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Abstract

In recent years, wireless networks have become increasingly common and an increasing number of devices are
communicating with each other over lossy links. Unfortunately, TCP performs poorly over lossy links as it is unable to
differentiate the loss due to packet corruption from that due to congestion. In this paper, we present an extension to
TCP which enables TCP to distinguish packet corruption from congestion in lossy environments resulting in improved
performance. We refer to this extension as the HeAder ChecKsum option (HACK). We implemented our algorithm in
the Linux kernel and performed various tests to determine its effectiveness. Our results have shown that HACK per-
forms substantially better than both selective acknowledgement (SACK) and NewReno in cases where burst corrup-
tions are frequent. We also found that HACK can co-exist very nicely with SACK and performs even better with SACK

enabled. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

There has been a proliferation in the use of
mobile computing in the last few years. More and
more devices are talking to each other via lossy
links. Lossy environments are characterised by
high bit error rates as opposed to wired networks
where the bit error rate is very low. They are also
usually served by low bandwidth links and expe-
rience long delays during handoff periods. As
a result, it has become vital that the network
protocols used to interconnect these devices un-
derstand and operate well in these lossy environ-
ments.
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The de-facto network protocol stack used for
communications is the TCP/IP stack. This stack
couples a best effort network layer (IP) with either
a reliable (TCP) or an unreliable (UDP) transport
layer. The majority of applications on the Internet
use the TCP/IP stack as the basis for their trans-
actions.

However, TCP was designed to optimise its
performance to deal with packet losses in the net-
work due to congestion [12]. It is unable to de-
termine if a packet loss is due to congestion or
corruption of the packet due to errors in the net-
work. As a result, TCP generally performs poorly
in lossy environments as it interprets packet cor-
ruption as congestion in the network. Thus instead
of increasing or, at least, maintaining its sending
rate to overcome these errors due to corruption,
TCP will decrease its sending rate to reduce, what
it perceives as, congestion in the network. This
reduction in sending rate results in low through-
puts for bulk transfers.

In this paper, we propose a modification to the
TCP [17,19,24] protocol that allows it to perform
better in lossy environments. We base our solution
on the premise that when packet corruption oc-
curs, it is more likely that the packet corruption
occurs in the data and not the header portion of
the packet. This is because the data portion of a
packet is usually much larger than the header
portion for many applications over typical MTUs.
With this knowledge, we have devised an algo-
rithm by which TCP is able to recover these un-
corrupted headers and thus determine that packet
corruption and not congestion has taken place in
the network. TCP can then react appropriately.
We do this by introducing two TCP options: the
first option is for data packets and contains
the 1’s-complement 16-bit checksum of the TCP
header (and pseudo-IP header) while the second is
for ACKs and contains the sequence number of
the TCP segment that was corrupted.

The rest of this paper is organised as follows.
We discuss some related work in Section 2, fol-
lowed by a description of the details and dynamics
of our extension to the TCP protocol in Section 3.
Section 4 will describe our implementation while
Section 5 presents the results of our experiments.
We discuss some possible deployment strategies of

our protocol in Section 6. Section 7 will detail our
future plans and we conclude with a summary.

2. Related work

There has been an incredible number of tech-
niques developed for TCP over the past decade
facilitating fast and efficient recovery from packet
losses in general.

The fast retransmit algorithm [19] interprets
incoming duplicate acknowledgements as an indi-
cation of packet loss and retransmits the packet
indicated by the ACKs while avoiding timeouts.
However, if two or more packets have been lost
from a window, the fast retransmission will not be
able to recover the losses without waiting for a
timeout. NewReno [10,11,22] introduces the con-
cept of fast retransmission phase, which starts on
detection of a packet loss and ends when the re-
ceiver acknowledges reception of all data trans-
mitted at the start of the retransmission phase. The
sender assumes reception of a partial ACK during
the fast retransmission phase as an indication that
another packet has been lost within the window,
and retransmits it immediately. With the selective
acknowledgement (SACK) option [20] enabled,
the receiver sends duplicate ACKs containing the
segment numbers of the packets it has received.
This allows the transmitter to selectively retrans-
mit only lost packets, without retransmitting al-
ready SACKed packets.

Packet loss due to corruption is more common
over satellite and wireless networks than wired
networks and there have been a number of initia-
tives in tackling this problem.

A common solution is to add forward error
correction (FEC) to the data being sent over lossy
links. Allman et al. [18] covers the issues in using
FEC to improve the performance of satellite
links. The indirect-TCP (I-TCP) protocol [2] splits
a TCP connection between a fixed and mobile host
into two separate connections and hides TCP from
the lossy link by using a protocol optimised for
lossy links. The SNOOP protocol [6] caches
packets at the base station and performs local re-
transmissions over the lossy link.
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The use of explicit congestion notification
(ECN) [9,21] in the TCP/IP protocol enables rou-
ters to inform TCP senders about the onset of
congestion and may assist in distinguishing packet
losses due to congestion and corruption. Other
explicit notification schemes include explicit loss
notification (ELN) [7], explicit bad state notifica-
tion (EBSN) [5] and forward acknowledgement
(FACK) [15].

The use of a checksum to protect header in-
formation has also been proposed by Larzon et al.
[13] in their UDP lite protocol. They allow appli-
cations to receive UDP data even if the data had
been corrupted as their claim is that many UDP
applications would prefer to receive slightly cor-
rupted data instead of no data.

3. TCP Header Checksum option

We extended TCP by including two additional
TCP options. The first (see Fig. 1) is both an en-
abling option used in SYN segments as well as the
HeAder ChecKsum (HACK) option used in data
segments. When the option is used in a SYN seg-
ment, it is an indication that the Header Checksum
option can be used once the connection is estab-
lished (the value of the option field is ignored in
this case). When used in data segments, the option
field contains the 16-bit 1’s complement checksum
of the TCP header and the pseudo-IP header. The
second option (see Fig. 2) is the Header Checksum
ACK option which is included in ‘special’ ACKs
generated in response to packet corruption.

I’s complement
checksum of TCP
header and pseudo-IP
header

Kind=14 Length=4

Fig. 1. TCP Header Checksum option.

32-bit sequence number
of corrupted segment to
resend

Kind=15 Length=6

Fig. 2. TCP Header Checksum ACK option.

Normally, TCP carries only one checksum,
which is for the entire TCP segment. If this check-
sum fails due to packet corruption, the entire seg-
ment is discarded. However, in many cases, the
headers of the corrupted TCP segment are still
recoverable as the corruption might have occurred
in the data portion alone. Hence, by adding a
separate checksum for the header portion of the
TCP segment, the TCP receiver will be able to
check the integrity of the header. By recovering
this header, the receiver is able to send a ‘special’
ACK back to the TCP sender indicating packet
corruption. This ACK will contain the sequence
number of the corrupted packet in the option field.
This ACK is identical to normal ACKs except for
the additional option.

We modified the data processing algorithms of
the TCP sender and receiver and the ACK pro-
cessing algorithm of the TCP sender to incorpo-
rate our new Header Checksum options, which are
explained in the following subsections.

3.1. Modifications to the TCP sender

When sending out data segments, our modified
TCP stack first checks if the Header Checksum
option has been negotiated. If the option has not
been negotiated, the TCP sender proceeds as per
normal. Otherwise, it will compute the header
checksum for that data segment and place it into
the option field of the Header Checksum option.
The rest of the data sending algorithm is as per
normal (Fig. 3).

3.2. Modifications to the TCP receiver

When the TCP receiver (Fig. 4) receives a
packet, it verifies the integrity of the segment using
the standard TCP checksum. If the segment is
uncorrupted, it is processed as per normal. How-
ever, if it is corrupted, the modified TCP stack
does the following:

(1) Verify the integrity of the header of the cor-
rupted segment using the value of the header
checksum contained in the option field.

(2) If the header is corrupted, the segment is dis-
carded and no further processing is done.
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Data segment
to be sent

Header checksum
option enabled?

Continue as per normal

1Y)
2)

Calculate header checksum of segment
Continue as per normal

TCP segment
corrupted?

Header portion
corrupted?

Fig. 3. Modifications to the TCP sender.

Data segment
received

Continue as per normal

Discard Packet

Recover sequence number of corrupted segment from
header.

Generate ‘special’ ACK (option 15) containing the
sequence number of the corrupted segment.

Fig. 4. Modifications to the TCP receiver.

(3) If the header is intact, the ‘special’ ACK is
sent to the sender of the corrupted packet. This
ACK will contain the Header Checksum ACK
option indicating to the sender that this ACK
was generated in response to packet corruption.
It contains the sequence number of the cor-
rupted segment in the option field, thus allowing
the sender to selectively retransmit only the seg-
ment that was corrupted.

3.3. Modifications to the ACK processing

When the TCP sender receives an ACK, it
checks if the Header Checksum ACK option is
present. If the option is not there, it indicates that
this is a normal ACK and the sender processes it as
per normal. However, if the option field is set, the
stack does the following:

(1) The sequence number of the corrupted seg-
ment triggering this ACK is obtained from the
Header Checksum ACK option field.

(2) The TCP retransmission algorithm is called
to selectively retransmit the corrupted segment.
These retransmissions are done at rates permit-
ted by the current congestion window (cwnd).
(3) No further processing is done unlike the case
of normal TCP ACKs.

These ‘special’ ACKs do not indicate conges-
tion in the network. Hence, the TCP sender does
not halve it’s cwnd if it receives multiple ‘special’
ACKs with the same value in the ACK field (for
e.g., ACKs generated in response to corruption in
consecutive segments. These ACKs will have the
same value in the ACK field but different values in
the Header Checksum ACK option field, Fig. 5).

4. Implementation and experimental setup

We incorporated our Header Checksum options
and the necessary changes to the TCP algorithm
in the Linux kernel version 2.2.10. This modified
version of the Linux kernel was installed on our
experimental testbed consisting of Celeron 300A
machines with 128 MB of RAM each. The ma-
chines were connected using Intel Ether-Express
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ACK segment
received

Option 15 present
in the segment?

Continue as per normal

1)  Extract sequence number of corrupted segment
2)  Selectively retransmit the segment
3) ACKis discarded without further processing

Fig. 5. Modification to the ACK processing.

Error / Delay Box

Client

Fig. 6. Experimental testbed.

Pro 100 (set to 10 Mbps) network cards. The ex-
perimental testbed is shown in Fig. 6.

We ran our experiments by sending TCP bulk
data from the client to the server. We used iperf[3]
to generate this data. The error/delay box was used
to corrupt and delay packets in the network to
simulate lossy and long latency environments, re-
spectively. Random as well as bursty packet errors
were generated using packet corruption software
and the amount and location of the corruptions
within a packet were all randomised. For our ex-
periments, errors were generated only to packets
travelling on the forward path. Packets on the
reverse path (the ACK packets from the server to
the client) were not corrupted.

We modified the device drivers of the ethernet
cards to stop them from discarding packets that
failed the packet CRC checks. As a result, cor-
rupted packets arriving at the network cards were

passed up to the TCP/IP stack without being dis-
carded. Infact, layer-2 protocol delivering corrupt
PDU s to upper layer can happen in the following
scenarios (i) the user chooses the option of dis-
abling the link-layer CRC and (ii) the error rate is
too high for the link-layer CRC to be efficient. We
claim that disabling error detection and recovery
at lower layers and letting TCP to do them can be
beneficial to the overall performance.

5. Results and discussions

To test the effectiveness of HACK, we ran a
variety of test scenarios. These scenarios were de-
signed to test the performance of HACK under
various lossy environments. We chose NewReno
and SACK for comparison as Linux implements
both of them and they are acclaimed as the “best”
basic and extended commodity TCP implementa-
tions, respectively [4,8,22].

We used packet corruption probabilities rang-
ing from 2% to 15%, which corresponds to a bit
error rate of 1 x 107°-1 x 107,

For each of the packet corruption probabili-
ties given above, we still had to determine what
proportion of the packet headers were corrup-
ted. This metric was fundamental in determining
HACKSs effectiveness, as HACK requires uncor-
rupted packet headers. Since the actual value of
this metric is heavily dependent on the environ-
ment, we elected to use two different values that
reflect the entire range of values that this metric
could possibly take. In the first case, we assumed
that 0% of the headers in corrupted packets were
corrupted, i.e., this would be the best possible case
for HACK. In the second case, we assumed that
95% of the packet headers were corrupted. This
would represent almost the worst possible case for
HACK. We are confident that the actual header
corruption percentage in any wireless environment
would fall somewhere between these two extremes.

5.1. Random bit errors
In the first experiment, we compare the perfor-

mance of HACK with SACK (on top of NewReno)
and NewReno (default TCP stack in Linux 2.2.10)
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in the presence of white noise, i.e., in a scenario
where the error condition is characterised by sharp
spikes causing single bit corruptions. We have
translated this bit error profile into packet errors
(as mentioned earlier, our packet corruption
probabilities range from 2% to 15% corresponding
to a bit error range of 1 x 107°~1 x 1073). We ran
the experiment over a low latency link (10 ms end-
to-end delay) by sending 2 MB of TCP bulk data
from the client to the server and over a long latency
link (300 ms end-to-end delay, e.g., satellite link)
by sending 256 KB of TCP bulk data from the
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client to the server. In the latter case, we used 256
KB to reduce experiment time as 2 MB was taking
too long to complete. We repeated the experiment
five times for each TCP/IP stack and for each
packet corruption probability. We also repeated
each experiment using the two different header
corruption probabilities (0% and 95% as explained
above). The TCP window size was set high enough
that it was not a limiting factor for either latency.
Average throughput versus percentage loss curves
are shown in Fig. 7 for the low latency link with
95% header corruption and in Fig 8 for 0% header
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Fig. 7. Throughput versus percentage packet loss for low latency (10 ms) link with random single packet error (95% header error).
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Fig. 8. Throughput versus percentage packet loss for low latency (10 ms) link with random single packet errors (0% header error).
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Fig. 9. Throughput versus percentage packet loss for long latency (300 ms) link with random single packet errors (95% header error).
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Fig. 10. Throughput versus percentage packet loss for long latency (300 ms) link with random single packet errors (0% header error).

corruption. Fig. 9 shows the results for the long
latency link with 95% header corruption and Fig.
10 shows the results for the long latency link with
0% header corruption. Fig. 11 shows the average
number of slow starts experienced by the various
TCP implementations over the long latency link.
As can be seen, both SACK and HACK per-
form better than NewReno for both latencies and
for both header corruption percentages. They also
experience less slow starts than NewReno. These
results were due to the selective ACK feature of
SACK (which enabled SACK to do more intelli-
gent and efficient retransmissions of lost packets)

and the ability of HACK to recover useful infor-
mation from corrupted packets. The results show
that HACK still works well even when it can only
recover the header information from a small per-
centage (5%) of the corrupted packets. Based on
these results, we exclude NewReno from all further
experiments and only show the comparison be-
tween SACK and HACK. The performance of
both SACK and HACK are comparable in the
situation where white noise is prevalent. The best
performance is achieved when we combine both
HACK and SACK together. This will be discussed
further later.
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Fig. 11. Average number of slow starts for long latency link
with random single packed errors (95% header error).

5.2. Burst errors

We next ran experiments to compare the per-
formance of SACK and HACK in bursty error
conditions. Multi-packet random burst errors with
burst lengths ranging from 2 to 10 packets were
considered. We ran this experiment over the long
latency link with the window size set high enough
not to be a limiting factor. Figs. 12-15 show the
results of the various TCP schemes under different
burst error lengths for 2%, 5%, 10% and 15% burst
error probabilities respectively with a header cor-
ruption percentage of 0%. Figs. 16-19 show the
same results but for a header corruption percent-
age of 95%.

From the graphs, it can be seen that HACK
performs substantially better than SACK in the
presence of bursty errors. This is because SACK is
unable to respond when it loses too many packets
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Fig. 15. Throughput for 15% burst error for various burst
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in a row and thus it times out frequently. HACK is
better in this respect as it can recover some of the
headers of the corrupted packets and use those
headers to generate ACKs and keep the pipe
flowing. As expected, HACK performs better with
SACK activated than without SACK. This is be-
cause HACK is able to leverage upon the out of
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order packet retransmission algorithms in SACK.
HACK creates these out of order situations as it
may not be able to recover the headers of all the
packets corrupted in a burst due to the random
nature of the bit errors within each packet. For
example, if say five packets are corrupted, HACK
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Fig. 19. Throughput for 15% burst error for various burst
lengths (0% header corruption).

may only be able to recover the headers of packets
2, 4 and 5 with packets 1 and 3 being irretrievable.
This creates gaps in the receiving window, as
HACK will only ask for retransmissions of the
packets whose headers it can recover. However, if
SACK is activated, these gaps will be detected
and handled accordingly. Another example would
be as follows; suppose the TCP receiver receives
segments x + 1, x + 2 and x + 3 correctly but seg-
ment x is corrupted. In this case, the receiver will
generate one ‘special’ ACK in response to segment
x and three normal ACKs in response to segments
x+ 1, x4+ 2 and x + 3. However, the three normal
ACKs will appear to the TCP sender as dupacks as
they all will be acknowledging segment x (the next
segment expected by the receiver). Hence, the
sender will needlessly go into fast retransmit.
SACK eliminates this problem as it will be able to
inform the TCP sender about the gaps in the re-
ceiving window. This leveraging is possible be-
cause the HACK and SACK have disjoint sets
of operations, thus preventing any conflicts dur-
ing packet processing. However, it must be re-
emphasised that HACK without SACK is still
much better than just SACK alone (albeit with
potentially more out of order packets being gen-
erated). Thus both SACK and HACK can benefit
very nicely from each other’s properties.

To clearly show how well HACK performs
in bursty error conditions, we compared the time
sequence graphs (TSG) of HACK, SACK and
HACK + SACK for 5% error probability with a
burst error length of five packets and a header
corruption percentage of 95%. Tcptrace [16] was
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sequence number

15500000

15000000 4

14500000 4

14000000 4

13500000 1

10:30:00
time

10224100 10326500 10328500

Fig. 20. TSG for HACK (95% header corruption).

used to generate the TSG graphs (as xplot [23] data
files) from our tcpdump capture files of the data
transferred between the server and the client dur-
ing the experiment. xplot was used to display the
TSG graphs and we captured the output on the
screen using a screen capture utility. The TSG for
HACK is shown in Fig. 20, SACK in Fig. 21
and HACK + SACK in Fig. 22. It can be seen
that HACK and HACK + SACK perform much
better than SACK in keeping the data pipe flowing
in the presence of burst errors as they do not have
long periods of idle activity/timeouts (shown as
long horizontal lines in the TSG indicating that the
sequence number for the TCP connection has not
increased during that time period).

HACK + SACK works better than HACK due
to the reasons mentioned previously. It must be
noted that the time scale of the various TSG
graphs are different and that SACK takes a much
longer time to finish than HACK and HACK +
SACK as shown in Fig. 23 which displays the in-
stantaneous throughput versus time.

Fig. 24 shows this result in the form of a bar
chart. As can be seen, SACK takes about 2600 s to
finish as compared to about 430 s for HACK and
140 s for HACK + SACK. Thus HACK and
HACK + SACK enjoy a much higher throughput
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Fig. 21. TSG for SACK (95% header corruption).
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Fig. 22. TSG for HACK + SACK (95% header corruption).

than SACK in bursty error conditions even in
situations where HACK is only able to recover the
headers from a small percentage of the corrupted
packets. Fig. 25 shows the time taken for the three
algorithms to finish the same experiment but with
a header corruption percentage of 0%. As can be
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Fig. 23. Throughput versus time graph for various TCP im-
plementations (95% header corruption).
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Fig. 24. Throughput versus time graph for various TCP im-
plementations 5% burst error with 95% header corruption.

b 2900
600 -
m hack+sack

500 4 W hack

400 | O sack
O
o 300 -
£
= 200 1

100 - =15 m25

0 [— I

Fig. 25. Throughput versus time graph for various TCP im-
plementations 5% burst error with 0% header corruption.

Table 1
Summary of results

Header corruption

Error types 0% 95%
Random errors (long and  5-10x better Equal to
short latencies) than SACK SACK
Burst errors (long latency) 100x better 6x better
than SACK than SACK

seen, HACK is much better when it is able to re-
cover the headers of all corrupted packets.

Table 1 summarises the results for random
bit errors and burst errors. As can be seen,
HACK performs better than SACK in most of the
cases. This improvement of performance is seen
even when 95% of the headers of corrupted packets
by HACK (which represents almost the worst are
unrecoverable possible case for HACK).

5.3. Effect of window sizes

So far in our experiments, we kept the window
size large enough not to be a bottleneck. Next, we
consider the effect of smaller window size on the
performance of HACK and SACK. It is clear that
when there are a number of errors and window size
is small, more timeouts and hence slow-starts are
likely to occur, resulting in throughput degrada-
tion. However, HACK will keep the pipe flowing
because of the special ACKs, and hence will result
in better throughput. To confirm this, we com-
pared the effects of various window sizes on SACK
and HACK. We ran this experiment over long
latency links for burst errors with burst lengths
ranging from 1 to 10 packets and only for a header
corruption percentage of 95%. We transferred 256
KB of data from the client to the server with two
distinct window sizes: 16 and 64 KB. Figs. 26-28
show the throughput of the various TCP schemes
under different burst error lengths for burst error
probabilities of 2%, 5%, and 10%, respectively, for
a window size of 16 KB. As can be seen, HACK
performs better than SACK even when the win-
dow size is small (thus becoming a limiting factor
in determining the amount of data that can be sent
over a link), and HACK + SACK performs better
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Fig. 26. Throughput for 2% burst error for various burst
lengths (window size of 16 KB, 95% header corruption).
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Fig. 27. Throughput for 5% burst error for various burst
lengths (window size of 16 KB, 95% header corruption).
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Fig. 28. Throughput for 10% burst error for various burst
lengths (window size of 16 KB, 95% header corruption).

than HACK. The reasons for these improvements
are same as stated previously. Figs. 29-31 show
the results for the same error probabilities and
burst lengths but for a window size of 64 KB. In
this case as well, HACK performs much better
than SACK and HACK + SACK performs better
than HACK.
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Fig. 29. Throughput for 2% burst error for various burst
lengths (window size of 64 KB, 95% header corruption).
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Fig. 30. Throughput for 5% burst error for various burst
lengths (window size of 64 KB, 95% header corruption).
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Fig. 31. Throughput for 10% burst error for various burst
lengths (window size of 64 KB, 95% header corruption).

These results clearly show that HACK performs
better than SACK in bursty error conditions for
window sizes which are typically used by many TCP
stacks (without the optional window scaling option
enabled). Note that the superior performance of
HACK over SACK is more prominent for smaller
window size.
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6. Deployment

In scenarios where it may be difficult to deter-
mine if HACK is necessary (e.g., if the end user is
unaware of the existence of any lossy links within
the network), a feasible solution would be to place
TCP tunnels (similar to IP tunnels except that TCP
is used for the encapsulation) across those links
and enable HACK for those tunnels.

These tunnels would be deployed by the net-
work administrators of the lossy links. Traffic en-
tering these lossy links will be encapsulated within
TCP tunnels and these tunnels can then use
the Header Checksum option to maximise their
throughput over these lossy links. In this scenario,
the end users do not have to change any of their
software or even be aware of the presence of lossy
links in the network to benefit from the use of the
Header Checksum option. The properties of TCP
tunnels is described in [14] and a complete system
which provides quality of service (QoS) guarantees
while using TCP tunnels is described in [1].

7. Conclusions

In this paper, we have presented the TCP
Header Checksum extensions to TCP to recover
from packet loss due to corruption in lossy envi-
ronments. HACK allows TCP to detect packet
loss due to corruption and recover the necessary
information so that the sender may be notified of
this corruption allowing it to retransmit the cor-
rupted segment immediately. The sender avoids
throttling its sending rate as the loss is not indi-
cative of congestion.

Our experiments have shown that HACK per-
forms substantially better than SACK in envi-
ronments where burst corruptions are prevalent.
In these environments, SACK will timeout inces-
santly whereas HACK manages to keep the data
pipe flowing somewhat. HACK manages to pro-
vide 6x better throughput than SACK in the
presence of burst errors even when 95% of the
headers of corrupted packets are unrecoverable. In
the case where HACK can recover the headers of
all corrupted packets, it outperforms SACK by
about 100x in the presence of burst errors. The

optimal level of performance is achieved when
HACK is run together with SACK.

Work is being done to test the effectiveness of
HACK and HACK + SACK in situations where
ACKs are also susceptible to packet corruption,
and where congestion occurs along with corrup-
tion. We also plan to extend our test and measure-
ments of HACK to real wireless and satellite links.
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