all the allocation policies with homogenous
and heterogenous traffic alike. This verifies the accuracy of the linear property
in the case of balanced allocation and also implies that the sensitivity of the
max-min and proportionally fair allocations is quite weak in the cases studied.
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Figure 6.24: Slow-down factor and the inverse of throughput.

6.6 Variance of flow duration

Figure 6.25 depicts the variance of flow duration in a single link network con-
taining one flow class.

This is fundamentally a processor sharing queue and the variance of the flow
duration has an explicit formula (2.6). Figure 6.25 shows that the variance of
the flow duration provided by simulation follows closely the exact result1.

Figure 6.26 depicts the flow duration variances in the case of homogenous
traffic and network topologies 2-link line, 3-link parking lot, 3-link cycle, 2× 2
grid and all the tree topologies. In the cases of 2-link line (Figure 6.26(a)) and
3-link parking lot (Figure 6.26(b)) only the results for the long route flow class
are depicted.

In all the cases different allocation policies produce the same variance for the
flow duration, no significant differences can be detected. Also the shape of the
variance is the same for all network setups, even the values seem to be almost
the same.

These results imply that the variance of the flow duration is robust in sense of

1This one link simulation was carried out to verify that the simulator provides correct
results.
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Figure 6.25: Variance of flow duration in a single link.

the allocation policy.

6.7 Wasted bandwidth

Balanced fairness is not Pareto-efficient in hypercycles [6].

Figure 6.27 depicts the proportion of wasted bandwidth in percents on the
z-axis in three and four link hypercycles with unit capacity links. The relative
waste of bandwidth for allocation φ is defined as follows:

waste(φ)
def
= max

r∈R

{
min
l∈r

{
Cl −

∑
r′∈l φr′

Cl

}}
. (6.1)

In Figure 6.27(a) the solid surface describes the case in which the number
of flows in flow class 1 is fixed at value x1 = 10. The wire framed surface
corresponds to the case x1 = 40. Respectively, in Figure 6.27(b) the solid
surface corresponds to the case x1 = x2 = 10 and wire framed to the case
x1 = x2 = 40.

Both Figures 6.27(a) and 6.27(b) show that the maximum of the function (6.1)
is reached, when one of the flow classes has one flow and the others have equal
number of active flows. In [6] these balanced allocations are presented in three
and four link hypercycles with unit capacity links:

φ3
1(x) =

n + 1

3n + 1
, φ3

2(x) = φ3
3(x) =

1

2
,

where x = (1, n, n), n ≥ 1, and

φ4
1(x) =

2n2 + 3n + 1

11n2 + 6n + 1
, φ4

2(x) = φ4
3(x) = φ4

3(x) =
1

3
,

where x = (1, n, n, n), n ≥ 1. In the previous, φ3 refers to the three link case
and φ4 to the four link case. Now, the maximum amount of wasted bandwidth
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(c) Variance of flow duration in 3-link cycle.

0.1 0.2 0.3 0.4 0.5
Demand

0.00001

0.0001

0.001

0.01

Variance Flow time variance - 4- link grid

Proportional

Max-Min

Balanced

(d) Variance of flow duration in 2× 2 grid.
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Figure 6.26: Variance of flow duration.
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Figure 6.27: Inefficiency of balanced fairness on hypercycles.

is calculated as follows in the three link case:

lim
n→∞

C − (φ1 + φ2) = lim
n→∞

1− n + 1

3n + 1
− 1

2
= lim

n→∞
n− 1

6n + 2
=

lim
n→∞

1− 1/n

6 + 2/n
=

1

6
.

Similarly, it can be shown that the maximum waste in the four link case is
5/33.

6.8 Numerical allocation comparison

In symmetric tree topologies and in hypercycles the throughputs provided by
the max-min fair and balanced allocation policies seem to be the same for
homogenous traffic (Figures 6.8, 6.10, 6.12, 6.13 and 6.15). Thus, it can be
asked whether these allocations are the same.

The most reliable way to verify the difference or equality of allocations is
to derive analytical expressions for the allocations. However, a comparison
can be made numerically by calculating the allocations and measuring the
difference with some distance function. In our comparisons, the following
measure function is used:

∥∥φBF − φMM
∥∥ =

∑
r∈R

∣∣φBF
r − φMM

r

∣∣ , (6.2)

where φBF and φMM are rate allocation vectors produced by max-min fairness
and balanced fairness, respectively.

Allocation comparison in tree 2 network

In Figure 6.28(a) allocation comparison is made for the tree 2 network. Number
of flows at flow class 1 fixed to the value x1 = 10. Similarly, Figure 6.28(b)
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depicts the case where the number of flows in flow class 1 is fixed to the value
x1 = 100.
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Figure 6.28: Allocation comparison in tree 2 network.

Figures 6.28(a) and 6.28(b) demonstrate it clearly that the allocations are not
identical. The difference is maximized (in sense of the measure (6.2)) when the
number of flows in flow class i is xi, and the other flow classes have xj = 1

2
xi

flows, i, j ∈ {1, 2, 3}, j 6= i.

Allocation comparison in three link hypercycle network

In Figure 6.29(a) allocation comparison is made for the three link hypercycle
network. Number of flows in flow class 1 fixed to the value x1 = 10. Similarly,
Figure 6.29(b) depicts the case in which the number of flows in flow class 1 is
fixed to the value x1 = 100.
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Figure 6.29: Allocation comparison in three link hypercycle.
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Figures 6.29(a) and 6.29(b) show clearly, that the allocations are not equal.
The difference is maximized when the number of flows at flow class i is xi, and
the other flow classes have xj = 1

2
xi flows, i, j ∈ {1, 2, 3}, j 6= i.

6.9 Comparison with analytical results

To verify the correctness of the simulated results, the throughputs provided by
the balanced fairness were compared to throughputs given by the analytical
results presented in Chapter 4.

For the linear network the exact throughput is given by (4.11) with parameter
values Ci ≡ 1 and n = 2 or n = 5 for the two and five link cases, respectively.
In the case of the parking lot network (4.14) provides the exact throughput
with parameter values Ci = i, i = 1, . . . , n, and n is the number of links in the
network under examination. For trees 1 and 2 the exact throughput is given
by (4.15) and (4.16) with parameter values C0 = 1 and C1 = C2 = .7 for the
tree 1 and values C0 = 1 and C1 = C2 = C3 = .5 for the tree 2. For trees 3
and 4 the exact throughputs were calculated using Mathematica and the Qlib
traffic theory function library [23].
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(b) 3-link parking lot.
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(c) Trees 1, 2 and 4.
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Figure 6.30: Comparison between analytical and simulated throughputs.

In Figure 6.30 the exact and simulated throughputs are shown in four different
cases. In all these cases the traffic was homogenous.
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Chapter 6. Results and analysis

Figure 6.30(a) depicts the throughputs in a 2-link line and Figure 6.30(b) in
the case of a 3-link parking lot network. In Figure 6.30(c) the throughputs of
trees 1, 2 and 4 are shown. The uppermost curves correspond to tree 1 and
the lowest to tree 4. Figure 6.30(d) presents the throughput of tree 3.

In all the cases presented the simulated throughput follows exactly the analyti-
cally produced throughput. This result realizes also in the heterogenous cases.
The results give support to the assumption of the validity of the simulator.
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Chapter 7

Conclusions

7.1 Summary

Most traffic in current data networks is elastic, i.e. the rates of traffic flows
adjust to use all bandwidth available. The main objective of bandwidth sharing
is to use all the available bandwidth without violating the constraints and
maintain a certain fairness. The achieved fairness depends on the used fairness
criterion. Different fairness criteria favor or discriminate single sources or whole
traffic classes on different basis.

The traditional approach has been the max-min fairness [2, 10, 19, 25], which
tends to allocate the same share to each flow class. Another central fairness
criterion is the proportional fairness [16], in which deviation from the fair
allocation causes a negative average change. As a mathematical notion fairness
can be thought of as an optimization problem (3.3), where the objective is to
find a rate allocation that minimizes or maximizes a utility function specific
for the used fairness criterion [10, 11, 16]. A general utility function is given by
(3.4). With different values of α and wr different fairness criteria are achieved.

The optimal allocation provided by these utility-based fairness criteria is con-
sidered in a static network scenario where number of flows is fixed. In a dy-
namic network scenario using the optimal bandwidth sharing policy adapted
from static scenario can lead to non-optimal results. In most cases the traffic
characteristics have to be known in detail (e.g. distributions of flow sizes and
arrival times, session structure). Also analysis of flow-level characters becomes
difficult excluding most simple network cases. Utility-based fairness criteria
have been proven to be sensitive in the sense that the steady state distribution
depends on detailed traffic characters, which explains the difficulty of flow-level
analysis.

The balance property (4.1) implies the insensitivity of an allocation . Balanced
fairness [6] represents a new allocation policy that can be considered as the
most efficient insensitive allocation. Insensitivity makes it possible that know-
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ing the mean values of distributions of traffic characteristics provides enough
information to derive the flow-level characteristics in a fixed network scenario.
When bandwidth allocation is based on balanced fairness, the distribution
of number of flows in progress and expected throughput depend only on the
average traffic load of each flow class.

In this study the effect of allocation policies on flow-level characteristics was
studied via simulations under different network topologies. Used topologies
were linear, parking lot, grid, hypercycle and tree networks. Three different
allocation policies were used in simulations – balanced, max-min and propor-
tional fairness.

In line network topology max-min fairness provided better throughput on the
long route and penalized the shorter ones more than balanced fairness. Bal-
anced fairness and proportional fairness provided the same throughput. With
homogenous traffic all the three allocation policies provide the same through-
put in grid network. In the hypercycle networks all the allocation policies
provided the same throughput with homogenous traffic. With the heteroge-
nous traffic differences between max-min fairness and balanced fairness (as well
as with proportional fairness) were minor. In the tree network topologies bal-
anced fairness provided greater throughput for the shorter route flow classes,
and max-min fairness for the longer route flow classes. It was verified in the
three link parking lot network that in tree networks max-min and proportional
fairness coincide.

Simulations concerning a time scale change provided information about the
sensitivity of the allocation policies. Balanced fairness remained insensitive in
all the simulation cases as was supposed. Max-min fairness was sensitive in
linear, grid and tree network topologies. Proportional fairness was insensitive
in the linear and grid networks, which is verified by the statement that pro-
portional fairness coincides with balanced fairness in homogenous hypercubes.
It also seems that in hypercycle networks balanced fairness, max-min fairness
as well as proportional fairness are insensitive.

Three different flow size distributions, unimodal, bimodal and uniform distri-
bution, were used in the simulations. The results suggest that both max-min
and proportional fairness are rather insensitive with respect to the flow size
distribution.

The linear property (4.5) turned out to be valid for all allocation policies in
the studied cases. The result implies that the sensitivity of the max-min and
proportionally fair allocations is quite weak in the cases studied.

Simulation results of the variance of flow durations showed that different allo-
cation policies produced the same value, no significant differences were seen.
Also the shape of the variance as a function of the load was the same for all
the network setups. These results imply that the variance of the flow duration
is robust with respect to the allocation policy.
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Overall, the simulations suggest that the performance of the max-min fairness
and the proportional fairness is relatively close to the performance of balanced
fairness. Also these utility-based allocations seem to be rather insensitive.

Max-min fairness is used in practical real life applications, thus balanced fair-
ness provides an effective tool to approximate and evaluate the performance
of these applications in an analytical way.

7.2 Further work

The concept of balanced fairness is still quite new and provides plenty of dif-
ferent directions for the future research.

The calculation of the values of the balance function via recursion is, in prac-
tice, slow and requires excessively memory. One possibility is to try to find
out more effective ways to calculate these values.

Also the classical, utility based allocation policies still provide lots of subjects
for research. One quite interesting question is the existence of the global and
distributed algorithms for calculating the allocations. These exist for the max-
min allocation policy, and the allocation is a special solution of the optimization
problem (3.3). Thus, could some similar algorithm be derived for the other
allocations that are solutions for the same problem with different parameters
of the target function (3.5)?
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Appendix A

Karush-Kuhn-Tucker conditions

In this appendix the Karush-Kuhn-Tucker conditions are presented for a gen-
eral optimization problem as defined in [1]. Results are applied to solve the
proportionally fair allocation in the hypercycle network setup.

General optimization problem and optimality

conditions

Let us define a general optimization problem P :

min
φ

f(φ) (A.1)

subject to

gi(φ) ≤ 0, i = 1, . . . , m, (A.2)

hi(φ) = 0, i = 1, . . . , l, (A.3)

φ ∈ Ω,

where Ω is a nonempty open set in Rn, and functions f , g and h are as follows:

f : Rn 7→ R,

gi : Rn 7→ R, i = 1, . . . , m,

hi : Rn 7→ R, i = 1, . . . , l.

Necessary conditions

Let ψ be a feasible solution to problem P (A.1), and let us define set I = {i :
gi(ψ) = 0}. Now, let us assume that following requirements hold: Functions f
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and gi, i ∈ I, are differentiable at point ψ, gi is continuous at point ψ for all i 6∈
I, and hi is continuously differentiable at point ψ for all i = 1, . . . , l. Further,
functions ∇gi(ψ) for i ∈ I and ∇hi(ψ) i = 1, . . . , l are linearly independent.

If ψ is a local solution for problem P , there exists unique scalars ui for i ∈ I
and vi for l = 1, . . . , l, such that

∇f(ψ) +
∑
i∈I

ui∇gi(ψ) +
l∑

i=1

vi∇hi(ψ) = 0 (A.4)

ui ≥ 0 ∀i ∈ I.

It is said that the Karush-Kuhn-Tucker (KKT) conditions hold at ψ if the
Lagrangian multipliers ui and vi exist fulfilling condition (A.4).

Sufficient conditions

Let ψ be a feasible solution to problem P (A.1), and let us denote I = {i :
gi(ψ) = 0}. Let us assume that following requirements hold: The KKT condi-
tions hold at point ψ, and sets J and K are defined as follows: J = {i : vi > 0}
and K = {i : vi < 0}
Solution ψ is a global optimum of the problem P , if function f is pseudoconvex
at point ψ, function gi is quasiconvex at point ψ for all i ∈ I, function hi is
quasiconvex at point ψ for all i ∈ J and hi is quasiconcave at point ψ for all
i ∈ K.

Proportional fairness in hypercycle topology

In hypercycle topology (see Section 4.5.2) a bandwidth allocation φ is consid-
ered as proportionally fair, if it is the solution of the following optimization
problem:

max
φ

∑
r∈R

xr log
φr

xr

(A.5)

subject to

∑
r∈R
r 6=l

φr ≤ Cl, l = 1, . . . , L, (A.6)

φr ≥ 0 ∀r ∈ R.

Let us rewrite (A.5) in the following form:

max
φ

∑
r∈R

xr log
φr

xr

= −min
φ

(
−

∑
r∈R

xr log
φr

xr

)
.
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Further, from (A.6) we get

∑
r∈R
r 6=l

φr ≤ Cl ⇔
∑
r∈R
r 6=l

φr − Cl ≤ 0.

Thus, using notation of the previous section, we have

f(φ)
def
= −

∑
r∈R

xr log
φr

xr

,

gl(φ)
def
=

∑
r∈R
r 6=l

φr − Cl ≤ 0 l = 1, . . . , L.

Condition φr ≥ 0 for all r ∈ R can be neglected because these constraints
clearly are not active; if some φr → 0, the value of the target function f(φ) →
+∞. Thus, at the optimum condition φr > 0 must hold for all r ∈ R, and
thus the corresponding Lagrangian multipliers are zero.

For the KKT conditions the gradients are derived1:

∇f(φ) = −
(

x1

φ1

, . . . ,
xK

φK

)
,

∇gl(φ) = (1l 6=1, 1l 6=2, . . . , 1l 6=L) , l = 1, . . . , L.

Now, the KKT conditions are

∇f(φ) +
∑

l∈L
ul∇gl(φ)

=−
(

x1

φ1

, . . . ,
xK

φK

)
+

∑

l∈L
ul (1l 6=1, 1l 6=2, . . . , 1l 6=L)

=−
(

x1

φ1

, . . . ,
xK

φK

)
+




K∑

l=2

ul, . . . ,

K∑

l=1
l 6=i

ul, . . . ,

K−1∑

l=1

ul




=




K∑

l=2

ul − x1

φ1

, . . . ,

K∑

l=1
l 6=i

ul − xi

φi

, . . . ,

K−1∑

l=1

ul − xK

φK


 = 0

and

ulgl(φ) = 0, l = 1, . . . , L,

ul ≥ 0, l = 1, . . . , L.

1Function 1cond is defined as follows: 1cond
def=

{
1, if cond is true,
0, otherwise.
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The proportionally fair allocation is now solution of non-linear system of equa-
tions:

K∑

l=1
l 6=i

ul − xi

φi

= 0, i = 1, . . . , K, (A.7)

ulgl(φ) = 0, l = 1, . . . , L.

That is, the system consists of K + L = 2K equations and of 2K unknown
variables φi and ul. Feasible solution necessitates that Lagrangian multipliers
ul ≥ 0.

The function f is convex, and the feasible region defined by inequalities (A.6)
is also convex2. Thus, the sufficient KKT conditions hold, and the solution of
(A.7) provides the global optimum.

Proportional fairness in 4-link hypercycle

In the case of 4-link hypercycle we have Cl ≡ 1 and K = L = 4. Thus, the
system of equations (A.7) gets the following form:





u2 + u3 + u4 − x1

φ1

= 0,

u1 + u3 + u4 − x2

φ2

= 0,

u1 + u2 + u4 − x3

φ3

= 0,

u1 + u2 + u3 − x4

φ4

= 0,

and





u1(φ2 + φ3 + φ4 − 1) = 0,

u2(φ1 + φ3 + φ4 − 1) = 0,

u3(φ1 + φ2 + φ4 − 1) = 0,

u4(φ1 + φ2 + φ3 − 1) = 0.

Let us denote Σx =
∑4

i=1 xi. The solution of the system of equations is





ui = Σx − 3xi,

uj = Σx − 3xj,

uk = Σx − 3xk,

ul = Σx − 3xl,

φi = φj = φk = φl =
1

3
,

or





ui =
xjΣx

xi + xj

,

uj =
xiΣx

xi + xj

,

uk = ul = 0,

φi = φj =
xi + xj

Σx

,

φk =
xk

Σx

,

φl =
xl

Σx

,

2For proof, see e.g. [29].
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or





ui =
(−xi + xj + xk)Σx

xi + xj + xk

,

uj =
(xi − xj + xk)Σx

xi + xj + xk

,

uk =
(xi + xj − xk)Σx

xi + xj + xk

,

ul = 0,

φi = φj = φk =
xi + xj + xk

2Σx

,

φl =
xl

Σx

,

where {i, j, k, l} is some permutation of tuple {1, 2, 3, 4}. The optimal alloca-
tion φ is now function of the network state x and it is defined explicitly by the
condition ui ≥ 0, i = 1, . . . , 4.
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