
TCP HACK: a mechanism to improve performance over
lossy links q

R.K. Balan 1, B.P. Lee 2, K.R.R. Kumar, L. Jacob, W.K.G. Seah, A.L. Ananda *

Department of Computer Science, Centre for Internet Research, School of Computing, National University of Singapore,

3 Science Drive 2, Lower Kent Ridge Road, Singapore 117543, Singapore

Received 12 October 2001; accepted 18 December 2001

Responsible Editor: I.F. Akyildiz

Abstract

In recent years, wireless networks have become increasingly common and an increasing number of devices are

communicating with each other over lossy links. Unfortunately, TCP performs poorly over lossy links as it is unable to

differentiate the loss due to packet corruption from that due to congestion. In this paper, we present an extension to

TCP which enables TCP to distinguish packet corruption from congestion in lossy environments resulting in improved

performance. We refer to this extension as the HeAder ChecKsum option (HACK). We implemented our algorithm in

the Linux kernel and performed various tests to determine its effectiveness. Our results have shown that HACK per-

forms substantially better than both selective acknowledgement (SACK) and NewReno in cases where burst corrup-

tions are frequent. We also found that HACK can co-exist very nicely with SACK and performs even better with SACK

enabled. � 2002 Elsevier Science B.V. All rights reserved.

Keywords: Protocol design; Protocol analysis; Wireless networks

1. Introduction

There has been a proliferation in the use of
mobile computing in the last few years. More and
more devices are talking to each other via lossy
links. Lossy environments are characterised by
high bit error rates as opposed to wired networks
where the bit error rate is very low. They are also
usually served by low bandwidth links and expe-
rience long delays during handoff periods. As
a result, it has become vital that the network
protocols used to interconnect these devices un-
derstand and operate well in these lossy environ-
ments.

Computer Networks 39 (2002) 347–361

www.elsevier.com/locate/comnet

qA version of this paper was presented in the IEEE

INFOCOM 2001 conference, Anchorage, Alaska.
* Corresponding author.

E-mail addresses: rajesh@cs.cmu.edu (R.K. Balan), lee.bp@

unitywireless.com.sg (B.P. Lee), kaleelaz@comp.nus.edu.sg

(K.R.R. Kumar), jacobl@comp.nus.edu.sg (L. Jacob), wseah@

comp.nus.edu.sg (W.K.G. Seah), ananda@comp.nus.edu.sg

(A.L. Ananda).
1 Present address: Carnegie Mellon University, School of

Computer Science, 5000 Forbes Avenue, Pittsburgh, PA 15232,

USA.
2 Present address: Unity Wireless Integration, 1123 Seran-

goon Road, #02-01 UMW Building, Singapore 328207, Singa-

pore.

1389-1286/02/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

PII: S1389-1286 (01 )00310-3



The de-facto network protocol stack used for
communications is the TCP/IP stack. This stack
couples a best effort network layer (IP) with either
a reliable (TCP) or an unreliable (UDP) transport
layer. The majority of applications on the Internet
use the TCP/IP stack as the basis for their trans-
actions.

However, TCP was designed to optimise its
performance to deal with packet losses in the net-
work due to congestion [12]. It is unable to de-
termine if a packet loss is due to congestion or
corruption of the packet due to errors in the net-
work. As a result, TCP generally performs poorly
in lossy environments as it interprets packet cor-
ruption as congestion in the network. Thus instead
of increasing or, at least, maintaining its sending
rate to overcome these errors due to corruption,
TCP will decrease its sending rate to reduce, what
it perceives as, congestion in the network. This
reduction in sending rate results in low through-
puts for bulk transfers.

In this paper, we propose a modification to the
TCP [17,19,24] protocol that allows it to perform
better in lossy environments. We base our solution
on the premise that when packet corruption oc-
curs, it is more likely that the packet corruption
occurs in the data and not the header portion of
the packet. This is because the data portion of a
packet is usually much larger than the header
portion for many applications over typical MTUs.
With this knowledge, we have devised an algo-
rithm by which TCP is able to recover these un-
corrupted headers and thus determine that packet
corruption and not congestion has taken place in
the network. TCP can then react appropriately.
We do this by introducing two TCP options: the
first option is for data packets and contains
the 1’s-complement 16-bit checksum of the TCP
header (and pseudo-IP header) while the second is
for ACKs and contains the sequence number of
the TCP segment that was corrupted.

The rest of this paper is organised as follows.
We discuss some related work in Section 2, fol-
lowed by a description of the details and dynamics
of our extension to the TCP protocol in Section 3.
Section 4 will describe our implementation while
Section 5 presents the results of our experiments.
We discuss some possible deployment strategies of

our protocol in Section 6. Section 7 will detail our
future plans and we conclude with a summary.

2. Related work

There has been an incredible number of tech-
niques developed for TCP over the past decade
facilitating fast and efficient recovery from packet
losses in general.

The fast retransmit algorithm [19] interprets
incoming duplicate acknowledgements as an indi-
cation of packet loss and retransmits the packet
indicated by the ACKs while avoiding timeouts.
However, if two or more packets have been lost
from a window, the fast retransmission will not be
able to recover the losses without waiting for a
timeout. NewReno [10,11,22] introduces the con-
cept of fast retransmission phase, which starts on
detection of a packet loss and ends when the re-
ceiver acknowledges reception of all data trans-
mitted at the start of the retransmission phase. The
sender assumes reception of a partial ACK during
the fast retransmission phase as an indication that
another packet has been lost within the window,
and retransmits it immediately. With the selective
acknowledgement (SACK) option [20] enabled,
the receiver sends duplicate ACKs containing the
segment numbers of the packets it has received.
This allows the transmitter to selectively retrans-
mit only lost packets, without retransmitting al-
ready SACKed packets.

Packet loss due to corruption is more common
over satellite and wireless networks than wired
networks and there have been a number of initia-
tives in tackling this problem.

A common solution is to add forward error
correction (FEC) to the data being sent over lossy
links. Allman et al. [18] covers the issues in using
FEC to improve the performance of satellite
links. The indirect-TCP (I-TCP) protocol [2] splits
a TCP connection between a fixed and mobile host
into two separate connections and hides TCP from
the lossy link by using a protocol optimised for
lossy links. The SNOOP protocol [6] caches
packets at the base station and performs local re-
transmissions over the lossy link.

348 R.K. Balan et al. / Computer Networks 39 (2002) 347–361



The use of explicit congestion notification
(ECN) [9,21] in the TCP/IP protocol enables rou-
ters to inform TCP senders about the onset of
congestion and may assist in distinguishing packet
losses due to congestion and corruption. Other
explicit notification schemes include explicit loss
notification (ELN) [7], explicit bad state notifica-
tion (EBSN) [5] and forward acknowledgement
(FACK) [15].

The use of a checksum to protect header in-
formation has also been proposed by Larzon et al.
[13] in their UDP lite protocol. They allow appli-
cations to receive UDP data even if the data had
been corrupted as their claim is that many UDP
applications would prefer to receive slightly cor-
rupted data instead of no data.

3. TCP Header Checksum option

We extended TCP by including two additional
TCP options. The first (see Fig. 1) is both an en-
abling option used in SYN segments as well as the
HeAder ChecKsum (HACK) option used in data
segments. When the option is used in a SYN seg-
ment, it is an indication that the Header Checksum
option can be used once the connection is estab-
lished (the value of the option field is ignored in
this case). When used in data segments, the option
field contains the 16-bit 1’s complement checksum
of the TCP header and the pseudo-IP header. The
second option (see Fig. 2) is the Header Checksum
ACK option which is included in ‘special’ ACKs
generated in response to packet corruption.

Normally, TCP carries only one checksum,
which is for the entire TCP segment. If this check-
sum fails due to packet corruption, the entire seg-
ment is discarded. However, in many cases, the
headers of the corrupted TCP segment are still
recoverable as the corruption might have occurred
in the data portion alone. Hence, by adding a
separate checksum for the header portion of the
TCP segment, the TCP receiver will be able to
check the integrity of the header. By recovering
this header, the receiver is able to send a ‘special’
ACK back to the TCP sender indicating packet
corruption. This ACK will contain the sequence
number of the corrupted packet in the option field.
This ACK is identical to normal ACKs except for
the additional option.

We modified the data processing algorithms of
the TCP sender and receiver and the ACK pro-
cessing algorithm of the TCP sender to incorpo-
rate our new Header Checksum options, which are
explained in the following subsections.

3.1. Modifications to the TCP sender

When sending out data segments, our modified
TCP stack first checks if the Header Checksum
option has been negotiated. If the option has not
been negotiated, the TCP sender proceeds as per
normal. Otherwise, it will compute the header
checksum for that data segment and place it into
the option field of the Header Checksum option.
The rest of the data sending algorithm is as per
normal (Fig. 3).

3.2. Modifications to the TCP receiver

When the TCP receiver (Fig. 4) receives a
packet, it verifies the integrity of the segment using
the standard TCP checksum. If the segment is
uncorrupted, it is processed as per normal. How-
ever, if it is corrupted, the modified TCP stack
does the following:

(1) Verify the integrity of the header of the cor-
rupted segment using the value of the header
checksum contained in the option field.
(2) If the header is corrupted, the segment is dis-
carded and no further processing is done.

Fig. 1. TCP Header Checksum option.

Fig. 2. TCP Header Checksum ACK option.

R.K. Balan et al. / Computer Networks 39 (2002) 347–361 349



(3) If the header is intact, the ‘special’ ACK is
sent to the sender of the corrupted packet. This
ACK will contain the Header Checksum ACK
option indicating to the sender that this ACK
was generated in response to packet corruption.
It contains the sequence number of the cor-
rupted segment in the option field, thus allowing
the sender to selectively retransmit only the seg-
ment that was corrupted.

3.3. Modifications to the ACK processing

When the TCP sender receives an ACK, it
checks if the Header Checksum ACK option is
present. If the option is not there, it indicates that
this is a normal ACK and the sender processes it as
per normal. However, if the option field is set, the
stack does the following:

(1) The sequence number of the corrupted seg-
ment triggering this ACK is obtained from the
Header Checksum ACK option field.
(2) The TCP retransmission algorithm is called
to selectively retransmit the corrupted segment.
These retransmissions are done at rates permit-
ted by the current congestion window (cwnd).
(3) No further processing is done unlike the case
of normal TCP ACKs.

These ‘special’ ACKs do not indicate conges-
tion in the network. Hence, the TCP sender does
not halve it’s cwnd if it receives multiple ‘special’
ACKs with the same value in the ACK field (for
e.g., ACKs generated in response to corruption in
consecutive segments. These ACKs will have the
same value in the ACK field but different values in
the Header Checksum ACK option field, Fig. 5).

4. Implementation and experimental setup

We incorporated our Header Checksum options
and the necessary changes to the TCP algorithm
in the Linux kernel version 2.2.10. This modified
version of the Linux kernel was installed on our
experimental testbed consisting of Celeron 300A
machines with 128 MB of RAM each. The ma-
chines were connected using Intel Ether-ExpressFig. 4. Modifications to the TCP receiver.

Fig. 3. Modifications to the TCP sender.

350 R.K. Balan et al. / Computer Networks 39 (2002) 347–361



Pro 100 (set to 10 Mbps) network cards. The ex-
perimental testbed is shown in Fig. 6.

We ran our experiments by sending TCP bulk
data from the client to the server. We used iperf [3]
to generate this data. The error/delay box was used
to corrupt and delay packets in the network to
simulate lossy and long latency environments, re-
spectively. Random as well as bursty packet errors
were generated using packet corruption software
and the amount and location of the corruptions
within a packet were all randomised. For our ex-
periments, errors were generated only to packets
travelling on the forward path. Packets on the
reverse path (the ACK packets from the server to
the client) were not corrupted.

We modified the device drivers of the ethernet
cards to stop them from discarding packets that
failed the packet CRC checks. As a result, cor-
rupted packets arriving at the network cards were

passed up to the TCP/IP stack without being dis-
carded. Infact, layer-2 protocol delivering corrupt
PDUs to upper layer can happen in the following
scenarios (i) the user chooses the option of dis-
abling the link-layer CRC and (ii) the error rate is
too high for the link-layer CRC to be efficient. We
claim that disabling error detection and recovery
at lower layers and letting TCP to do them can be
beneficial to the overall performance.

5. Results and discussions

To test the effectiveness of HACK, we ran a
variety of test scenarios. These scenarios were de-
signed to test the performance of HACK under
various lossy environments. We chose NewReno
and SACK for comparison as Linux implements
both of them and they are acclaimed as the ‘‘best’’
basic and extended commodity TCP implementa-
tions, respectively [4,8,22].

We used packet corruption probabilities rang-
ing from 2% to 15%, which corresponds to a bit
error rate of 1� 10�6–1� 10�5.

For each of the packet corruption probabili-
ties given above, we still had to determine what
proportion of the packet headers were corrup-
ted. This metric was fundamental in determining
HACKs effectiveness, as HACK requires uncor-
rupted packet headers. Since the actual value of
this metric is heavily dependent on the environ-
ment, we elected to use two different values that
reflect the entire range of values that this metric
could possibly take. In the first case, we assumed
that 0% of the headers in corrupted packets were
corrupted, i.e., this would be the best possible case
for HACK. In the second case, we assumed that
95% of the packet headers were corrupted. This
would represent almost the worst possible case for
HACK. We are confident that the actual header
corruption percentage in any wireless environment
would fall somewhere between these two extremes.

5.1. Random bit errors

In the first experiment, we compare the perfor-
mance of HACKwith SACK (on top of NewReno)
and NewReno (default TCP stack in Linux 2.2.10)

Fig. 6. Experimental testbed.

Fig. 5. Modification to the ACK processing.

R.K. Balan et al. / Computer Networks 39 (2002) 347–361 351



in the presence of white noise, i.e., in a scenario
where the error condition is characterised by sharp
spikes causing single bit corruptions. We have
translated this bit error profile into packet errors
(as mentioned earlier, our packet corruption
probabilities range from 2% to 15% corresponding
to a bit error range of 1� 10�6–1� 10�5). We ran
the experiment over a low latency link (10 ms end-
to-end delay) by sending 2 MB of TCP bulk data
from the client to the server and over a long latency
link (300 ms end-to-end delay, e.g., satellite link)
by sending 256 KB of TCP bulk data from the

client to the server. In the latter case, we used 256
KB to reduce experiment time as 2 MB was taking
too long to complete. We repeated the experiment
five times for each TCP/IP stack and for each
packet corruption probability. We also repeated
each experiment using the two different header
corruption probabilities (0% and 95% as explained
above). The TCP window size was set high enough
that it was not a limiting factor for either latency.
Average throughput versus percentage loss curves
are shown in Fig. 7 for the low latency link with
95% header corruption and in Fig 8 for 0% header

Fig. 7. Throughput versus percentage packet loss for low latency (10 ms) link with random single packet error (95% header error).

Fig. 8. Throughput versus percentage packet loss for low latency (10 ms) link with random single packet errors (0% header error).

352 R.K. Balan et al. / Computer Networks 39 (2002) 347–361



corruption. Fig. 9 shows the results for the long
latency link with 95% header corruption and Fig.
10 shows the results for the long latency link with
0% header corruption. Fig. 11 shows the average
number of slow starts experienced by the various
TCP implementations over the long latency link.

As can be seen, both SACK and HACK per-
form better than NewReno for both latencies and
for both header corruption percentages. They also
experience less slow starts than NewReno. These
results were due to the selective ACK feature of
SACK (which enabled SACK to do more intelli-
gent and efficient retransmissions of lost packets)

and the ability of HACK to recover useful infor-
mation from corrupted packets. The results show
that HACK still works well even when it can only
recover the header information from a small per-
centage (5%) of the corrupted packets. Based on
these results, we exclude NewReno from all further
experiments and only show the comparison be-
tween SACK and HACK. The performance of
both SACK and HACK are comparable in the
situation where white noise is prevalent. The best
performance is achieved when we combine both
HACK and SACK together. This will be discussed
further later.

Fig. 9. Throughput versus percentage packet loss for long latency (300 ms) link with random single packet errors (95% header error).

Fig. 10. Throughput versus percentage packet loss for long latency (300 ms) link with random single packet errors (0% header error).

R.K. Balan et al. / Computer Networks 39 (2002) 347–361 353



5.2. Burst errors

We next ran experiments to compare the per-
formance of SACK and HACK in bursty error
conditions. Multi-packet random burst errors with
burst lengths ranging from 2 to 10 packets were
considered. We ran this experiment over the long
latency link with the window size set high enough
not to be a limiting factor. Figs. 12–15 show the
results of the various TCP schemes under different
burst error lengths for 2%, 5%, 10% and 15% burst
error probabilities respectively with a header cor-
ruption percentage of 0%. Figs. 16–19 show the
same results but for a header corruption percent-
age of 95%.

From the graphs, it can be seen that HACK
performs substantially better than SACK in the
presence of bursty errors. This is because SACK is
unable to respond when it loses too many packets

in a row and thus it times out frequently. HACK is
better in this respect as it can recover some of the
headers of the corrupted packets and use those
headers to generate ACKs and keep the pipe
flowing. As expected, HACK performs better with
SACK activated than without SACK. This is be-
cause HACK is able to leverage upon the out of

Fig. 12. Throughput for 2% burst error for various burst

lengths (95% header corruption).

Fig. 13. Throughput for 5% burst error for various burst

lengths (95% header corruption).

Fig. 14. Throughput for 10% burst error for various burst

lengths (95% header corruption).

Fig. 15. Throughput for 15% burst error for various burst

lengths (95% header corruption).

Fig. 11. Average number of slow starts for long latency link

with random single packed errors (95% header error).

354 R.K. Balan et al. / Computer Networks 39 (2002) 347–361



order packet retransmission algorithms in SACK.
HACK creates these out of order situations as it
may not be able to recover the headers of all the
packets corrupted in a burst due to the random
nature of the bit errors within each packet. For
example, if say five packets are corrupted, HACK

may only be able to recover the headers of packets
2, 4 and 5 with packets 1 and 3 being irretrievable.
This creates gaps in the receiving window, as
HACK will only ask for retransmissions of the
packets whose headers it can recover. However, if
SACK is activated, these gaps will be detected
and handled accordingly. Another example would
be as follows; suppose the TCP receiver receives
segments xþ 1, xþ 2 and xþ 3 correctly but seg-
ment x is corrupted. In this case, the receiver will
generate one ‘special’ ACK in response to segment
x and three normal ACKs in response to segments
xþ 1, xþ 2 and xþ 3. However, the three normal
ACKs will appear to the TCP sender as dupacks as
they all will be acknowledging segment x (the next
segment expected by the receiver). Hence, the
sender will needlessly go into fast retransmit.
SACK eliminates this problem as it will be able to
inform the TCP sender about the gaps in the re-
ceiving window. This leveraging is possible be-
cause the HACK and SACK have disjoint sets
of operations, thus preventing any conflicts dur-
ing packet processing. However, it must be re-
emphasised that HACK without SACK is still
much better than just SACK alone (albeit with
potentially more out of order packets being gen-
erated). Thus both SACK and HACK can benefit
very nicely from each other’s properties.

To clearly show how well HACK performs
in bursty error conditions, we compared the time
sequence graphs (TSG) of HACK, SACK and
HACK þ SACK for 5% error probability with a
burst error length of five packets and a header
corruption percentage of 95%. Tcptrace [16] was

Fig. 19. Throughput for 15% burst error for various burst

lengths (0% header corruption).

Fig. 17. Throughput for 5% burst error for various burst

lengths (0% header corruption).

Fig. 16. Throughput for 2% burst error for various burst

lengths (0% header corruption).

Fig. 18. Throughput for 10% burst error for various burst

lengths (0% header corruption).

R.K. Balan et al. / Computer Networks 39 (2002) 347–361 355



used to generate the TSG graphs (as xplot [23] data
files) from our tcpdump capture files of the data
transferred between the server and the client dur-
ing the experiment. xplot was used to display the
TSG graphs and we captured the output on the
screen using a screen capture utility. The TSG for
HACK is shown in Fig. 20, SACK in Fig. 21
and HACK þ SACK in Fig. 22. It can be seen
that HACK and HACK þ SACK perform much
better than SACK in keeping the data pipe flowing
in the presence of burst errors as they do not have
long periods of idle activity/timeouts (shown as
long horizontal lines in the TSG indicating that the
sequence number for the TCP connection has not
increased during that time period).

HACK þ SACK works better than HACK due
to the reasons mentioned previously. It must be
noted that the time scale of the various TSG
graphs are different and that SACK takes a much
longer time to finish than HACK and HACKþ
SACK as shown in Fig. 23 which displays the in-
stantaneous throughput versus time.

Fig. 24 shows this result in the form of a bar
chart. As can be seen, SACK takes about 2600 s to
finish as compared to about 430 s for HACK and
140 s for HACKþ SACK. Thus HACK and
HACK þ SACK enjoy a much higher throughput

than SACK in bursty error conditions even in
situations where HACK is only able to recover the
headers from a small percentage of the corrupted
packets. Fig. 25 shows the time taken for the three
algorithms to finish the same experiment but with
a header corruption percentage of 0%. As can be

Fig. 20. TSG for HACK (95% header corruption). Fig. 21. TSG for SACK (95% header corruption).

Fig. 22. TSG for HACKþ SACK (95% header corruption).

356 R.K. Balan et al. / Computer Networks 39 (2002) 347–361



seen, HACK is much better when it is able to re-
cover the headers of all corrupted packets.

Table 1 summarises the results for random
bit errors and burst errors. As can be seen,
HACK performs better than SACK in most of the
cases. This improvement of performance is seen
even when 95% of the headers of corrupted packets
by HACK (which represents almost the worst are
unrecoverable possible case for HACK).

5.3. Effect of window sizes

So far in our experiments, we kept the window
size large enough not to be a bottleneck. Next, we
consider the effect of smaller window size on the
performance of HACK and SACK. It is clear that
when there are a number of errors and window size
is small, more timeouts and hence slow-starts are
likely to occur, resulting in throughput degrada-
tion. However, HACK will keep the pipe flowing
because of the special ACKs, and hence will result
in better throughput. To confirm this, we com-
pared the effects of various window sizes on SACK
and HACK. We ran this experiment over long
latency links for burst errors with burst lengths
ranging from 1 to 10 packets and only for a header
corruption percentage of 95%. We transferred 256
KB of data from the client to the server with two
distinct window sizes: 16 and 64 KB. Figs. 26–28
show the throughput of the various TCP schemes
under different burst error lengths for burst error
probabilities of 2%, 5%, and 10%, respectively, for
a window size of 16 KB. As can be seen, HACK
performs better than SACK even when the win-
dow size is small (thus becoming a limiting factor
in determining the amount of data that can be sent
over a link), and HACKþ SACK performs better

Fig. 23. Throughput versus time graph for various TCP im-

plementations (95% header corruption).

Fig. 24. Throughput versus time graph for various TCP im-

plementations 5% burst error with 95% header corruption.

Fig. 25. Throughput versus time graph for various TCP im-

plementations 5% burst error with 0% header corruption.

Table 1

Summary of results

Header corruption

Error types 0% 95%

Random errors (long and

short latencies)

5–10� better

than SACK

Equal to

SACK

Burst errors (long latency) 100� better

than SACK

6� better

than SACK

R.K. Balan et al. / Computer Networks 39 (2002) 347–361 357



than HACK. The reasons for these improvements
are same as stated previously. Figs. 29–31 show
the results for the same error probabilities and
burst lengths but for a window size of 64 KB. In
this case as well, HACK performs much better
than SACK and HACK þ SACK performs better
than HACK.

These results clearly show that HACK performs
better than SACK in bursty error conditions for
window sizes which are typically used bymany TCP
stacks (without the optional window scaling option
enabled). Note that the superior performance of
HACK over SACK is more prominent for smaller
window size.

Fig. 29. Throughput for 2% burst error for various burst

lengths (window size of 64 KB, 95% header corruption).

Fig. 30. Throughput for 5% burst error for various burst

lengths (window size of 64 KB, 95% header corruption).

Fig. 31. Throughput for 10% burst error for various burst

lengths (window size of 64 KB, 95% header corruption).

Fig. 26. Throughput for 2% burst error for various burst

lengths (window size of 16 KB, 95% header corruption).

Fig. 28. Throughput for 10% burst error for various burst

lengths (window size of 16 KB, 95% header corruption).

Fig. 27. Throughput for 5% burst error for various burst

lengths (window size of 16 KB, 95% header corruption).

358 R.K. Balan et al. / Computer Networks 39 (2002) 347–361



6. Deployment

In scenarios where it may be difficult to deter-
mine if HACK is necessary (e.g., if the end user is
unaware of the existence of any lossy links within
the network), a feasible solution would be to place
TCP tunnels (similar to IP tunnels except that TCP
is used for the encapsulation) across those links
and enable HACK for those tunnels.

These tunnels would be deployed by the net-
work administrators of the lossy links. Traffic en-
tering these lossy links will be encapsulated within
TCP tunnels and these tunnels can then use
the Header Checksum option to maximise their
throughput over these lossy links. In this scenario,
the end users do not have to change any of their
software or even be aware of the presence of lossy
links in the network to benefit from the use of the
Header Checksum option. The properties of TCP
tunnels is described in [14] and a complete system
which provides quality of service (QoS) guarantees
while using TCP tunnels is described in [1].

7. Conclusions

In this paper, we have presented the TCP
Header Checksum extensions to TCP to recover
from packet loss due to corruption in lossy envi-
ronments. HACK allows TCP to detect packet
loss due to corruption and recover the necessary
information so that the sender may be notified of
this corruption allowing it to retransmit the cor-
rupted segment immediately. The sender avoids
throttling its sending rate as the loss is not indi-
cative of congestion.

Our experiments have shown that HACK per-
forms substantially better than SACK in envi-
ronments where burst corruptions are prevalent.
In these environments, SACK will timeout inces-
santly whereas HACK manages to keep the data
pipe flowing somewhat. HACK manages to pro-
vide 6� better throughput than SACK in the
presence of burst errors even when 95% of the
headers of corrupted packets are unrecoverable. In
the case where HACK can recover the headers of
all corrupted packets, it outperforms SACK by
about 100� in the presence of burst errors. The

optimal level of performance is achieved when
HACK is run together with SACK.

Work is being done to test the effectiveness of
HACK and HACK þ SACK in situations where
ACKs are also susceptible to packet corruption,
and where congestion occurs along with corrup-
tion. We also plan to extend our test and measure-
ments of HACK to real wireless and satellite links.

Acknowledgements

The authors would like to acknowledge the
National Science and Technology Board (NSTB)
of Singapore and the Singapore Advanced Re-
search and Education Network (SingAREN) pro-
ject for supporting the above work under the
Broadband21 project grant.

References

[1] R.K. Balan, Chameleon—a system for adaptive QoS

provisioning, Master’s Thesis, School of Computing,

NUS, 2000.

[2] A. Bakre, B.R. Badrinath, Handoff and system support for

indirect TCP/IP, Proceedings of Second Usenix Sympo-

sium on Mobile and Location-Independent Computing,

April 1995.

[3] University of Illinois at Urbana Champagne, available

from http://dast.nlanr.net/Projects/Iperf.

[4] R. Bruyeron, B. Hemon, L. Zhang, Experimentations with

TCP selective acknowledgement, Proceedings of ACM

SIGCOMM, April 1998.

[5] B.S. Bakshi, P. Krishna, N.H. Vaidya, D.K. Pradhan,

Improving performance of TCP over wireless networks,

Proceedings of 17th IEEE Internation Conference on

Distributed Computer Systems (ICDSC), 1997.

[6] H. Balakrishnan, S. Seshan, E. Amir, R.H. Katz, Improv-

ing TCP/IP performance over lossy networks, Proceedings

of 1st ACM International Conference On Mobile Com-

puting and Networking (Mobicom), November 1995.

[7] H. Balakrishnan, V.N. Padmanabhan, S. Seshan, R.H.

Katz, A comparison of mechanisms for improving TCP

performance over lossy links, IEEE/ACM Transactions on

Networking, December 1997.

[8] K. Fall, S. Floyd, Simulation-based comparisons of Tahoe,

Reno, and SACK TCP, ACM Computer Communications

Review 26 (3) (1996) 5–21.

[9] S. Floyd, TCP and explicit congestion notification, ACM

Computer Communications Review 24 (5) (1994) 10–23.

[10] J. Hoe, Startup dynamics of TCP’s congestion control and

avoidance schemes, Master’s thesis, MIT, 1995.

R.K. Balan et al. / Computer Networks 39 (2002) 347–361 359



[11] J. Hoe, Improving the startup behaviour of a congestion

control scheme for TCP, Proceedings of ACM SIG-

COMM, 1996.

[12] Van Jacobson, Congestion avoidance and control, Pro-

ceedings of ACM SIGCOMM, 1988.

[13] L.-�AA. Larzon, M. Degermark, S. Pink, UDP lite for real-

time multimedia applications, Proceedings of the IEEE

International Computer Communications (ICC’99) Con-

ference, June 1999.

[14] B.P. Lee, R.K. Balan, L. Jacob, W.K.G. Seah, A.L.

Ananda, TCP tunnels: avoiding congestion collapse, Pro-

ceedings of 25th Annual IEEE Conference on Local

Computer Networks (LCN), November 2000.

[15] M. Mathis, J. Mahdavi, Forward acknowledgement:

refining TCP congestion control, ACM SIGCOMM,

1996.

[16] S. Ostermann, tcptrace, available from http://jarok.cs.

ohiou.edu/software/tcptrace/tcptrace.html, December 1997.

[17] J. Postel, Transmission control protocol, RFC793.

[18] M. Allman, D. Glover, L. Sanchez, Enhancing TCP over

satellite channels using standard mechanisms, RFC2488.

[19] M. Allman, V. Paxson, W. Stevens, TCP congestion

control, RFC2581.

[20] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, TCP

selective acknowledgment options, RFC2018.

[21] K.K. Ramakrishnan, S. Floyd, A proposal to add explicit

congestion notification (ECN) to IP, RFC2481.

[22] S. Floyd, T. Henderson, The NewReno modification to

TCP’s fast recovery algorithm, RFC2582.

[23] T. Sheppard, xplot, available from ftp://mercury.lcs.mit.

edu/pub/shep, August 1997.

[24] W.R. Stevens, in: TCP/IP Illustrated, Vol. 1, Addison-

Wesley, Reading, MA, 1994.

Rajesh Krishna Balan obtained his
Bachelors in Computer Science (with
honours) and Masters in Computer
Science from the National University
of Singapore in 1998 and 2001 re-
spectively. Presently he is pursuing a
Ph.D. in Computer Science at Carne-
gie Mellon University. He is currently
working in the area of ubiquitious
computing from the Operating System
point of view.

Lee Boon Peng completed his MSc
(Computer Science) at the School of
Computing, National University of
Singapore. He is currently an engineer
with Unity Integration Corp., a total
solutions provider in Transportation
and Mobile Information Management
Systems, while maintaining an active
research interest in network protocol
design and performance.

K.R. Renjish Kumar (renjish@ieee.org)
received the Bachelor of Engineering
degree in Electronics and Communi-
cations from the Regional Engineering
College, Suratkal, India in 1997. He is
currently pursuing Masters in Com-
puter Science in the area of quality of
services in networks at the Centre for
Internet Research, National University
of Singapore. He was with Cognizant
Technology Solutions for over two
years and is currently working with
Siemens ICM, Singapore as R&D En-
gineer. His research interests are IP

QoS, TCP performance issues, wireless networks, mobile com-
munication.

Lillykutty Jacob obtained her M.
Tech. degree in electrical engineering
(communication engineering) from
the Indian Institute of Technology at
Madras in 1985, and PhD degree in
electrical communication engineering
(computer networks) from the Indian
Institute of Science, Bangalore, in
1993. She was a research fellow in
the department of computer science,
Korea Advanced Institute of Science
and Technology, S. Korea, during
1996-’97. Since 1985 she has been with
the Regional Engineering College at

Calicut, India. Currently, she is with the School of Computing,
National University of Singapore, where she is a visiting aca-
demic fellow. Her research interests include Quality-of-Service
and Resource Management in Internet, Network Protocols,
and Performance Modelling and Analysis. She is a member of
IEEE.

Dr Winston Seah is the Programme
Director of the Internet Technologies
programme in CWC. Prior to joining
CWC, he worked in the Department
of Electrical Engineering, National
University of Singapore (NUS), and
the Ministry of Defence.
Dr Seah received the Dr.Eng. de-

gree from Kyoto University, Kyoto,
Japan, in 1997 and, the M.Eng.
(Electrical Engineering) and B.Sc.
(Computer and Information Sciences)
degrees from NUS in 1993 and 1987
respectively. For his postgraduate

studies, he received the Monbusho Postgraduate Scholarship
from the Government of Japan, as well as scholarships from
the Foundation for C&C Promotion (NEC funded) and the
International Communication Foundation (KDD funded) in
Japan.
Dr Seah also holds joint teaching positions in the Depart-

ment of Electrical and Computer Engineering, and Depart-
ment of Computer Science in NUS, where he lectures in
mobile computing and computer networks courses. He is ac-
tively involved in research and development in the areas of
mobile/wireless Internet technologies, mobile ad hoc networks
and Internet quality of service (QoS).

360 R.K. Balan et al. / Computer Networks 39 (2002) 347–361



Akkihebbal L. Ananda is an Associate
Professor in the Computer Science
Department of the School of Com-
puting at the National University of
Singapore. He is also the Director of
the Centre for Internet Research. He is
actively associated with Singapore
Advanced Research and Education
Project (SingAREN ) and has involved
in network research and connectivity
issues relating to Internet2. He is one of
the key players in developing theNUS’s
campus secure plug-and-play network

which has around 12,000 points campus wide. His research
areas of interest include High-speed computer networks,
transport protocols, collaborative applications, and distributed
systems. He is a member of the IEEE Computer and Commu-
nications Societies.
Ananda obtained his B.E. degree in electronics from the

University of Bangalore, India, in 1971; his M.Tech degree in
Electrical Engineering from the Indian Institute of Technology,
Kanpur in 1973, and the M.Sc and Ph.D degrees in computer
science from the University of Manchester, UK, in 1981 and
1983 respectively. From 1974 to 1980 he worked as a system
software engineer in India.

R.K. Balan et al. / Computer Networks 39 (2002) 347–361 361


