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Abstract -- In recent years, wireless networks have be-
come increasingly common and an increasing number 
of devices are communicating with each other over 
lossy links. Unfortunately, TCP performs poorly over 
lossy links as it is unable to differentiate the loss due to 
packet corruption from that due to congestion. In this 
paper, we present an extension to TCP which enables 
TCP to distinguish packet corruption from congestion 
in lossy environments resulting in improved perform-
ance. We refer to this extension as the HeAder ChecK-
sum option (HACK). We implemented our algorithm in 
the Linux kernel and performed various tests to deter-
mine its effectiveness. Our results have shown that 
HACK performs substantially better than both SACK 
and NewReno in cases where burst corruptions are 
frequent. We also found that HACK can co-exist very 
nicely with SACK and performs even better with 
SACK enabled. 
 
 
Keywords -- Protocol Design, Protocol Analysis, Wire-
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I.   INTRODUCTION 
 
There has been a proliferation in the use of mobile com-
puting in the last few years. More and more devices are 
talking to each other via lossy links. Lossy environments 
are characterised by high bit error rates as opposed to 
wired networks where the bit error rate is very low. They 
are also usually served by low bandwidth links and experi-
ence long delays during handoff periods. As a result, it has 
become vital that the network protocols used to intercon-
nect these devices understand and operate well in these 
lossy environments. 
 
The de-facto network protocol stack used for communica-
tions is the TCP/IP stack. This stack couples a best effort 
network layer (IP) with either a reliable (TCP) or an   unre- 

 
 
 
liable (UDP) transport layer. The majority of applications 
on the Internet use the TCP/IP stack as the basis for their 
transactions.  
 
However, TCP was designed to optimise its performance 
to deal with packet losses in the network due to congestion 
[12]. It is unable to determine if a packet loss is due to 
congestion or corruption of the packet due to errors in the 
network. As a result, TCP generally performs poorly in 
lossy environments as it interprets packet corruption as 
congestion in the network. Thus instead of increasing or, at 
least, maintaining its sending rate to overcome these errors 
due to corruption, TCP will decrease its sending rate to 
reduce, what it perceives as, congestion in the network. 
This reduction in sending rate results in low throughputs 
for bulk transfers. 
 
In this paper, we propose a modification to the TCP 
[16][18][23] protocol that allows it to perform better in 
lossy environments.  We base our solution on the premise 
that when packet corruption occurs, it is more likely that 
the packet corruption occurs in the data and not the header 
portion of the packet. This is because the data portion of a 
packet is usually much larger than the header portion for 
many applications over typical MTUs. With this knowl-
edge, we have devised an algorithm by which TCP is able 
to recover these uncorrupted headers and thus determine 
that packet corruption and not congestion has taken place 
in the network. TCP can then react appropriately. We do 
this by introducing two TCP options: the first option is for 
data packets and contains the 1’s-complement 16-bit 
checksum of the TCP header (and pseudo-IP header) while 
the second is for  ACKs and contains the sequence num-
ber of the TCP segment that was corrupted. 
 
The rest of this paper is organised as follows. We discuss 
some related work in Section II, followed by a description 
of the details and dynamics of our extension to the TCP 
protocol in Section III.  Section IV will describe our im-
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plementation while Section V presents the results of our 
experiments. We discuss some possible deployment strate-
gies of our protocol in Section VI. Section VII will detail 
our future plans and we conclude with a summary in Sec-
tion VIII. 
 

II.   RELATED WORK 
 
There has been an incredible number of techniques devel-
oped for TCP over the past decade facilitating fast and 
efficient recovery from packet losses in general. 
 
The fast retransmit algorithm [18] interprets incoming du-
plicate acknowledgements as an indication of packet loss 
and retransmits the packet indicated by the ACKs while 
avoiding timeouts. However, if two or more packets have 
been lost from a window, the fast retransmission will not 
be able to recover the losses without waiting for a timeout. 
NewReno [10][11][21] introduces the concept of fast re-
transmission phase, which starts on detection of a packet 
loss and ends when the receiver acknowledges reception of 
all data transmitted at the start of the retransmission phase. 
The sender assumes reception of a partial ACK during the 
fast retransmission phase as an indication that another 
packet has been lost within the window, and retransmits it 
immediately. With the Selective Acknowledgement 
(SACK) option  [19] enabled, the receiver sends duplicate 
ACKs containing the segment numbers of the packets it 
has received. This allows the transmitter to selectively 
retransmit only lost packets, without retransmitting already 
SACKed packets. 
 
Packet loss due to corruption is more common over satel-
lite and wireless networks than wired networks and there 
have been a number of initiatives in tackling this problem. 
 
A common solution is to add Forward Error Correction 
(FEC) to the data being sent over lossy links. Allman, et al 
[17] covers the issues in using FEC to improve the per-
formance of satellite links. The Indirect-TCP (I-TCP) pro-
tocol [2] splits a TCP connection between a fixed and mo-
bile host into two separate connections and hides TCP 
from the lossy link by using a protocol optimised for lossy 
links. The SNOOP protocol [6] caches packets at the base 
station and performs local retransmissions over the lossy 
link. 
 
The use of Explicit Congestion Notification (ECN) [9][20] 
in the TCP/IP protocol enables routers to inform TCP 
senders about the onset of congestion and may assist in 
distinguishing packet losses due to congestion and corrup-
tion. Other explicit notification schemes include Explicit 
Loss Notification (ELN) [7] , Explicit Bad State Notificati- 
 
 

on (EBSN) [5] and Forward Acknowledgement(FACK) 
[14]. 

 
III.   TCP HEADER CHECKSUM OPTION 

 
We extended TCP by including two additional TCP op-
tions. The first (see Fig. 1) is both an enabling option used 
in SYN segments as well as the Header Checksum option 
used in data segments. When the option is used in a SYN 
segment, it is an indication that the Header Checksum op-
tion can be used once the connection is established (the 
value of the option field is ignored in this case).  When 
used in data segments, the option field contains the 16 bit 
1’s complement checksum of the TCP header and the 
pseudo-IP header. The second option (see Fig. 2) is the 
Header Checksum ACK option which is included in ‘spe-
cial’ ACKs generated in response to packet corruption. 
 
 
 

 
Kind=14 

 

 
Length=4 

1’s complement check-
sum of TCP header and 
pseudo-IP header 

 
 
 
 

 
Kind=15 

 

 
Length=6 

32-bit sequence number 
of corrupted segment to 
resend 

 
 
 
 
Normally, TCP carries only one checksum, which is for 
the entire TCP segment. If this checksum fails due to 
packet corruption, the entire segment is discarded. How-
ever, in many cases, the headers of the corrupted TCP 
segment are still recoverable as the corruption might have 
occurred in the data portion alone. Hence, by adding a 
separate checksum for the header portion of the TCP seg-
ment, the TCP receiver will be able to check the integrity 
of the header. By recovering this header, the receiver is 
able to send a ‘special’ ACK back to the TCP sender indi-
cating packet corruption. This ACK will contain the se-
quence number of the corrupted packet in the option field. 
This ACK is identical to normal ACKs except for the addi-
tional option.  
 
We modified the data processing algorithms of the  TCP 
sender and receiver and the ACK processing algorithm of 
the TCP sender to incorporate our new Header Checksum 
options, which are explained in the following subsections.  

 
 

Fig. 2: TCP Header Checksum ACK option 

Fig. 1: TCP Header Checksum option 
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A.   Modifications To The TCP Sender 
 
When sending out data segments, our modified TCP stack 
first checks if the Header Checksum option has been nego-
tiated. If the option has not been negotiated, the TCP 
sender proceeds as per normal. Otherwise, it will compute 
the header checksum for that data segment and place it into 
the option field of the Header Checksum option. The rest 
of the data sending algorithm is as per normal. 

 
B.   Modifications To The TCP Receiver 
 
When the TCP receiver receives a packet, it verifies the 
integrity of the segment using the standard TCP checksum. 
If the segment is uncorrupted, it is processed as per nor-
mal. However, if it is corrupted, the modified TCP stack 
does the following: 
 
1) Verify the integrity of the header of the corrupted 

segment using the value of the header checksum con-
tained in the option field. 

2) If the header is corrupted, the segment is discarded 
and no further processing is done. 

3) If the header is intact, the ‘special’ ACK is sent to the 
sender of the corrupted packet. This ACK will contain 
the Header Checksum ACK option indicating to the 
sender that this ACK was generated in response to 
packet corruption. It contains the sequence number of 
the corrupted segment in the option field, thus allow-
ing the sender to selectively retransmit only the seg-
ment that was corrupted. 

 
C.   Modifications To The ACK Processing 
 
When the TCP sender receives an ACK, it checks if the 
Header Checksum ACK option is present. If the option is 
not there, it indicates that this is a normal ACK and the 
sender processes it as per normal. However, if the option 
field is set, the stack does the following: 
 
1) The sequence number of the corrupted segment trig-

gering this ACK is obtained from the Header Check-
sum ACK option field. 

 
  TCP segment cor-

rupted? 
Continue as per  normal 

1) Recover sequence number of corrupted segment from
header.  

2) Generate ‘special’ ACK (option 15) containing the
sequence number of the corrupted segment. 

Yes 

No 

Data segment  
received 

 Header portion 
corrupted? 

Discard Packet 
Yes 

No 

Fig 4. Modifications to the TCP receiver 

 Header checksum 
option enabled? 

Continue as per  normal 

1) Calculate header checksum of segment 
2) Continue as per  normal 

Yes 

No 

Data segment 
to be sent 

Fig 3. Modifications to the TCP sender 

 Option 15 present 
in the segment? 

Continue as per normal 

1) Extract sequence number of corrupted segment 
2) Selectively retransmit the segment  
3) ACK is discarded without further processing 

Yes 

No 

ACK segment 
received 

Fig 5. Modification to the ACK processing 
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2)  The TCP retransmission algorithm is called to selec-
tively retransmit the corrupted segment. These retransmis-
sions are done at rates permitted by the current congestion 
window (cwnd). 
3)   No further processing is done unlike the case of nor-
mal TCP ACKs. 
 
These ‘special’ ACKs do not indicate congestion in the 
network. Hence, the TCP sender does not halve it’s cwnd 
if it receives multiple ‘special’ ACKs with the same value 
in the ACK field (for e.g., ACKs generated in response to 
corruption in consecutive segments. These ACKs will have 
the same value in the ACK field but different values in the 
Header Checksum ACK option field).  
 

IV.   IMPLEMENTATION AND EXPERIMENTAL 
SETUP 

 
We incorporated our Header Checksum options and the 
necessary changes to the TCP algorithm in the Linux ker-
nel version 2.2.10. This modified version of the Linux ker-
nel was installed on our experimental testbed consisting of 
Celeron 300A machines with 128 megabytes of RAM 
each. The machines were connected using Intel Ether-
Express Pro 100 (set to 10 Mbps) network cards. The ex-
perimental testbed is shown in Fig. 6. 
  
We ran our experiments by sending TCP bulk data from 
the client to the server. We used iperf [3] to generate this 
data. The error / delay box was used to corrupt and delay 
packets in the network to simulate lossy and long latency 
environments, respectively. Random as well as bursty 
packet errors were generated using packet corruption soft-
ware and the amount and location of the corruptions within 
a packet were all randomised. For our experiments, errors 
were generated only to packets travelling on the forward 
path. Packets on the reverse path (the ACK packets from 
the server to the client) were not corrupted.  
 
We modified the device drivers of the ethernet cards to 
stop them from discarding packets that failed the packet 
CRC checks. As a result, corrupted packets arriving at the 
network cards were passed up to the TCP/IP stack without 
being discarded. Infact, Layer-2 protocol delivering cor-
rupt PDUs to upper layer can happen in the following sce-
narios.(i) the user chooses the option of disabling the link-

layer CRC (ii) the error rate is too high for the link layer 
CRC to be efficient. We claim that disabling error detec-
tion and recovery at lower layers and letting TCP to do 
them can be beneficial to the overall performance.  

 
V.   RESULTS AND DISCUSSIONS 

 
To test the effectiveness of HACK, we ran a variety of test 
scenarios.  These scenarios were designed to test the per-
formance of HACK under various lossy environments. We 
chose NewReno and SACK for comparison as Linux im-
plements both of them and they are acclaimed as the “best” 
basic and extended commodity TCP implementations, re-
spectively [4][8][21]. 
 
A.   Random Bit Errors 
 
In the first experiment, we compare the performance of 
HACK with SACK (on top of NewReno) and NewReno 
(default TCP stack in Linux 2.2.10) in the presence of 
white noise, i.e., in a scenario where the error condition is 
characterized by sharp spikes causing single bit corrup-
tions. We have translated this bit error profile into packet 
errors (Our packet corruption probabilities range from 2% 
to 15% corresponding to a bit error range of 1x10-6 to 
1x10-5). We ran the experiment over a low latency link (10 
ms end-to-end delay) by sending 2 MB of TCP bulk data 
from the client to the server and over a long latency link 
(300 ms end-to-end delay, e.g., satellite link) by sending 
256 KB of TCP bulk data from the client to the server. In 
the latter case, we used 256KB to reduce experiment time 
as 2 MB was taking too long to complete. We repeated the 

experiment five times for each TCP/IP stack and for each 
packet corruption probability. The TCP window size was 
set high enough that it was not a limiting factor for either 
latency. Fig. 7 shows the average number of slow starts 
experienced by the various TCP implementations over the 

Client Server 
Error / Delay Box 

Fig 6. Experimental testbed 

Fig. 7: Average number of slow-starts for long latency link with random 
single packet errors 
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long latency link. Average throughput vs percentage loss 
curves are shown in Fig. 8 for the low latency link and in         
Fig. 9 for the long latency link.   

As can be seen, both SACK and HACK perform better 
than NewReno for both latencies. They also experience 
less slow starts than NewReno. These results were due to  
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Fig 9. Throughput versus percentage packet loss for long latency (300 ms) link with random single packet errors 

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Percentage Packet Loss (%)

Th
ro

ug
hp

ut
 (K

B
yt

es
/s

)

sack
hack+sack
hack
newreno

1 

2 

3 
4 

1 
2 
3 
4 

Fig 8. Throughput versus percentage packetloss for short latency (10 ms) link with random single packet errors  
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the selective ACK feature of SACK (which enabled SACK 
to do more intelligent and efficient retransmissions of lost 
packets) and the ability of HACK to recover useful infor-
mation from corrupted packets. Hence, we exclude Ne-
wReno from all further experiments and only show the 
comparison between SACK and HACK. The performance 
of both SACK and HACK are comparable in the situation  
where white noise is prevalent. The best performance is 
achieved when we combine both HACK and SACK to-
gether.  This will be discussed further later. 
 
B.   Burst Errors 
 
We next ran experiments to compare the performance of 
SACK and HACK in bursty error conditions. Multi-packet 
random burst errors with burst lengths ranging from 2 to 
10 packets were considered. We ran this experiment over 
the long latency link with the window size set high enough 
not to be a limiting factor .Figs. 10 – 13 show the results of 
the various TCP schemes under different burst error 
lengths for 2%, 5%, 10% and 15% burst error probabilities 
respectively.  From the graphs, it can be seen that HACK 
performs substantially better than SACK in the presence of 
bursty errors. This is because SACK is unable to respond 
when it loses too many packets in a row and thus it times 
out frequently. HACK is better in this respect as it can 
recover some of the headers of the corrupted packets and 
use those headers to generate ACKs and keep the pipe 

flowing. As expected, HACK performs better with SACK 
activated than without SACK. This is because HACK is 
able to leverage upon the out of order packet retransmis-
sion algorithms in SACK. HACK creates these out of or-
der situations as it may not be able to recover the headers 
of all the packets corrupted in a burst due to the random 
nature of the bit errors within each packet. For example, if 
say 5 packets are corrupted, HACK may only be able to 
recover the headers of packets 2, 4 and 5 with packets 1 
and 3 being irretrievable.  This creates gaps in the receiv-
ing window, as HACK will only ask for retransmissions of 
the packets whose headers it can recover.  However, if 
SACK is activated, these gaps will be detected and han-
dled accordingly. Another example would be as follows; 
suppose the TCP receiver receives segments x+1, x+2 and 
x+3 correctly but segment x is corrupted. In this case, the 
receiver will generate one ‘special’ ACK in response to 
segment x and three normal ACKs in response to segments 
x+1, x+2 and x+3. However, the three normal ACKs will 
appear to the TCP sender as dupacks as they all will be 
acknowledging segment x (the next segment expected by 
the receiver). Hence, the sender will needlessly go into fast 
retransmit. SACK eliminates this problem as it will be able 
to inform the TCP sender about the gaps in the receiving 
window. This leveraging is possible because the HACK 
and SACK have disjoint sets of operations, thus preventing 
any conflicts during packet processing. However, it must  
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be re-emphasised that HACK without SACK is still much 
better than just SACK alone (albeit with potentially more 
out of order packets being generated). Thus both SACK 
and HACK can benefit very nicely from each other’s prop-
erties.  
 
To clearly show how well HACK performs in bursty error 
conditions, we compared the time sequence graphs (TSG)  
of HACK, SACK and HACK+SACK for 5% error prob-
ability with a burst error length of 5 packets. Tcptrace [15]  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

was used to generate the TSG graphs (as xplot [22] data 
files) from our tcpdump capture files of the data trans-
ferred between the server and the client during the experi-
ment. Xplot was used to display the TSG graphs and we 
captured the output on the screen using a screen capture 
utility. The TSG for HACK+SACK is shown in Fig. 14, 
HACK in Fig. 15 and SACK in Fig. 16. It can be seen that  
HACK and HACK+SACK perform much better than 
SACK  in keeping the data pipe flowing in the presence of 
burst errors as they do not have long periods of idle activ-
ity / timeouts (shown as long horizontal lines in the TSG 
indicating that the sequence number for the TCP connec-
tion has not increased during that time period).  
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Fig 16.   Time Se-

Fig 15.  Time Sequence Graph for HACK 

Fig 14. Time Sequence Graph  for HACK+SACK Fig 15.  Time Sequence Graph for HACK 

Fig 16.  Time Sequence Graph  for Sack  
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HACK+SACK works better than HACK due to the rea-
sons mentioned previously. It must be noted that the time 
scale of the various TSG graphs are different and that 
SACK takes a much longer time to finish than Fig. 17 
which displays the instantaneous throughput versus time. 
As can be seen, SACK takes about 2600 seconds to finish 
as compared to about 430 seconds for HACK and 140 sec-
onds for HACK+SACK.  Thus HACK and HACK+SACK  

enjoy a much higher throughput than SACK in bursty error 
conditions. 
 
C.   Effect Of Window Sizes 
 
So far in our experiments, we kept the window size large 
enough not to be a bottleneck. Next, we consider the effect 
of smaller window size on the performance of HACK and 
SACK. It is clear that when there are a number of errors 

Fig 22. Throughput for 5% burst error for various burst lengths 
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Fig 21. Throughput for 2% burst error for various burst lengths  
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and window size is small, more timeouts and hence slow 
starts are likely to occur, resulting in throughput degrada-
tion.However, HACK will keep the pipe flowing because 
of the `special' ACKs, and hence will result in better 
throughput. To confirm this, we compared the effects of 
various window sizes on SACK and HACK. We ran this 
experiment over long latency links for burst errors with 
burst lengths ranging from 1 to 10 packets. We transferred 
256 KB of data from the client to the server with two dis-
tinct window sizes: 16KB and 64KB. Figs. 18 – 20 show 
the throughput of the various TCP schemes under different 
burst error lengths for burst error probabilities of 2%, 5%, 
and 10%, respectively, for a window size of 16 KB. As can 
be seen, HACK performs better than SACK even when the 
window size is small (thus becoming a limiting factor in 
determining the amount of data that can be sent over a 
link), and HACK+SACK performs better than HACK. The 
reasons for these improvement are as stated previously. 
Figs. 21 - 23 show the results for the same error probabili-
ties and burst lengths but for a window size of 64 KB. In 
this case as well, HACK performs much better than SACK 
and HACK+SACK performs better than HACK.  
 
These results clearly show that HACK performs better 
than SACK in bursty error conditions for window sizes 
which are typically used by many TCP stacks (without the 
optional window scaling option enabled). Note that the 
superior performance of HACK over SACK is more 
prominent for smaller window size. 

 
VI.   DEPLOYMENT 

 
In scenarios where it may be difficult to determine if 
HACK is necessary (e.g., if the end user is unaware of the 
existence of any lossy links within the network), a feasible 
solution would be to place TCP tunnels (similar to IP tun-
nels except that TCP is used for the encapsulation) across 
those links and enable HACK for those tunnels. 
 
These tunnels would be deployed by the network adminis-
trators of the lossy links. Traffic entering these lossy links 
will be encapsulated within TCP tunnels and these tunnels 
can then use the Header Checksum option to maximise 
their throughput over these lossy links. In this scenario, the 
end users do not have to change any of their software or 
even be aware of the presence of lossy links in the network 
to benefit from the use of the Header Checksum option. 
The properties of TCP tunnels is described in [13] and a 
complete system which provides quality of service (QoS) 
guarantees while using TCP tunnels is described in [1]. 

 
 

VII.   CONCLUSIONS 
 
In this paper, we have presented the TCP Header Check-
sum extensions to TCP to recover from packet loss due to 

corruption in lossy environments. HACK allows  TCP to 
detect packet loss due to corruption and recover the neces-
sary information so that the sender may be notified of this 
corruption allowing it to retransmit the corrupted segment 
immediately. The sender avoids throttling its sending rate 
as the loss is not indicative of congestion. 
 
Our experiments have shown that HACK performs sub-
stantially better than SACK in environments where burst 
corruptions are prevalent. In these environments, SACK 
will time out incessantly whereas HACK manages to keep 
the data pipe flowing somewhat. The optimal level of per-
formance is achieved when HACK is run together with  
SACK. 
 
Work is being done to test the effectiveness of HACK and 
HACK + SACK in situations where ACKs are also suscep-
tible to packet corruption, and where congestion occurs 
along with corruption. We also plan to extend our test and 
measurements of HACK to real wireless and satellite links.  
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