
MPRTP: Multipath Considerations for Real-time Media

Varun Singh
Aalto University
Espoo, Finland

varun@comnet.tkk.fi

Saba Ahsan
Aalto University
Espoo, Finland

saba.ahsan@aalto.fi

Jörg Ott
Aalto University
Espoo, Finland

jo@comnet.tkk.fi

ABSTRACT
The Internet infrastructure often supports multiple routes between
two communicating hosts and, today, especially mobile hosts usu-
ally offer multiple network interfaces, so that disjoint paths be-
tween the hosts can be constructed. Having a number of (partly or
fully) disjoint paths available may allow applications to distribute
their traffic, aggregate capacity of different paths, choose the most
suitable subset of paths, and support failover if a path fails. Ex-
ploiting multipath characteristics has been explored for TCP, but
the requirements for real-time traffic differs notably. In this paper,
we devise a multipath communication model for Real-time Trans-
port Protocol (RTP); present minimal set of required protocol ex-
tensions; develop algorithms for scheduling RTP traffic across mul-
tiple paths at the sender and a corresponding de-jittering algorithm
at the receiver side; and evaluate our proposal in varying scenar-
ios using media traffic across different emulated mobile access net-
work setups.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Applications (SMTP, FTP, etc.)

General Terms
Algorithms, Design, Performance, Experimentation

Keywords
Multipath, RTP, Multimedia, Scheduling

1. INTRODUCTION
The Internet backbone has evolved over the past decades to a

mesh of service providers with manifold peerings that are gener-
ally capable of offering a number of (independent) paths, intra- and
inter-domain, between two nodes. This extends to stub networks
often using multiple attachment points for resilience purposes, such
as data enterprise networks or data centers (and even routers for
SOHO networks support multiple access networks [8, 14]). And as
many hosts today feature multiple network interfaces (e.g., WLAN

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MMSys ’13 February 26-March 1, 2013, Oslo, Norway.
Copyright 2013 ACM 978-1-4503-1894-5/13/02 ...$15.00.

and 3G for laptop computers, tablets, or mobile phones), this may
yield the possibility for two endpoints to communicate via multi-
ple, at least partly disjoint paths. With at least two disjoint paths,
those may be exploited for balancing traffic load, for aggregating
capacity, and for failover in case one path becomes unavailable.

Operators already use alternative paths internally, e.g., for traffic
engineering, load balancing, or fast re-routing, albeit without inter-
action with the endpoints. While no explicit path information or
control is available to the endpoints, they may use their peer’s IP
addresses (paired with standard IP routing) to obtain a first approx-
imation of multipath capabilities [21].1

Several transport protocols were developed to exploit such capa-
bilities: SCTP [45] uses multiple interfaces for failover purposes
and Multipath TCP (MPTCP) [19] offers parallel usage of multi-
ple paths for resource pooling [48]. Both offer reliable transport
services, motivated by balancing bulk data transfer and increasing
robustness. However, in the single path case, TCP can only serve
real-time communication within tight constraints of network char-
acteristics [9]. In the multipath case, the scheduling algorithms do
not consider real-time bounds when spreading data segments across
different paths.

The increasing share of high-bit-rate video traffic on the Inter-
net [15] motivates multipath support for real-time media as well.
Today’s dominant form of over-the-top streaming in the web usu-
ally are variants of HTTP streaming [4] that perform rate adaptation
by switching rates, but this is fairly constrained and requires large
playout buffers. MPTCP could be applied to media streaming but,
as noted above, it does not consider real-time data and diverse paths
may lead to worst case delay and thus even longer buffering time.
Moreover, the compelling use-case for multipath media delivery is
to mobile devices/tablets either for aggregating throughput of the
WLAN and 3G or for path failover. It should also be noted that the
mobile website of YouTube2 uses RTSP instead of HTTP3. Addi-
tionally, pre-buffering is not an option for conversational media that
gains importance with video communication clients implemented
as ubiquitous applications such as Skype or as part of web browsers
(see, e.g., the WebRTC effort4).

Currently, the Real-time Transport Protocol (RTP) cannot effi-
ciently operate over multiple paths because RTP operates at the
media session level and not at the transport level, i.e., the receiver
reports per media (audio or video) flow and not per underlying 5-
tuple. In this paper, we explore Multipath RTP that extends RTP

1Further mechanisms are being investigated (e.g., [46]) but those
are not available in today’s Internet.
2http://m.youtube.com
3http://code. google.com/apis/youtube/2.0/reference.html
4http://www.w3.org/2011/04/webrtc/,
http://datatracker.ietf.org/wg/rtcweb/

M
PR

TP
%

Sc
he

du
le
r% M

PRTP%
Receiver%

Internet%

The%sender%gathers% the%path%
characteris7cs%and%schedules%
the%packets%accordingly.%%

The% receiver% correctly% reorders% the%
media%packet%and%hands% them%over%
to% the% applica7on% for% decoding.% It%
also% reports% the% observed% path%
characteris7cs.%%

Ap
pl
ic
a7

on
% Applica7on%

Co
de

c% Codec%

subflows

Figure 1: System Overview: A sender uses multiple paths to
stream media to a receiver. The receiver uses a dejitter buffer to
reorder packets and sends per-path characteristics to the sender that
distributes the packets based on the reported values.

towards multipath communication. We focus on spreading con-
stant bit rate (CBR) media streams across multiple paths, for which
we present algorithms for allocating traffic on each path based on
path characteristics and evaluate those in different scenarios. We
use a short playout buffer (500ms) at the receiver so that the al-
gorithms will be applicable even to other scenarios like live video
streams and interactive video. Our work is orthogonal to media
rate adaptation—which would just change the total media rate to
spread—and we defer adaptation as a function of the joint path
characteristics to future work.

2. MULTIPATH REAL-TIME VIDEO
The Real-time Transport Protocol (RTP) supports end-to-end (e2e)

delivery for data with real-time characteristics [37]. RTP was de-
signed to carry data over UDP/IP but can be used in conjunction
with other transport protocols, such as TCP and DCCP. RTP is suit-
able for applications such as live streaming and broadcast, video-
on-demand, and interactive multimedia communication. RTP uses
the associated RTP Control Protocol (RTCP) for monitoring the
e2e media delivery and for other control operations. The baseline
RTCP defines two reports for session monitoring: 1) The Sender
Report (SR) carries synchronization information for media play-
out and reference points for RTT and packet loss calculation. 2)
The Receiver Report (RR) provides mostly long-term statistics on
the observed session characteristics (loss, jitter) and assists in RTT
calculation [37].

In this paper, we present Multipath RTP (MPRTP), an exten-
sion to RTP that allows splitting a single RTP stream into multiple
subflows, which are transmitted over different paths. This allows
pooling the capacity of multiple Internet paths so that higher bit
rate media can be delivered and the system becomes more robust
against path variations or disruptions. From the application per-
spective, the available bandwidth between the two endpoints in-
creases or becomes more stable. Figure 1 shows a macroscopic
system overview of MPRTP.

For a constant bit rate (CBR) media stream, a codec generates
packets of a constant size or packets produced in a short interval,
will average to a constant size. Video streaming services over-
come congestion by either pre-buffering enough content or by rate-
switching. The latter requires the streaming server to pre-encode
content at different video bit rates, so that a receiver can easily pick
a rate that is suitable for its e2e path capacity. Alternatively, inter-
active media streams try to match the e2e path capacity by change
the encoding rate at the media source. In either case, the endpoints
should avoid changing the rate too often or by too much because it
would impede the user experience [51].

Instead of using rate switching, MPRTP can split the stream

across multiple paths and thereby sustain the media bit rate (and
thus the quality of experience) and shift more load to the less con-
gested paths—provided that the aggregate capacity of all paths ex-
ceeds the average bit rate of the CBR video stream. A side effect of
the video traffic distribution is that the video stream appears some-
what fair from the perspective of an individual more congested
path: even though MPRTP does not reduce the bit rate, load is
shifted away to another path. This may reduce the impact of video
stream on the other traffic transmitted over the former, potentially
at the expense of traffic on the latter path.

RTP is a generic real-time transport protocol and MPRTP is not
restricted to video either; e.g., voice calls may benefit from its path
failover properties. However, in this paper we focus on streaming
video with low buffering requirements and can therefore be easily
extended to interactive multimedia sessions. Our contributions are:
algorithms deciding which paths to use, how to distribute the RTP
traffic across them, and the matching receiver side operation.

3. MPRTP DESIGN GOALS
MPRTP is designed as an extension to RTP and thus can benefit

from the following RTP functionality: end-to-end (e2e) transmis-
sion of media packets, intra- and inter-stream synchronization, e2e
monitoring and session control, and a wealth of payload formats
to encapsulate encoded media content. What is novel is the ability
to explicitly distribute media packets across multiple paths, which
puts forward requirements on scheduling and dejitter algorithms.

From a functional perspective, MPRTP must be able to make use
of multiple paths and adapt to their relative capacity changes by re-
distributing the load, which should be done in a way that avoids
oscillation (Section 3.1). As different paths will likely exhibit dif-
ferent RTTs, mechanisms must be put in place to overcome the
resulting skew (Section 3.2). The choice of suitable transmission
path should reflect the demands of the application (Section 3.3).
From a protocol perspective, RTP must be extended to provide the
additional information necessary to perform these functions, yet
maintain backwards compatibility (Section 4).

3.1 Adapting to Bandwidth Changes
An MPRTP endpoint should be able to redistribute the traffic

load to other paths when one or more of the current paths become
congested or fail. In such situations, [26] suggests moving all the
traffic to less congested paths, but for MPRTP we propose send-
ing some small fraction of the traffic on these congested paths to
continuously monitor the path characteristics. This is similar to
MPTCP [49], which keeps some traffic on a congested path to mon-
itor the path as well. If loss is one of the motivating indicators for
reassigning traffic, a scheduling algorithm should not change the
per path traffic distribution at short timescales.

MPRTP avoids aggressively reassigning traffic and continues mon-
itoring all available paths. The latter is especially important for
mobile devices since those will often have only two interfaces and
those interfaces (or paths) may not only see sudden degradation but
also quick recovery.

RTP/UDP has no inherent congestion control and is unfair to
competing traffic and CBR media streaming limits congestion con-
trol to rate-switching. As a result, a CBR media stream will occupy
its share of the e2e capacity and may not give way to any other flow.
MPRTP supports some minimal fairness by detecting interactions
with other flows: it is sensitive to changes in path characteristics
such as jitter, RTT, and packet inter-arrival time at the receiver. An
MPRTP sender aims at balancing the system by spreading the load
across all their (suitable) paths, essentially being less unfair and
thereby leaving more room for other traffic.

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 20 40 60 80 100 120 140

Pa
ck

et
 S

ke
w

 (s
)

RTP Timestamps (s)

These packets are not played out

Path A (delay=0.05s)
Path B (delay=0.1 -> 0.3s)

Path C (delay=0.2s)
Playout delay

Figure 2: Shows the adaptive playout capabilities of a legacy end-
point receiving media data over multiple paths with different laten-
cies. The latency on path A and C is constant through-out the ses-
sion while Path B experiences a change in path latency at t = 30s.
The dark line is the instantaneous skew and the figure shows that
the playout takes 15 to 20s to converge to the highest value when
the fraction traffic distribution per path is equal.

3.2 Overcoming Packet Skew
Packets sent over multiple paths will likely encounter different

path delays and may arrive out-of-order at the receiver, i.e., the re-
ceiver dejitter buffer would have to compensate for the variation
in packet inter-arrival time (packet skew). Conceptually, if the de-
jitter buffer is larger than the differences in the path latencies, the
receiver would be able to re-order the packets. However, in reality
the RTT is variable and can increase beyond the calculated dejitter
buffer size, which may also happen for a single path. Diverse paths
thus increase the chances for buffer underflow. Using an adaptive
playout buffer can overcome this limitation.

A single path receiver calculates the optimum playout using a
low-point or mid-point averaging algorithm [18]. The algorithm
averages the packet skew over a large window size5 to reduce the
impact of the few packets that get delayed. However, in a multi-
path scenario, the packets may be scheduled on paths with widely
varying latencies and the above method may be insufficient. As
an example, consider figure 2 that shows the instantaneous play-
out point (black line) for each packet using the method described
in [18] for a multipath scenario. In this scenario three paths are
available with different path latencies but the same e2e capacity.
The sender sends an equal share of the media stream along each
path. The figure also shows the packet skew (Path A =50ms, Path
B =100 to 300ms, Path C =200ms) relative to the low-latency
path (Path A=50ms). Initially, the algorithm is able to compensate
for the different path latencies. However, at t = 30s the latency of
Path B changes from 100 to 300ms and the algorithm takes about
20 � 30s to play packets from that path. Therefore, the algorithm
proposed in [18,33] is not suitable for the multipath scenario and a
multipath receiver should implement an alternate algorithm to cal-
culate optimum playout to adapt to paths with different latencies
(See Section 5.3 for our proposed solution).

3.3 Choosing Transmission Paths
A multipath endpoint needs to choose which of its available paths

to use for sending media (one, a subset, all). This is an optimiza-
tion problem with multiple parameters that an endpoint can op-
timize for. Examples include minimizing losses, minimizing la-
tency or maximizing e2e capacity. While we mentioned above that
as many paths as possible should be used, distributing the media
stream widely should still not come at the expense of media quality
5Usually, 256 or 512 packets [18, 33].

at the receiver. The impact on the media quality is application-
dependent so that MPRTP has to provide an interface that allows
an application to specify its preferences: for example, some multi-
media applications are more tolerant to losses than others.

Video streaming applications can pre-buffer few seconds of me-
dia data, while live streaming and interactive multimedia can only
pre-buffer hundreds of ms of media data. So an application pri-
oritizes between expected e2e latency and capacity (by choosing
a different encoding bit rate). Since capacity is additive for paths
with similar latency [48], an MPRTP sender needs to aggregate as
much capacity as needed by combining paths with as little latency
divergence as possible.

In the real-time media case, quality may suffer quickly from
packet losses and therefore in this paper we choose packet loss as
another factor an MPRTP endpoint takes into account for path se-
lection: if the losses observed across multiple paths differ widely,
those with lower loss rates will be prioritized for media transmis-
sion (and only monitoring traffic will be sent on the high loss rate
paths to observe changes in path characteristics).

Obviously, MPRTP cannot assume static path characteristics and
needs to continuously measure those using media traffic and, for
any passive paths, probing traffic. As noted above, the changes in
path selection should not be too aggressive to avoid oscillation.

4. PROTOCOL DETAILS
RTP uses as abstraction from the lower layers an interface via

which it can send and receive RTP and RTCP packets to one or
more peers. The implicit assumption is that all these packets follow
a common path at a time so that the path characteristics can be mea-
sured and the results can serve as input to application layer adap-
tation mechanisms (if any). The abstraction offered as an “API”
to the application is the transmission/reception of a media packet
stream plus information about the path.

With MPRTP, we seek to preserve this abstraction towards the
application. But, obviously, multiple paths may have different char-
acteristics and hence the RTCP monitoring functions tailored to a
single path are insufficient. MPRTP needs to be able to determine
if multipath communication is possible and, if so, mark packets
sent over separate paths accordingly and monitor characteristics
per path so that packet traffic distribution can take those into ac-
count. The receiver side has to automatically take into account the
potentially wider variation in latency without any explicit notifi-
cation from the sender. The entire operation must be backwards
compatible with RTP.

In the following sub-sections, we present the protocol exten-
sions required for MPRTP. These extensions assist in implement-
ing packet scheduling and adaptive playout by identifying pack-
ets sent on a particular path and reporting per-path characteris-
tics. The complete protocol specification is available as Internet
Drafts [39, 44].

4.1 Subflow Information
An MPRTP sender assigns a subflow identifier (subflow ID) to

each unique path. A path is considered unique if sending or receiv-
ing IP address and port number (5-tuple) are different. An MPRTP
sender also adds a subflow-specific sequence numbers to enable the
receiver to determine subflow-related packet jitter, packet loss, and
packet discards. Both the subflow ID and the subflow-specific se-
quence numbers are carried in an RTP header-extension and this
preserves backward compatibility (see below).

4.2 Subflow Path Characteristics
The receiver reports characteristics per subflow because the paths

 0.001

 0.01

 0.1

 1

 0 1000 2000 3000 4000 5000 6000

R
TC

P
In

te
rv

al
 (i

n
se

c)

media bit rates (kbps)

2 path unidir
2 path bidir

3 path unidir
3 path bidir

Figure 3: Multipath RTCP Reporting Interval for non-compound
RTCP packets in a unidirectional and bidirectional media session.

may exhibit widely differing properties. For this purpose, we intro-
duce RTCP per-subflow reporting using new variants for SR, RR,
and extended report (XR) packets. The receiver reports the path jit-
ter, losses and discards for each subflow. It also reports information
to calculate per path RTT. The scheduler at the sender compares
path characteristics of all the subflows to determine their respective
traffic shares. In addition, the application also reports aggregate
session level statistics as defined in RFC3550 [37].

4.3 RTCP Interval Calculation
The RTCP transmission rate for each of the two endpoints is cal-

culated as 2.5% of the session media rate [32]. Moreover, the re-
porting frequency for each subflow should be similar to the amount
of traffic it sends/receives, i.e., flows which send/receive more me-
dia data should report more frequently than those which send/receive
less. Figure 3 shows the variation of reporting interval with respect
to media bit rate. For low bit rates the feedback depends on the sit-
uation, i.e., is it bidirectional (bi)/unidirectional (uni) media flow.
We use non-compound RTCP reports [24] because of their rela-
tively lower header overhead. In our experiments, we observe that
the RTCP feedback interval should not be shorter than 2 ⇥ RTT
under normal operation. For urgent feedback (e.g., NACKs) the
client still has the option to send immediate feedback.

4.4 Backwards Compatibility
MPRTP is backwards compatible, i.e., an MPRTP sender does

not require the receiver to implement the extensions and therefore
can interoperate with an RFC3550 [37] RTP receiver. An MPRTP
receiver will naturally process packets from an RTP sender. Legacy
RTP entities simply ignore the MPRTP extension headers and ex-
tended RTCP reports. However, an RTP receiver may drop pack-
ets due to large variance in path delays (limited adaptive playout).
Moreover, the RTCP Receiver Reports (RR) do not carry sufficient
information to make proper per-path scheduling decisions. There-
fore, MPRTP capabilities can only be exploited when both end-
points support MPRTP.

5. ALGORITHMS
The scheduling algorithm uses subflow reports to estimate the

bit rate on each of the available paths and distributes the traffic
based on the reported values. The receiver buffers the incoming
packets, reorders and recombines the subflow into one stream for
the application. Figure 4 shows a schematic diagram of the sender
side buffer; the scheduling algorithm assigns a priori the bandwidth
share per path based on the short term history and long term path
heuristics.

Path A!

To Receiver !

Sender’s Buffer!

Fractional distribution
based on Sublow reports.! Path B!

Figure 4: Sender-side Scheduler

6"3"7"8" 1"2"4"5"

4"

Path A

5"6"8"

1"2"3"7"

Path B

Arrival queues

Using an adaptive playout, the
Receiver reorders out-of order
packets

6" 3"7"8" 1"2"4"5"

Figure 5: Receiver-side dejitter buffer

The multipath receiver is responsible for recombining the sub-
flows into the original flow. The arrival queues in each subflow
re-combine RTP packets that belong to the same video frame and
the recombined packets are passed to the dejitter buffer. The de-
jitter buffer should be sufficiently large to overcome variation in
per path RTT (see Fig. 5), also an adaptive playout delay ensures
smooth playback. The receiver routinely reports the per path (i.e.,
subflow) jitter, losses and RTT to the sender and the sender uses the
information to make scheduling decisions.

5.1 Scheduling Algorithm at the Sender
At startup, if the number of paths is known, the scheduling algo-

rithm assigns equal fractions of the media rate to all the available
paths; so 50% each for two paths. Every time a new packet arrives
at the scheduler, it is assigned to a particular path depending on
the relative traffic distribution. Since congestion control is an or-
thogonal problem to packet scheduling and outside the scope of the
paper, losses cannot be avoided if the aggregate end-to-end channel
capacity across all the paths is below the media encoding rate.

In the following subsection we describe the various steps in-
volved in packet scheduling. The MPRTP sender first calculates
the estimated receiver rate on each path based on the Subflow Re-
ceiver Reports. Second the sender characterizes the paths based on
the observed packet discards and losses. Third the sender chooses
a set of active paths from the available paths. Fourth the sender
follows a set of packet scheduling rules. Fifth the sender calculates
the timescales at which it will re-calculate the fractional distribu-
tion and lastly, it calculates the per-path fractional distribution.

Calculating the Path Receiver Rate
The sender calculates the receiver rate per-path using information
from two consecutive receiver reports (RTCP RRs) and by main-
taining a queue of packets since the last RR [41]. This queue can
also be used for retransmitting packets in case of receiving NACKs.
The bandwidth on path j when receiving the ith RR is:

RR[j] =
(
PHSN

i

k=HSN
i�1

sizeof(Xk))⇥ (1� Li)

(ti � ti�1)

HSNi, HSNi�1 are the Highest Sequence Received reported by
the receiver in two consecutive RRs. ti, ti�1 are the reception times
of the two RRs at the sender, Li is the reported loss rate in the
latest RR. sizeof(Xk) is the size of the packet and the sum gives

the bytes sent by the endpoint during the last reporting interval. If
the receiver also reports the discarded bytes [31] in the interval, the
sender can calculate the goodput by subtracting the discarded from
the total bytes.

Path Characterization
Based on the circuit breaker conditions [34], we define some rules
for marking paths as congested, lossy or non-congested. A path that
reports discards and losses in a single or consecutive intervals can
be considered mildly congested. If this behavior is observed over 3
successive intervals then it is considered congested. Furthermore,
if a path reports only losses and no discards in successive intervals
then it is considered lossy. A path without losses or discards is
considered non-congested.

Choosing Paths
A multipath endpoint needs to choose all or a subset of its available
paths for sending media. To find a suitable group of paths, the mul-
tipath sender needs to evaluate the paths that can meet the capacity
and latency requirements.

When there are many paths available, an endpoint can group
them based on the path latencies—bandwidth is additive for paths
with similar latencies [48]. The endpoint then sorts these path
groups in decreasing order of bandwidth

delay
, so that groups with high

bandwidth and low delay are preferred. The multipath sender chooses
the suitable group(s) of paths from the bandwidth

delay
list that meet its

e2e capacity requirements. The chosen paths are marked as ‘active’
and used for media delivery while the rest of the paths are marked
as ‘passive’ and used when the chosen paths fail. Depending on
the multimedia application, packet loss may affect the quality of
experience. Therefore, an MPRTP sender should avoid scheduling
packets on paths with losses.

Packet Scheduling Rules
The scheduler continuously assigns part of the media traffic to each
path based on the path’s receiver rates, some of these paths may be
congested while some others may not be. The scheduler observes
the following rules:

• If the next scheduled frame is an I-frame then the result-
ing RTP packets are assigned to the path with the highest
bandwidth

delay
, bandwidth and lowest loss rate.

• On receiving a NACK, transmit the requested packet on the
path with the highest bandwidth

delay
, least RTT and lowest loss

rate.

• Reduce the fractional traffic distribution on the mildly con-
gested and congested paths in an attempt to reduce conges-
tion on those paths.

Scheduling Interval
Calculating the fractional distribution for each path can be com-
putationally intensive; therefore, the redistribution should not be
calculated at reception of each RTCP report.

The scheduler calculates the fractional distribution at the expiry
of the scheduling interval, which is:

SchInt = � ⇥ Sinterval, 0.5 � 1.5

� = 0.5 + rand(0.0, 1.0)

The randomization factor (�) is used to prevent synchronization of
multiple senders with common network paths. Sinterval is a value
between the minimum RTCP interval and maximum RTCP inter-
val [32, 39]. At startup, Sinterval is set to the minimum RTCP

Algorithm 1 Algorithm for calculating fractional traffic distribu-
tion for each path
Require: SchInt timeout
Require: RR for each active path
Require: Sort Paths based on Path Characteristics:
1: path = [‘m’ congested, ‘r’ mildly-congested,‘w’ non-congested]
2: MR media_rate
3: paths

total

 len(path)
4:
5: for j = 1! paths

total

do
6: if path[i] is congested then

7: SB[j] MIN

✓
RR[j]P

m

k=0
RR[k] ⇥MR, ↵⇥ RR[j]

◆

8: else if path[j] is mildly-congested then

9: SB[j] MIN

✓
RR[j]P

r

k=0
RR[k] ⇥MR, � ⇥ RR[j]

◆

10: else if path[j] is non-congested then

11: SB[j]
✓

RR[j]P
w

k=0
RR[k] ⇥ (MR� AP)

◆

12: end if
13: AP AP + SB[j]
14: j j + 1
15: end for
16:
17: j 0
18: while AP < MR do
19: extra RR[j]

MR

⇥ (MR� AP)

20: SB[j] SB[j] + extra

21: AP AP + extra

22: j j + 1
23: end while

interval and is increased in steps of the minimum RTCP interval
until it reaches maximum RTCP interval. If congestion is reported
on multiple paths then the sender may reduce the scheduling inter-
val to recalculate the fractional traffic distribution of the paths more
frequently.

Calculating the Fractional Distribution
Initially the scheduler allocates an equal rate to each path, which
may be incorrect. Therefore, as soon as the scheduler has enough
information6 about the path characteristics, it should recalculate the
fraction distribution for each path.

We assign the fractional traffic distribution starting from the con-
gested to the the non-congested paths because the congested paths
were originally the preferred paths and due to our initial rate allo-
cation or cross-traffic become congested. Consequently, the packet
scheduler still wants to continue using these paths (which are ‘ac-
tive’) over the others (which were earlier ‘passive’ or for failover).
This yields the following cases:

Paths that are congested— The scheduler wants to send some
minimal media data on these paths, so that it is able to observe the
changes in the path characteristics instead of totally ignoring these
paths. From changes in the path characteristics the sender may
infer when to reallocate again more media to the path. The sending
bit rate (SB[j]) for a path j for a total number of congested paths
(m) is the minimum of the fair share bit rate of the congested path
and ↵ times the path’s receiver rate (See line 7 of Algorithm 1).
We choose the minimum of the two because we do not want the
fair-share to be larger than the path’s receiver rate.

Paths that are mildly congested— The scheduler wants to re-
duce the load on these paths slightly so that the paths can go back
to being un-congested. The sending bit rate (SB[j]) for a path j
where the total number of mildly congested paths (r) is similar to
the congested case, except here we use a factor � instead of ↵ and

6optimally after reception of at least one RTCP report for each sub-
flow.

 0

 10

 20

 30

 40

 50

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

st
ab

iliz
in

g
tim

e
(s

)

α

β<0.7 β=0.7 β=0.8 β=0.9

Figure 6: In each experiment we vary the values of alpha (↵) and
beta (�) and observe the time it takes for the scheduling algorithm
to reach optimum fractional distribution. We conduct experiments
for a 1Mbps media stream using 2- and 3-paths and the feedback
interval per path is 1s. In every scenario the cumulative bandwidth
of the paths is 1Mbps, but each path has different e2e capacity. We
run each scenario 500 times and the error-bars represent the 95%
confidence-level.

because the paths are not completely congested, we use � > ↵ (See
line 9 of Algorithm 1).

Paths that are non-congested— The remaining traffic is di-
vided fairly between the non-congested paths, i.e., as a ratio of
the path’s receiver rate with the total receiver rate for all the non-
congested paths. Therefore, the rest of the media bit rate is assigned
to the remaining paths (w) using the formula on line 11 of Algo-
rithm 1. If the allocated bit rate (AP) at the end of the process is
still lower than the media bit rate, then we allocate extra bit rate to
each of the paths (See lines 17:23 of Algorithm 1).

Based on a series of experiments with our proposed scheduling
algorithm, we choose � = 0.8 and ↵ = 0.5. Figure 6 shows that
� = 0.8 on average gives quicker stabilizing times7 compared to
other values of � (In the figure the grey region represents average
stabilizing times for different values of �). We use ↵ = 0.5, (↵ <
�) because we want to reduce the load on the congested path by
choosing a sending bit rate much lower than the receiver rate for
that path. We also observe that ↵ = 0.5 gives quicker stabilizing
times when paths > 3 and it is similar to TCP behavior.

5.2 RTCP Reporting Interval
The RTCP reporting interval for MPRTP is similar to that of RTP,

i.e., typically reports every 5± 2.5s. However, to ensure reporting
fairness across all the active subflows, MPRTP uses the ratio of the
path’s receiver rate and media bit rate to schedule per-path RTCP.
If a path requires more frequent reporting, the receiver can allocate
a larger fraction of the media bit rate for reporting RTCP, i.e., if the
current RTCP reporting rate is less than the maximum RTCP rate
(2.5%⇥ media rate), the receiver will increase the RTCP report-
ing rate and thus, decrease the reporting interval proportionally per
path. Several factors that influence the RTCP reporting interval are:

• If discards and losses are observed in one or more succes-
sive reporting intervals (mildly congested link), the receiver
reduces the RTCP interval to send more frequent feedback.
This enables the sender to change the fractional distribution
more quickly and thus mitigate congestion on those path(s).

• If only sporadic losses are observed then this may be a tran-
sient condition and the receiving endpoint only reports the
loss earlier than scheduled [32], so that the sender can re-
transmit if the lost packet is an I-frame (or part of it).

7time for the scheduling algorithm to reach the optimal solution.

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60 70 80 90 100

R
TC

P
In

te
rv

al
 (s

)

time (s)

Startup

Congestion

MPRTCP timeout

Figure 7: At startup and when congestion occurs the RTCP interval
becomes shorter. In steady state the interval is typically 5± 2.5s.

• When the paths characteristics are stable and enough infor-
mation is known about the paths then the endpoint uses a
relatively constant reporting RTCP interval.

Figure 7 shows an example of variation in MPRTCP timeouts
based on the above rules. The timeouts are shorter during startup
and when congestion occurs. Rest of the time when the paths are
stable the RTCP Interval is also longer.

5.3 Path Skew & Playout Delay Calculation at
the Receiver

In section 3.2, we show that when a new high latency path ap-
pears the current RTP implementation (legacy) takes nearly 15-20s
to include packets from the high delay path for playout. This is
because the legacy implementations calculate playout delay at the
RTP session level and not at the subflow level. Our proposal is that
the receiver calculates: 1) the Path Skew, based on the packet skew
on each path, and 2) the Playout Delay, based on the per Path Skew
(and not packet skew).

Path Skew
The endpoint calculates the packet skew of each packet received on
a path by:

Packet Skew = (TRj � TRi)� (TSj � TSi)

TR = reception time

TS = RTP timestamp

Where ‘i’ and ‘j’ are two consecutive packets received on the path.
However, they may not necessarily be two consecutive packets in
the media stream. For each path the receiver maintains a Drift
Window (DW), which is a sliding window of 2 seconds of me-
dia packets or 100 packets, whichever is lower. We use a relatively
small window size because we want to avoid receiver under-run by
changing the playout very late. Every time the endpoint receives a
packet on a path it calculates the drift and inserts it in to the win-
dow. The receiver then sorts the window and chooses the median
(gDW) value for calculating the path skew:

Path Skew = 0.01⇥ gDW + 0.99⇥ PathSkewprev

We do not use the maximum or minimum values of the drift win-
dow (DW) in the calculation of the skew because the minimum
value will cause buffer underflow while the maximum value is sen-
sitive to temporary congestion. Moreover, if the path latency in-
creases and the fractional distribution on the path remains the same,
it will take 1s (or 50 packets) for the Path Skew to converge to the
new higher measured latency.

MPRTP
Sender

MPRTP
Receiver

Router
A1

Router
B1

Router
C1

Router
A2

Router
B2

Router
C2

Figure 8: Evaluation Environment.

Playout Delay
The endpoint also maintains a window of the last 256 Path skew
values, i.e., Path Skew for each path is inserted into the Skew Win-
dow (SW). The Skew Window (SW) is sorted and the maximum
value is used to calculated the playout delay (Playoutdelay). We
use the MAX value here instead of the median because we want to
include the high latency path as soon as possible. Moreover, the
Path Skew calculation makes sure that transient congestion events
do not show up. To calculate the playout delay, we use the same
weighing factor as the legacy implementations [18, 33].

Playoutdelay =
MAX([SW]) + 124⇥ Playoutprev

125

Depending on the fractional traffic distribution per path, our exper-
iments show that our proposed method performs better in adapt-
ing the playout quickly for a short playout buffer of 500ms. Our
method takes ⇡ 3s while the one implemented in [18, 33] takes
15-20s. Also our algorithm converges more quickly than the re-
ceiver can report the RTT to the sender, the typical RTCP interval
is 5± 2.5s.

6. PERFORMANCE EVALUATION
To evaluate the performance of our MPRTP algorithms, we have

implemented MPRTP using open-source libraries: Gstreamer8 and
x2649. The application can encode and decode streams, therefore,
it can also be used as a streaming server and client. To evaluate
MPRTP, we use the “Foreman” video sequence10; it is 265s long
and is encoded at 1Mbps average media rate, 30 FPS and a group
of pictures (GOP) set to 16. The receiver is configured to use a
short dejitter buffer (maximum playout delay is 500ms) to emulate
a live video stream.

Even though we have an implementation that can be deployed
in the real-world, we use network emulation to evaluate the perfor-
mance of the scheduling algorithm. The main reason is the need to
have a controlled environment where we can vary the path charac-
teristics and observe the response of the scheduling algorithm. We
nevertheless did some qualitative real-world experiments as well,
to which we will return in section 7.4.

To emulate a multipath network, we use a set of physical and vir-
tual machines (VMs). The endpoints are physical machines with
3 network interfaces and the intermediate routers are virtual ma-
chines with two interfaces each. The setup is shown in Figure 8.
Network Emulator (NetEm)11 runs at each interface and emulates
various link properties such as link capacity, delay and loss rate.

In the following sub-sections, we show representative plots for
individual runs as well as tables with results averaged over 10 in-
dependent runs, including standard deviation (�). We use Peak
8http://gstreamer.freedesktop.org/
9http://www.videolan.org/developers/x264.html

10http://xiph.org
11http://swik.net/netem

Path Characteristic Avg. PSNR �PSNR PLR

No Losses on any path
1-Path 48.427 0.00 0.00
2-Path 48.427 0.00 0.00
3-Path 48.427 0.00 0.00

0.5% Loss on every paths
1-Path 40.887 0.506 0.49
2-Path 40.314 0.576 0.505
3-Path 40.406 0.849 0.494

1% Loss on every paths
1-Path 36.172 0.705 1.01
2-Path 36.564 1.006 0.94
3-Path 36.212 0.572 0.99

Dissimilar RTTs 2-Path 48.303 0.278 0.004
Different BW per path 2-Path 45.4 4.6 0.0767

Table 1: Single Path vs Multiple Paths

Signal-to-Noise Ratio (PSNR), Packet Loss Rate (PLR), and Aver-
age Bandwidth Utilization (ABU) as metrics [40] to compare the
performance of the scheduling algorithm.

6.1 Comparison to a Single Path
We first compare the performance of a multipath to single path

setup in a static scenario, i.e., an environment with fixed end-to-end
delay, losses and channel capacity.

Single Path: An endpoint receiving a streaming CBR video uses
a dejitter buffer to compensate for variable one-way delay. Losses
are detrimental in video streaming but depending on the trade-off
(delay vs bandwidth), packet loss can be fixed using ARQ or FEC.
On the other hand, bandwidth fluctuations will cause momentary
pausing or freezing due to buffer underflow. This can be observed
by comparing the average PSNR for single-path in each scenario
listed in Table 1. We use the results of single-path as the benchmark
to compare the performance of MPRTP.

Paths with similar losses: Each path has the same loss-rate (0%,
0.5%, 1.0%), one-way delay and e2e capacity. The scheduling al-
gorithm performs at par with single path in this scenario. The per-
path bit rate across all the paths is also similar, around 50% in the
case of 2-paths and 33% in the case of 3-paths.

Paths with dissimilar RTT: The two paths have different one-
way delays (Path A=50ms, Path B=200ms) but the e2e capacities
and loss rates are similar. By using an adaptive playout the receiver
overcomes the difference in per-path delay (skew) and is able to
maintain an average PSNR similar to the lossless scenario. Since no
losses occur, the scheduling is able to maintain an equal fractional
distribution per path. This shows that the receiver can adapt the
playout delay independently of the sender side algorithm.

Aggregating capacity: The two paths have fixed but different
e2e channel capacity (Path A is 1 Mbps, Path B is 512 Kbps). We
observe that the average bit rate sent on Path B is lower than the ca-
pacity of Path B, therefore, the scheduling algorithm is able to adapt
to the capacity constraints of the individual links. At startup, per
algorithm the sender allocates equal fractional distribution on each
path. Since Path B’s capacity is equal to the allocated fractional
distribution the initial subflow RTCP RRs report higher jitter and
the sender recalculates the fractional distribution and sends more
media on Path A than on Path B.

MPRTP header overhead: The header overhead for transmit-
ting MPRTP media packets is independent of the number of paths
they are transmitted on and in our experiments consumed an addi-
tional 1.275 Kbps over the standard RTP media packets. However,
RTCP is sent over each path and accounted for 72% (0.24 kbps)
and 79% (0.39 kbps) of the total RTCP bandwidth.

In summary, MPRTP can spread a CBR media stream across
multiple paths with diverging properties and provide comparable
quality (PSNR) to a single sufficiently dimensioned path, i.e., path
aggregation does not impact optimal performance.

R
at

io

time (s)

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200 220 240 260

bi
tra

te
 (k

bp
s)

Path A Link Capacity
 0

 250
 500
 750

 1000

bi
tra

te
 (k

bp
s)

Path B Link Capacity
 0

 250
 500
 750

 1000

Figure 9: Path A has constant capacity while on Path B capacity
changes at 60s intervals (possibly due to cross-traffic). We observe
that the media is offloaded to the other link when a path is con-
strained but is slowly shifted back as the constrained link improves.

Avg. PSNR �PSNR PLR
Variable losses per path

2-Path (0-0.5%) 43.4 1.9 0.24
3-Path (0-1.0%) 40.5 0.49 0.48

Variable RTT per path
Multi-Path 48.164 0.32 0.0121

Variable channel capacity per path
Multi-Path 42.93 2.23 0.772

Table 2: Varying Link Properties

6.2 Varying Link Properties
We now discuss the performance of the scheduling algorithm us-

ing time-varying link properties.
Paths with varying losses: Each path has a varying loss-rate

but the same one-way delay and e2e capacity. The loss-rate for a
path is randomly chosen for every one second interval. On detect-
ing losses the scheduling algorithm attempts to move the load to
the other available links. A scheduling algorithm that favors one
path over the others will perform poorly because of the variable
loss rate. This can be observed by the significantly higher average
PSNR values for the varying losses scenario (in Table 2) than the
average PSNR for the cases with static loss rate (in Table 1). We
also observe an equal fractional distribution per path.

Paths with varying delay: The setup comprises of 3 paths with
different e2e latencies but same loss-rate (0.5%). We emulate vary-
ing path delay by randomly changing the link delay by ±25% at 1
second intervals. These delays reflect routing updates or queuing
delay caused by cross-traffic. Additionally, improper rate alloca-
tion to a path may cause congestion resulting in additional queuing
delay. This is the only scenario where we enable retransmissions to
show that the scheduling algorithm assigns lower traffic share to the
low latency path and favors it for re-transmission, i.e., Path A=27%
(50ms), Path B=33% (100ms) and Path C=40% (200ms). By al-
locating more of the media rate to the high latency path (200ms),
the scheduler frees up bandwidth on the low latency path (50ms)
for retransmissions. We also observe that the receiver is able to
adapt its playout and provides a comparable PSNR to the lossless
scenario despite the varying path latencies and losses.

Paths with varying capacity: In this scenario, the e2e capac-
ity on one path is variable, it demonstrates the sensitivity of the
scheduling algorithm to the changes in network capacity, which
may be caused by cross-traffic. Path B in Figure 9 shows the link
with variable e2e capacity and the per-instant bandwidth utiliza-
tion by an MPRTP subflow. Note that the scheduling algorithm

bi
tra

te
 (k

bp
s)

time (s)

Src2/Path C
link capacity

 0
 250
 500
 750

 1000

 0 20 40 60 80 100 120 140 160 180 200 220 240 260

bi
tra

te
 (k

bp
s)

Src1/Path B
Src 2/Path B

 0

 200

 400

 600

bi
tra

te
 (k

bp
s)

Src1/Path A
link capacity

 0
 250
 500
 750

 1000

Figure 10: Two flows sharing a common bottleneck. Path A and
Path C have an e2e channel capacity of 1Mbps and Path B has an
e2e channel capacity of 800kbps.

Avg. PSNR �PSNR PLR
Source 1 44.41 0.03 0.132
Source 2 44.50 0.23 0.11

Table 3: MPRTP sharing a common bottleneck.

uses cues on one path to reallocate the media on to the other paths
(observe the points where the link rate drops). The scheduling al-
gorithm also tries to probe the network, so that an equilibrium state
of fair sharing can be achieved. However, this is done at long time-
scales (order of seconds) so that the per-path load does not oscillate.

6.3 Paths Share a Common Bottleneck
Not all e2e paths in the Internet will be disjoint, some may share

an intermediate bottleneck path. We conduct two experiments where:
1) all paths between two MPRTP endpoint share a common bot-
tleneck, 2) one path in each MPRTP endpoint shares a common
bottleneck path.

Subflows share a common bottleneck: All the paths have dif-
ferent e2e capacity but the bottleneck path has sufficient capacity
to carry the 1Mbps stream. In this case, we observe no variation
in the relative traffic distribution for the paths once the scheduling
algorithm converges to the optimum traffic distribution.

MPRTP flows share a common bottleneck: The previous sub-
section has shown that the scheduling algorithm tries to be fair to
other streams by moving part of its media data to another link. We
now evaluate the performance of the scheduling algorithm when it
competes with another MPRTP flow on a common bottleneck. Path
A and Path C are 1Mbps each and Path B is 800kbps. Source 1
uses paths A and B, while Source 2 uses Path B and C. So Path B is
shared between the two multipath sources. Furthermore, each indi-
vidual path cannot carry the entire stream. At startup, the MPRTP
senders allocate 50% traffic distribution on each of their paths: both
endpoints cause congestion by sending about 500kbps each on Path
B (capacity 800kbps). Figure 10 shows the per-path bandwidth uti-
lization including the common bottleneck link (Path B). Initially,
Source 2 detects congestion and reduces its fractional traffic allo-
cation for Path B. Meanwhile, Source 1 detects mild congestion be-
cause Source 2 has already reduced its load on the bottleneck link
and therefore Source 1 gradually decreases its traffic load on Path
B. Since Path B is not completely loaded after the initial period, it
shows that the scheduling algorithm is capable of being ‘fair’ to an-
other MPRTP flow on the common bottleneck. Table 3 shows that
the average PSNR and PLR for each media stream is comparable
to the other and no stream benefits more than the other.

R
at

io

time (s)

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200 220 240 260

bi
tra

te
 (k

bp
s) Path A (3G) Link Capacity

 0

 250

 500

 750

bi
tra

te
 (k

bp
s) Path B (WLAN)

 0
 250
 500
 750

 1000

(a) Path A (3G link) capacity changes every 10s

R
at

io

time (s)

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200 220 240 260

bi
tra

te
 (k

bp
s)

Path A (3G) Link Capacity
 0

 250
 500
 750

 1000

bi
tra

te
 (k

bp
s)

Path B (WLAN)
 0

 250

 500
 750

 1000

(b) Path A (3G link) capacity changes every 1s

Figure 11: MPRTP using WLAN and 3G paths

Path Characteristic Avg. PSNR �PSNR PLR
3G link with varying e2e capacity every 10s 42.483 0.551 0.85
3G link with varying e2e capacity every 1s 46.7173 0.21 0.33

Table 4: Performance of scheduling with WLAN and 3G paths

6.4 MPRTP using WLAN and 3G paths
Many mobile devices have WLAN and 3G interfaces that can be

exploited by MPRTP to deliver higher quality video streams. In
addition, wireless offloading, i.e., shifting the load from the cel-
lular network to a WLAN when a mobile device gets in range of
a suitable WLAN access point would benefit from using MPRTP
for changing the traffic allocation. YouTube on mobile/tablet uses
RTSP and it alone accounts for 22% of the mobile data band-
width [5]. Therefore, these devices would benefit from receiving
media over multiple interfaces.

We consider the case of a multihomed server is delivering a live
CBR video stream to a multihomed client over a WLAN and 3G
path. The WLAN path provides 1Mbps e2e capacity and 0.25%
loss rate. We emulate the 3G link using the throughput trace pro-
vided in [1, 42] and compare the performance in the case of quick
(link rate changes at 1s intervals) and slow bandwidth changes (link
rate changes at 10s intervals). The 3G link also emulates 1.0%
bit-error losses based on traces [2] and the RLC is set to unac-
knowledged mode (RLC-UNACK) to keep link layer delays to a
minimum [3]. For simplicity, the link latency on the WLAN and
3G path is kept constant.

Figure 11(a) shows the bandwidth utilization of each path and
the overall bandwidth distribution between the paths. The 3G link
is constrained and the scheduling algorithm does not quickly real-
locate the bandwidth it took away from a link to avoid bandwidth
oscillations. Moreover, the 3G link encounters packet losses more

R
at

io

time (s)

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200 220 240 260

bi
tra

te
 (k

bp
s)

Path A (3G) Link Capacity
 0

 250
 500
 750

 1000

bi
tra

te
 (k

bp
s)

Path B (3G) Link capacity
 0

 250

 500
 750

 1000

(a) Path capacity changes every 10s

R
at

io
time (s)

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200 220 240 260

bi
tra

te
 (k

bp
s)

Path A (3G) Link Capacity
 0

 250
 500
 750

 1000

bi
tra

te
 (k

bp
s)

Path B (3G) Link capacity
 0

 250

 500
 750

 1000

(b) Path capacity changes every 1s

Figure 12: Using MPRTP to stream media over multiple 3G paths

Path Characteristic Avg. PSNR �PSNR PLR
Two 3G links with varying capacity every 10s 39.2680 1.9 1.41
Two 3G links with varying capacity every 1s 46.1704 0.18 0.95

Table 5: Performance of scheduling with multiple 3G links

often than on the WLAN link, which makes the scheduling algo-
rithm prefer sending more media over the WLAN than the 3G link.
Alternatively, in Figure 11(b) the 3G link has higher capacity (on
average) but varies more quickly. In this case, the bandwidth is
more evenly shared except when the capacity on one path is lim-
ited and the load is moved to the other path.

In both the cases, the scheduling algorithm does not quickly re-
allocate the bandwidth it moved to another link but does this in a
more controlled manner so that the load distribution does not oscil-
late. This is a useful feature for the scheduling algorithm because
it can then use the passive or idle paths for fallback. Despite using
two lossy paths the PSNR of the media stream (see Table 4) in this
scenario is better than the single path with 0.5% and 1.0% loss rate
(see Table 1).

6.5 MPRTP using Multiple 3G paths
Many live streaming events take place outdoors, oftentimes in

places where broadband Internet is inaccessible. However, these
places may have wireless 3G coverage but one 3G link may be in-
sufficient to cater to the capacity needs of the video stream. More-
over, Internet connectivity to trains is become widespread and such
systems often use multiple 3G access links (possibly complemented
by WLAN or WiMax) to increase capacity, which could be used by
onboard infotainment systems that are aware of the diverse inter-
faces. In either case, combining many 3G links to form one virtual
(composite) 3G link, may be an option for real-time video (interac-
tive or live) streams.

In this scenario, a video stream is sent over two 3G links from
a server to a client where it is reconstructed and played back. The
two links are different combinations of the throughput traces pro-
vided in [1,42] and the RLC is set to unacknowledged mode (RLC-
UNACK) to keep link layer delays to a minimum [3]. The losses on
the path vary (1.0% based on [2]) and variation in link latency be-
tween the two path is low. Like in the previous scenario, we choose
slow (10s intervals) and quick (1s intervals) bandwidth changes
to evaluate performance of the scheduling algorithm. One added
constraint is that the sum of the instantaneous capacities of the
two 3G links should be sufficient to carry the multimedia stream
(⇡ 1Mbps). We do not implement rate-switching, which may be
used when the required capacity exceeds available capacity.

Figure 12(a) and (b) show the bandwidth utilization of each flow
per path for 10s and 1s link rate changes. Initially, the scheduling
algorithm keeps the per-path traffic distribution equal as long as
each path is capable of carrying the individual subflows. However,
as soon as one link becomes constrained, the scheduling algorithm
offloads the rest of the media to the other link (around 180-200s
in Fig. 12). The PSNR of the media stream (see Table 5) in the
quick bandwidth scenario is better than the single path with 0.5%
and 1.0% loss rate. And in the slow bandwidth change scenario it
comparable to the single path with 1.0% loss rate.

6.6 Summary
Our evaluation shows that 1) for paths with static properties,

multipath’s performance is similar and comparable to that of the
single path, 2) the scheduling algorithm tries to maintain propor-
tional fairness, 3) when one path is congested the scheduling al-
gorithm is able to offload the remaining media traffic to the other
links, 4) by using an adaptive playout delay the receiver is able to
compensate for paths with different latencies without any explicit
notification from the sender, 5) MPRTP subflows can share a com-
mon bottleneck and be fair to each other, 6) on lossy links the mul-
tipath is more robust and produces fewer losses when compared to
a single path with the same average loss rate.

7. SYSTEM CONSIDERATIONS
MPRTP will not be used stand-alone but in the context of a com-

plex system that comprises of signaling for setting up and tearing
down media streams (such as SIP or RTSP) in today’s Internet,
which includes dealing with NATs and firewalls. Also, MPRTP will
encounter non-MPRTP endpoints and have to interact with them,
and multipath operation requires extending RTCP functionality for
RTT calculation to be revisited. We will discuss these aspects in
the following subsection.

7.1 Call Establishment and NATs
At session startup and when new interfaces appear they can be

advertised in-band (in RTP and/or RTCP) or out-of-band (in SDP).
In-band Interface Advertisement (IB): The RTP packets carry

interface advertisements, i.e., RTP header extensions contain a set
of additionally available interfaces. On receiving interface adver-
tisements, a receiver responds with its own available interfaces in
the RR, yielding a set of receive interfaces on each side [39]. For
NAT traversal, both endpoints probe which of the remote interfaces
they can reach and when enough of these connectivity checks suc-
ceed, the sender starts scheduling packets on multiple interfaces.
We define new connectivity check messages in RTCP and send
them at 20ms intervals (similar to STUN [36]). While sessions with
bidirectional media stream provide interface information already in
the first RTP packets, with unidirectional media, the receiver uses
an RTCP extension for signaling, thus completing the exchange in

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200

C
on

ne
ct

io
n

se
tu

p
tim

e
(m

s)

Path latency (ms)

no loss, IB
loss=10%, IB
loss=33%, IB

no loss, OB
loss=10%, OB
loss=33%, OB

(a) Without connectivity-checks and NAT traversal

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200

C
on

ne
ct

io
n

se
tu

p
tim

e
(m

s)

Path latency (ms)

no loss, IB
loss=10%, IB
loss=33%, IB

no loss, OB
loss=10%, OB
loss=33%, OB

(b) With connectivity-checks for NAT traversal

Figure 13: Comparison of connection setup times for in-band (IB)
and out-of-band (OB) call setup a) without NATs (i.e., no STUN
connectivity checks [36]), b) with NAT traversal for different path
latencies and link error rates. We run each call setup 100 times and
the error-bars represents the 95% confidence-level.

one RTCP interval. However, the interface advertisement in RTCP
is sent as a non-compound packet, i.e., if there is sufficient RTCP
bandwidth then the endpoint can send the non-compound packet
earlier than the next scheduled RTCP Report. Packet loss does
not overly affect the connection setup time because the endpoint
sends more frequent updates when it observes higher packet loss
(see Fig. 7 in Section 5.2).

Out-of-band Interface Advertisement (OB): An MPRTP at-
tribute [44] in SDP [35] carries the MPRTP interface advertise-
ment. If NAT traversal is not required then the endpoint sends
the MPRTP interfaces in the first SDP Offer/Answer. However
for NAT traversal, the endpoint first sends the ICE candidates in
SDP [35] and the ICE agent performs the connectivity checks. Af-
ter enough connectivity checks have succeeded, the endpoint ad-
vertises the MPRTP interfaces in SDP. Similarly, to advertise out-
of-band in RTSP [20, 38] requires extensions to RTSP [44].

In both in-band and out-of-band call establishment, if the set of
available interfaces changes, updated interface advertisements are
sent (and the corresponding procedure repeats), i.e., the most re-
cently received addresses override earlier ones.

In-band vs Out-of-band Setup: In-band call setup does not
have to wait for a response from the other endpoint before sending
media on the path. Typically, out-of-band call setup would require
at least one additional RTT for SDP Offer/Answer procedures to
succeed. This is especially useful when an interface (e.g., WLAN)
at an endpoint routinely appears and disappears.

Figure 13 shows the comparison of connection setup times using
in-band and out-of-band signaling for paths with different laten-
cies and error-rates. If signaling packets are lost, the sender times
out and re-transmits (typically, retransmission timeout is 500ms if
an RTT estimate is unavailable) leading to longer call setup times.

Whereas in in-band, the endpoint creates redundancy by sending
the interface advertisement in every RTP packet in the RTCP inter-
val and this leads to a shorter call setup time.

In Figure 13(a), the endpoints do not run connectivity-checks12

and the call setup times are much shorter than Figure 13(b), where
endpoints run connectivity checks. Moreover, the call setup times
for in-band is shorter than out-of-band for the same error-rates and
increasing path latency. For instance in Figure 13(b), the connec-
tion setup at 100ms link latency for in-band setup with 10% loss
rate is shorter than out-of-band with 0% loss rate.

7.2 Backward Compatibility
We did a series of simple tests using Gstreamer (legacy endpoint)

and our MPRTP application. The following cases were successful:
1) Gstreamer to MPRTP over a single path, 2) MPRTP to Gstreamer
over a single path, and 3) MPRTP to Gstreamer over multiple paths
with similar path characteristics. However in 3), when the path
characteristics are different, Gstreamer is able to playback packets
from all the paths only if the path skew is smaller than the size
of the dejitter buffer (which is typically 512 packets [18]). If the
dejitter buffer is smaller than the path skew, Gstreamer just discards
the packets from the slow path and does not play them out because
they arrived late. Since a standard RTCP report [37] does not report
packets discarded after arrival at the receiver, the MPRTP scheduler
will not be able to adjust the fractional distribution.

7.3 RTT measurements
The media sender sends an RTCP SR on each active path. For

each SR the receiver gets, it echoes one back to the same IP address-
port pair that sent the SR. Therefore, the receiver tries to choose the
symmetric path (based on the same 5-tuple) and if the routing uses
the same return path then the per-path RTT calculations will work
out correctly. However, if the paths are not symmetric, the sender
would at maximum, under-estimate the RTT of the path by a fac-
tor of half of the actual path RTT. The scheduling algorithm should
therefore not depend solely on RTT as an indicator for scheduling.

7.4 MPRTP Scheduling in the Real World
We measure the performance of the scheduling algorithm by ini-

tiating a live video stream between a multi-homed server (WLAN,
Ethernet⇥2, 3G) hosted at the university and a laptop computer
(WLAN, 3G). We observe varying results between each succes-
sive result because of varying amounts of cross traffic on the public
Internet. Even though we observe diverse results, it shows that
MPRTP endpoints can operate on the public Internet.

8. RELATED WORK
A lot of work has gone into multihoming and multipath at the

transport layer: SCTP [45], Multipath TCP (MPTCP) [49], and
bandwidth aggregation for mobile hosts [23, 30], but these do not
consider real-time properties. On the theoretical aspects, [16, 22,
27, 40, 50] provide the foundation and reference simulation setups
for multipath transmission.

Specifically for multimedia, Liang et al. [28] show that trans-
mitting redundant voice traffic over multiple paths perform better
than a FEC protected single stream. While Chesterfield et al. [12]
show that by sending media over one 3G interface and Unequal
Protection (UEP) packets over a separate 3G interface can com-
pensate for losses on the first path. To minimize bursty losses, [7]

12setup assumes that at least one entity has a globally addressable
IP address (in use-cases where the endpoint connects to an IPTV
distribution, live streaming server, etc.)

recommends sending odd and even frames over multiple paths.
Westwood SCTP-PR [17] balances real-time media traffic using a
bandwidth-aware scheduler but uses reliable transport.

Chebrolu et al. [11] propose bandwidth aggregation for multi-
media applications by computing the earliest delivery time for each
packet. They further propose to drop less important frames (e.g.,
B-frames) if the available capacity is smaller than the current en-
coding rate [10]. In our media stream, we do not use B-frames
and do not discard any packets at the sender. Furthermore, we try
to maintain optimal playout by choosing paths that meet the la-
tency constraints and try to maintain a very short de-jitter buffer
(500ms), so that the scheduling algorithm can be extended to
include interactive applications. Jurca et al. [25] propose a frame-
aware scheduling algorithm that sends key-frames and other impor-
tant media packets over less lossy paths and this approach is similar
to the one proposed in this paper. However, they also propose send-
ing future packets over high latency paths by reading ahead in the
media stream. While this is an interesting concept, it would require
larger buffers and more state at the sender (typically, RTSP servers)
to read ahead the stored media stream and would not work for in-
teractive and live video streams where it cannot read ahead. While
the proposed solution in this paper does not do congestion control,
it borrows a lot of ideas from [13, 25, 29, 34, 47], for sensitivity
towards reported network cues to perform load balancing.

9. CONCLUSION
We have presented MPRTP, a backwards-compatible extension

to RTP that spreads packets of a media stream across a number
of different paths, that can be discovered and set up dynamically
within an RTP session. We have explored the criteria for assigning
traffic shares as a function of the diverse path properties and pre-
sented considerations for scheduling algorithms. Our evaluation
using our complete protocol implementation shows that our design
1) allows exploiting multiple paths without performance degrada-
tion compared to suitable single-path cases—so that it is safe to
deploy—and 2) enables load distribution and capacity aggregation
in diverse scenarios. Mobile users (and operators) may benefit from
aggregating or dynamically shifting load between different wireless
interfaces and MPRTP may assist well in bundling multiple wire-
less access networks for vehicular Internet access.

While our initial findings are promising, further work is needed
to cover a broader range of media encoding rates, more sophis-
ticated network setups with diverse cross traffic and on the pro-
tocol side, we seek to integrate MPRTP with congestion control
(e.g., [6, 34, 43]).

10. REFERENCES
[1] 3GPP R1-081955. LTE Link Level Throughput Data for SA4

Evaluation Framework., May 2008.
[2] 3GPP S4-050560. Software Simulator for MBMS Streaming

over UTRAN and GERAN, Sept. 2005.
[3] 3GPP TR 26.902. Video Codec Performance, Jan. 2008.
[4] S. Akhshabi, A. C. Begen, and C. Dovrolis. An experimental

evaluation of rate-adaptation algorithms in adaptive
streaming over HTTP. In Proc. of MMSys, 2011.

[5] Allot MobileTrends. Global Mobile Broadband Traffic
Report, 07 2011.

[6] H. Alvestrand, S. Holmer, and H. Lundin. A Google
Congestion Control Algorithm for RTCWEB, 2011. IETF
Draft, draft-alvestrand-rtcweb-congestion.

[7] J. Apostolopoulos. Reliable Video Communication over
Lossy Packet Networks using Multiple State Encoding and

Path Diversity. In Proc. of IEEE VCIP, 2001.
[8] F. Baker. Exploring the multi-router SOHO network, 2011.

IETF Draft, draft-baker-fun-multi-router.
[9] E. Brosh, S. A. Baset, D. Rubenstein, and H. Schulzrinne.

The Delay-Friendliness of TCP. In Proc. of ACM
SIGMETRICS, 2008.

[10] K. Chebrolu and R. Rao. Selective frame discard for
interactive video. In Proc. of IEEE ICC, volume 7, june 2004.

[11] K. Chebrolu and R. Rao. Bandwidth aggregation for
real-time applications in heterogeneous wireless networks.
IEEE Transactions on Mobile Computing, 5(4), april 2006.

[12] J. Chesterfield, R. Chakravorty, I. Pratt, S. Banerjee, and
P. Rodriguez. Exploiting diversity to enhance multimedia
streaming over cellular links. In Proc. of IEEE INFOCOM,
2005.

[13] S. Choi and M. Handley. Designing TCP-Friendly
Window-based Congestion Control for Real-time
Multimedia Applications. In Proc. of PFLDNeT, 2009.

[14] T. E. Chown. Home Networking Architecture for IPv6, 2012.
IETF Draft, draft-ietf-homenet-arch.

[15] Cisco. Entering the Zettabyte Era. Whitepaper, June 2011.
[16] Y. Dong, D. Wang, N. Pissinou, and J. Wang. Multipath load

balancing in transport layer. In Proc. of IEEE EuroNGI, 07.
[17] M. Fiore and C. Casetti. An adaptive transport protocol for

balanced multihoming of real-time traffic. In Proc. of IEEE
GLOBECOM, 2005.

[18] D. Fober, Y. Orlarey, and S. Letz. Real time clock skew
estimation over network delays, 2005.

[19] Ford, A., Raiciu, C., and M. Handley. TCP Extensions for
Multipath Operation with Multiple Addresses, 2011. IETF
Draft, draft-ietf-mptcp-multiaddressed.

[20] J. Goldberg, M. Westerlund, and T. Zeng. A NAT Traversal
mechanism for media controlled by RTSP, 2012. IETF Draft,
draft-ietf-mmusic-rtsp-nat.

[21] M. Handley, C. Raiciu, and M. Bagnulo. Outgoing Packet
Routing with MPTCP, 2009. IETF Draft,
draft-handley-mptcp-routing.

[22] Y. Hasegawa, I. Yamaguchi, T. Hama, H. Shimonishi, and
T. Murase. Improved data distribution for multipath tcp
communication. In Proc. of IEEE GLOBECOM, Dec 2005.

[23] H. Hsieh and R. Sivakumar. A transport layer approach for
achieving aggregate bandwidths on multi-homed mobile
hosts. Wireless Networks, 11(1), 2005.

[24] I. Johansson and M. Westerlund. Support for Reduced-Size
RTCP: Opportunities and Consequences. RFC 5506, 2009.

[25] D. Jurca and P. Frossard. Video packet selection and
scheduling for multipath streaming. IEEE Transactions on
Multimedia, april 2007.

[26] F. Kelly and T. Voice. Stability of end-to-end algorithms for
joint routing and rate control. ACM SIGCOMM CCR, 2005.

[27] P. Key, L. Massoulié, and P. Towsley. Path selection and
multipath congestion. In Proc. of IEEE INFOCOM, 07.

[28] Y. J. Liang, E. G. Steinbach, and B. Girod. Multi-Stream
Voice over IP Using Packet Path Diversity. In Proc. of
MMSP, 2001.

[29] F. Licandro and G. Schembra. A rate/quality controlled
MPEG video transmission system in a TCP-friendly Internet
scenario. In Proc. of IEEE Packet Video, 2002.

[30] L. Magalhaes and R. Kravets. Transport level mechanisms
for bandwidth aggregation on mobile hosts. In Proc. of IEEE
ICNP, 2001.

[31] J. Ott, I. Curcio, and V. Singh. RTP Control Protocol (RTCP)
Extended Reports (XR) for Run Length Encoding (RLE) of
Discarded Packets, 2011. IETF Draft,
draft-ietf-xrblock-rtcp-xr-discard-rle-metrics.

[32] J. Ott, S. Wenger, N. Sato, C. Burmeister, and J. Rey.
Extended RTP Profile for RTCP-Based Feedback
(RTP/AVPF). RFC 4585, 2006.

[33] C. Perkins. RTP: audio and video for the internet.
Addison-Wesley Professional, first edition, 2003.

[34] C. Perkins and V. Singh. RTP Congestion Control: Circuit
Breakers for Unicast Sessions, 2012. IETF Draft,
draft-ietf-avtcore-rtp-circuit-breakers.

[35] J. Rosenberg. Interactive Connectivity Establishment (ICE):
A Protocol for Network Address Translator (NAT) Traversal
for Offer/Answer Protocols. RFC 5245, 2010.

[36] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing. Session
Traversal Utilities for NAT (STUN). RFC 5389, 2008.

[37] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson.
RTP: A Transport Protocol for Real-Time Applications. RFC
3550, 2003.

[38] Schulzrinne, H., Rao, A., Lanphier, R., Westerlund, M., and
M. Stiemerling. Real time streaming protocol 2.0 (rtsp),
2011. IETF Draft, draft-ietf-mmusic-rfc2326bis.

[39] V. Singh, T. Karkkainen, J. Ott, and S. Ahsan. Multipath RTP
(MPRTP), 2012. IETF Draft, draft-singh-avtcore-mprtp.

[40] V. Singh and J. Ott. Evaluating congestion control for
interactive real-time media., 2012. IETF Draft,
draft-singh-rmcat-cc-eval.

[41] V. Singh, J. Ott, and I. Curcio. Rate adaptation for
conversational 3G video. In Proc. of INFOCOM Workshop
on MoViD, Brazil, 2009.

[42] V. Singh, J. Ott, and I. Curcio. Predictive Buffering for
Streaming Video in 3G Networks. In Proc. of IEEE
WoWMoM, Jun 2012.

[43] V. Singh, J. Ott, and I. Curcio. Rate-control for
Conversational Video Communication in Heterogeneous
Networks. In Proc. of IEEE WoWMoM, Jun 2012.

[44] V. Singh, J. Ott, T. Karkkainen, R. Globisch, and T. Schierl.
Multipath RTP (MPRTP) attribute in Session Description
Protocol, 2012. IETF Draft,
draft-singh-mmusic-mprtp-sdp-extension.

[45] R. Stewart. Stream Control Transmission Protocol. RFC
4960, 2007.

[46] F. Valera, I. van Beijnum, A. Garcıa-Martınez, and
M. Bagnulo. Multi-path bgp: motivations and solutions.
NGI: Architectures and Protocols, 2011.

[47] J. Viéron and C. Guillemot. Real-time constrained
TCP-compatible rate control for video over the Internet.
IEEE Transactions on Multimedia, 6(4), August 2004.

[48] D. Wischik, M. Handley, and M. B. Braun. The resource
pooling principle. SIGCOMM CCR, 38, September 2008.

[49] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley.
Design, Implementation and Evaluation of Congestion
Control for Multipath TCP. In Proc. USENIX NSDI, 2011.

[50] M. Zhang, J. Lai, A. Krishnamurthy, L. Peterson, and
R. Wang. A transport layer approach for improving
end-to-end performance and robustness using redundant
paths. In Proc. of USENIX ATC, 2004.

[51] M. Zink, O. Kuenzel, J. Schmitt, and R. Steinmetz.
Subjective impression of variations in layer encoded videos.
In Proc. of IWQoS, 2003.

