
0-7803-7016-3/01/$10.00 ©2001 IEEE

TCP HACK: TCP Header Checksum Option to Improve Performance over Lossy

Links

R. K. Balan, B. P. Lee, K. R. R. Kumar
L. Jacob, W. K. G. Seah, A. L. Ananda

Centre for Internet Research
 School of Computing

 National University of Singapore
3 Science Drive 2, Singapore 117543

{rajeshkr, leebp, kaleelaz, jacobl, wseah, ananda}@comp.nus.edu.sg

Abstract -- In recent years, wireless networks have be-
come increasingly common and an increasing number
of devices are communicating with each other over
lossy links. Unfortunately, TCP performs poorly over
lossy links as it is unable to differentiate the loss due to
packet corruption from that due to congestion. In this
paper, we present an extension to TCP which enables
TCP to distinguish packet corruption from congestion
in lossy environments resulting in improved perform-
ance. We refer to this extension as the HeAder ChecK-
sum option (HACK). We implemented our algorithm in
the Linux kernel and performed various tests to deter-
mine its effectiveness. Our results have shown that
HACK performs substantially better than both SACK
and NewReno in cases where burst corruptions are
frequent. We also found that HACK can co-exist very
nicely with SACK and performs even better with
SACK enabled.

Keywords -- Protocol Design, Protocol Analysis, Wire-
less Networks.

I. INTRODUCTION

There has been a proliferation in the use of mobile com-
puting in the last few years. More and more devices are
talking to each other via lossy links. Lossy environments
are characterised by high bit error rates as opposed to
wired networks where the bit error rate is very low. They
are also usually served by low bandwidth links and experi-
ence long delays during handoff periods. As a result, it has
become vital that the network protocols used to intercon-
nect these devices understand and operate well in these
lossy environments.

The de-facto network protocol stack used for communica-
tions is the TCP/IP stack. This stack couples a best effort
network layer (IP) with either a reliable (TCP) or an unre-

liable (UDP) transport layer. The majority of applications
on the Internet use the TCP/IP stack as the basis for their
transactions.

However, TCP was designed to optimise its performance
to deal with packet losses in the network due to congestion
[12]. It is unable to determine if a packet loss is due to
congestion or corruption of the packet due to errors in the
network. As a result, TCP generally performs poorly in
lossy environments as it interprets packet corruption as
congestion in the network. Thus instead of increasing or, at
least, maintaining its sending rate to overcome these errors
due to corruption, TCP will decrease its sending rate to
reduce, what it perceives as, congestion in the network.
This reduction in sending rate results in low throughputs
for bulk transfers.

In this paper, we propose a modification to the TCP
[16][18][23] protocol that allows it to perform better in
lossy environments. We base our solution on the premise
that when packet corruption occurs, it is more likely that
the packet corruption occurs in the data and not the header
portion of the packet. This is because the data portion of a
packet is usually much larger than the header portion for
many applications over typical MTUs. With this knowl-
edge, we have devised an algorithm by which TCP is able
to recover these uncorrupted headers and thus determine
that packet corruption and not congestion has taken place
in the network. TCP can then react appropriately. We do
this by introducing two TCP options: the first option is for
data packets and contains the 1’s-complement 16-bit
checksum of the TCP header (and pseudo-IP header) while
the second is for ACKs and contains the sequence num-
ber of the TCP segment that was corrupted.

The rest of this paper is organised as follows. We discuss
some related work in Section II, followed by a description
of the details and dynamics of our extension to the TCP
protocol in Section III. Section IV will describe our im-

309 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

plementation while Section V presents the results of our
experiments. We discuss some possible deployment strate-
gies of our protocol in Section VI. Section VII will detail
our future plans and we conclude with a summary in Sec-
tion VIII.

II. RELATED WORK

There has been an incredible number of techniques devel-
oped for TCP over the past decade facilitating fast and
efficient recovery from packet losses in general.

The fast retransmit algorithm [18] interprets incoming du-
plicate acknowledgements as an indication of packet loss
and retransmits the packet indicated by the ACKs while
avoiding timeouts. However, if two or more packets have
been lost from a window, the fast retransmission will not
be able to recover the losses without waiting for a timeout.
NewReno [10][11][21] introduces the concept of fast re-
transmission phase, which starts on detection of a packet
loss and ends when the receiver acknowledges reception of
all data transmitted at the start of the retransmission phase.
The sender assumes reception of a partial ACK during the
fast retransmission phase as an indication that another
packet has been lost within the window, and retransmits it
immediately. With the Selective Acknowledgement
(SACK) option [19] enabled, the receiver sends duplicate
ACKs containing the segment numbers of the packets it
has received. This allows the transmitter to selectively
retransmit only lost packets, without retransmitting already
SACKed packets.

Packet loss due to corruption is more common over satel-
lite and wireless networks than wired networks and there
have been a number of initiatives in tackling this problem.

A common solution is to add Forward Error Correction
(FEC) to the data being sent over lossy links. Allman, et al
[17] covers the issues in using FEC to improve the per-
formance of satellite links. The Indirect-TCP (I-TCP) pro-
tocol [2] splits a TCP connection between a fixed and mo-
bile host into two separate connections and hides TCP
from the lossy link by using a protocol optimised for lossy
links. The SNOOP protocol [6] caches packets at the base
station and performs local retransmissions over the lossy
link.

The use of Explicit Congestion Notification (ECN) [9][20]
in the TCP/IP protocol enables routers to inform TCP
senders about the onset of congestion and may assist in
distinguishing packet losses due to congestion and corrup-
tion. Other explicit notification schemes include Explicit
Loss Notification (ELN) [7] , Explicit Bad State Notificati-

on (EBSN) [5] and Forward Acknowledgement(FACK)
[14].

III. TCP HEADER CHECKSUM OPTION

We extended TCP by including two additional TCP op-
tions. The first (see Fig. 1) is both an enabling option used
in SYN segments as well as the Header Checksum option
used in data segments. When the option is used in a SYN
segment, it is an indication that the Header Checksum op-
tion can be used once the connection is established (the
value of the option field is ignored in this case). When
used in data segments, the option field contains the 16 bit
1’s complement checksum of the TCP header and the
pseudo-IP header. The second option (see Fig. 2) is the
Header Checksum ACK option which is included in ‘spe-
cial’ ACKs generated in response to packet corruption.

Kind=14

Length=4

1’s complement check-
sum of TCP header and
pseudo-IP header

Kind=15

Length=6

32-bit sequence number
of corrupted segment to
resend

Normally, TCP carries only one checksum, which is for
the entire TCP segment. If this checksum fails due to
packet corruption, the entire segment is discarded. How-
ever, in many cases, the headers of the corrupted TCP
segment are still recoverable as the corruption might have
occurred in the data portion alone. Hence, by adding a
separate checksum for the header portion of the TCP seg-
ment, the TCP receiver will be able to check the integrity
of the header. By recovering this header, the receiver is
able to send a ‘special’ ACK back to the TCP sender indi-
cating packet corruption. This ACK will contain the se-
quence number of the corrupted packet in the option field.
This ACK is identical to normal ACKs except for the addi-
tional option.

We modified the data processing algorithms of the TCP
sender and receiver and the ACK processing algorithm of
the TCP sender to incorporate our new Header Checksum
options, which are explained in the following subsections.

Fig. 2: TCP Header Checksum ACK option

Fig. 1: TCP Header Checksum option

310 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

A. Modifications To The TCP Sender

When sending out data segments, our modified TCP stack
first checks if the Header Checksum option has been nego-
tiated. If the option has not been negotiated, the TCP
sender proceeds as per normal. Otherwise, it will compute
the header checksum for that data segment and place it into
the option field of the Header Checksum option. The rest
of the data sending algorithm is as per normal.

B. Modifications To The TCP Receiver

When the TCP receiver receives a packet, it verifies the
integrity of the segment using the standard TCP checksum.
If the segment is uncorrupted, it is processed as per nor-
mal. However, if it is corrupted, the modified TCP stack
does the following:

1) Verify the integrity of the header of the corrupted

segment using the value of the header checksum con-
tained in the option field.

2) If the header is corrupted, the segment is discarded
and no further processing is done.

3) If the header is intact, the ‘special’ ACK is sent to the
sender of the corrupted packet. This ACK will contain
the Header Checksum ACK option indicating to the
sender that this ACK was generated in response to
packet corruption. It contains the sequence number of
the corrupted segment in the option field, thus allow-
ing the sender to selectively retransmit only the seg-
ment that was corrupted.

C. Modifications To The ACK Processing

When the TCP sender receives an ACK, it checks if the
Header Checksum ACK option is present. If the option is
not there, it indicates that this is a normal ACK and the
sender processes it as per normal. However, if the option
field is set, the stack does the following:

1) The sequence number of the corrupted segment trig-

gering this ACK is obtained from the Header Check-
sum ACK option field.

 TCP segment cor-

rupted?
Continue as per normal

1) Recover sequence number of corrupted segment from
header.

2) Generate ‘special’ ACK (option 15) containing the
sequence number of the corrupted segment.

Yes

No

Data segment
received

 Header portion
corrupted?

Discard Packet
Yes

No

Fig 4. Modifications to the TCP receiver

 Header checksum
option enabled?

Continue as per normal

1) Calculate header checksum of segment
2) Continue as per normal

Yes

No

Data segment
to be sent

Fig 3. Modifications to the TCP sender

 Option 15 present
in the segment?

Continue as per normal

1) Extract sequence number of corrupted segment
2) Selectively retransmit the segment
3) ACK is discarded without further processing

Yes

No

ACK segment
received

Fig 5. Modification to the ACK processing

311 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

2) The TCP retransmission algorithm is called to selec-
tively retransmit the corrupted segment. These retransmis-
sions are done at rates permitted by the current congestion
window (cwnd).
3) No further processing is done unlike the case of nor-
mal TCP ACKs.

These ‘special’ ACKs do not indicate congestion in the
network. Hence, the TCP sender does not halve it’s cwnd
if it receives multiple ‘special’ ACKs with the same value
in the ACK field (for e.g., ACKs generated in response to
corruption in consecutive segments. These ACKs will have
the same value in the ACK field but different values in the
Header Checksum ACK option field).

IV. IMPLEMENTATION AND EXPERIMENTAL
SETUP

We incorporated our Header Checksum options and the
necessary changes to the TCP algorithm in the Linux ker-
nel version 2.2.10. This modified version of the Linux ker-
nel was installed on our experimental testbed consisting of
Celeron 300A machines with 128 megabytes of RAM
each. The machines were connected using Intel Ether-
Express Pro 100 (set to 10 Mbps) network cards. The ex-
perimental testbed is shown in Fig. 6.

We ran our experiments by sending TCP bulk data from
the client to the server. We used iperf [3] to generate this
data. The error / delay box was used to corrupt and delay
packets in the network to simulate lossy and long latency
environments, respectively. Random as well as bursty
packet errors were generated using packet corruption soft-
ware and the amount and location of the corruptions within
a packet were all randomised. For our experiments, errors
were generated only to packets travelling on the forward
path. Packets on the reverse path (the ACK packets from
the server to the client) were not corrupted.

We modified the device drivers of the ethernet cards to
stop them from discarding packets that failed the packet
CRC checks. As a result, corrupted packets arriving at the
network cards were passed up to the TCP/IP stack without
being discarded. Infact, Layer-2 protocol delivering cor-
rupt PDUs to upper layer can happen in the following sce-
narios.(i) the user chooses the option of disabling the link-

layer CRC (ii) the error rate is too high for the link layer
CRC to be efficient. We claim that disabling error detec-
tion and recovery at lower layers and letting TCP to do
them can be beneficial to the overall performance.

V. RESULTS AND DISCUSSIONS

To test the effectiveness of HACK, we ran a variety of test
scenarios. These scenarios were designed to test the per-
formance of HACK under various lossy environments. We
chose NewReno and SACK for comparison as Linux im-
plements both of them and they are acclaimed as the “best”
basic and extended commodity TCP implementations, re-
spectively [4][8][21].

A. Random Bit Errors

In the first experiment, we compare the performance of
HACK with SACK (on top of NewReno) and NewReno
(default TCP stack in Linux 2.2.10) in the presence of
white noise, i.e., in a scenario where the error condition is
characterized by sharp spikes causing single bit corrup-
tions. We have translated this bit error profile into packet
errors (Our packet corruption probabilities range from 2%
to 15% corresponding to a bit error range of 1x10-6 to
1x10-5). We ran the experiment over a low latency link (10
ms end-to-end delay) by sending 2 MB of TCP bulk data
from the client to the server and over a long latency link
(300 ms end-to-end delay, e.g., satellite link) by sending
256 KB of TCP bulk data from the client to the server. In
the latter case, we used 256KB to reduce experiment time
as 2 MB was taking too long to complete. We repeated the

experiment five times for each TCP/IP stack and for each
packet corruption probability. The TCP window size was
set high enough that it was not a limiting factor for either
latency. Fig. 7 shows the average number of slow starts
experienced by the various TCP implementations over the

Client Server
Error / Delay Box

Fig 6. Experimental testbed

Fig. 7: Average number of slow-starts for long latency link with random
single packet errors

0

10

20

30

40

50

60

70

0 3 6 9 12

Percentage Packet Loss (%)

A
ve

ra
ge

 N
um

be
r

of
 S

lo
w

-S
ta

rt
s newreno

sack
hack
hack+sack

312 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

long latency link. Average throughput vs percentage loss
curves are shown in Fig. 8 for the low latency link and in
Fig. 9 for the long latency link.

As can be seen, both SACK and HACK perform better
than NewReno for both latencies. They also experience
less slow starts than NewReno. These results were due to

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Percentage Packet Loss (%)

Th
ro

ug
hp

ut
 (K

B
yt

es
/s

) sack
hack+sack
hack
newreno

1

2

3

4

1
2
3

4

Fig 9. Throughput versus percentage packet loss for long latency (300 ms) link with random single packet errors

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Percentage Packet Loss (%)

Th
ro

ug
hp

ut
 (K

B
yt

es
/s

)

sack
hack+sack
hack
newreno

1

2

3
4

1
2
3
4

Fig 8. Throughput versus percentage packetloss for short latency (10 ms) link with random single packet errors

313 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

the selective ACK feature of SACK (which enabled SACK
to do more intelligent and efficient retransmissions of lost
packets) and the ability of HACK to recover useful infor-
mation from corrupted packets. Hence, we exclude Ne-
wReno from all further experiments and only show the
comparison between SACK and HACK. The performance
of both SACK and HACK are comparable in the situation
where white noise is prevalent. The best performance is
achieved when we combine both HACK and SACK to-
gether. This will be discussed further later.

B. Burst Errors

We next ran experiments to compare the performance of
SACK and HACK in bursty error conditions. Multi-packet
random burst errors with burst lengths ranging from 2 to
10 packets were considered. We ran this experiment over
the long latency link with the window size set high enough
not to be a limiting factor .Figs. 10 – 13 show the results of
the various TCP schemes under different burst error
lengths for 2%, 5%, 10% and 15% burst error probabilities
respectively. From the graphs, it can be seen that HACK
performs substantially better than SACK in the presence of
bursty errors. This is because SACK is unable to respond
when it loses too many packets in a row and thus it times
out frequently. HACK is better in this respect as it can
recover some of the headers of the corrupted packets and
use those headers to generate ACKs and keep the pipe

flowing. As expected, HACK performs better with SACK
activated than without SACK. This is because HACK is
able to leverage upon the out of order packet retransmis-
sion algorithms in SACK. HACK creates these out of or-
der situations as it may not be able to recover the headers
of all the packets corrupted in a burst due to the random
nature of the bit errors within each packet. For example, if
say 5 packets are corrupted, HACK may only be able to
recover the headers of packets 2, 4 and 5 with packets 1
and 3 being irretrievable. This creates gaps in the receiv-
ing window, as HACK will only ask for retransmissions of
the packets whose headers it can recover. However, if
SACK is activated, these gaps will be detected and han-
dled accordingly. Another example would be as follows;
suppose the TCP receiver receives segments x+1, x+2 and
x+3 correctly but segment x is corrupted. In this case, the
receiver will generate one ‘special’ ACK in response to
segment x and three normal ACKs in response to segments
x+1, x+2 and x+3. However, the three normal ACKs will
appear to the TCP sender as dupacks as they all will be
acknowledging segment x (the next segment expected by
the receiver). Hence, the sender will needlessly go into fast
retransmit. SACK eliminates this problem as it will be able
to inform the TCP sender about the gaps in the receiving
window. This leveraging is possible because the HACK
and SACK have disjoint sets of operations, thus preventing
any conflicts during packet processing. However, it must

12.988

20.0838 19.7595

15.5958

3.5406

16.436

19.9486

0.5402

4.6428

0

5

10

15

20

25

2 5 10
Length of Burst Error (packets)

Th
ro

ug
hp

ut
 (K

B
/s

)

hack+sack
hack
sack

Fig 10. Throughput for 2% burst error for various burst lengths

11.0162

11.6934

8.531

5.9582
7.6964

1.4022

0.21120.7454

8.5608

0

2

4

6

8

10

12

2 5 10
Length of Burst Error (packets)

Th
ro

ug
hp

ut
 (K

B
/s

)

hack+sack
hack
sack

Fig 11. Throughput for 5% burst error for various burst lengths

4.8544

0

1.6532
2.0112

0.7886

3.1518

2.10941.071

0.035
0

1

2

3

4

5

6

2 5 10
Length of Burst Error (packets)

Th
ro

ug
hp

ut
 (K

B
/s

)

hack+sack
hack
sack

Fig 13. Throughput for 15% burst error for various burst lengths

7.1938
5.9922

2.77244.4402

2.9316
1.4022

2.9494

0.142 0.036
0

2

4

6

8

10

2 5 10
Length of Burst Error (packets)

Th
ro

ug
hp

ut
 (K

B
/s

)

hack+sack
hack
sack

Fig 12. Throughput for 10% burst error for various burst lengths

314 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

be re-emphasised that HACK without SACK is still much
better than just SACK alone (albeit with potentially more
out of order packets being generated). Thus both SACK
and HACK can benefit very nicely from each other’s prop-
erties.

To clearly show how well HACK performs in bursty error
conditions, we compared the time sequence graphs (TSG)
of HACK, SACK and HACK+SACK for 5% error prob-
ability with a burst error length of 5 packets. Tcptrace [15]

was used to generate the TSG graphs (as xplot [22] data
files) from our tcpdump capture files of the data trans-
ferred between the server and the client during the experi-
ment. Xplot was used to display the TSG graphs and we
captured the output on the screen using a screen capture
utility. The TSG for HACK+SACK is shown in Fig. 14,
HACK in Fig. 15 and SACK in Fig. 16. It can be seen that
HACK and HACK+SACK perform much better than
SACK in keeping the data pipe flowing in the presence of
burst errors as they do not have long periods of idle activ-
ity / timeouts (shown as long horizontal lines in the TSG
indicating that the sequence number for the TCP connec-
tion has not increased during that time period).

0

100

200

300

400

500

0 400 800 1200 1600 2000 2400 2800

Time (s)

Th
ro

ug
hp

ut
 (K

b/
s)

hack+sack
hack
sack

Fig 17. Throughput versus Time graph for various TCP implementations

Fig 16. Time Se-

Fig 15. Time Sequence Graph for HACK

Fig 14. Time Sequence Graph for HACK+SACK Fig 15. Time Sequence Graph for HACK

Fig 16. Time Sequence Graph for Sack

315 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

HACK+SACK works better than HACK due to the rea-
sons mentioned previously. It must be noted that the time
scale of the various TSG graphs are different and that
SACK takes a much longer time to finish than Fig. 17
which displays the instantaneous throughput versus time.
As can be seen, SACK takes about 2600 seconds to finish
as compared to about 430 seconds for HACK and 140 sec-
onds for HACK+SACK. Thus HACK and HACK+SACK

enjoy a much higher throughput than SACK in bursty error
conditions.

C. Effect Of Window Sizes

So far in our experiments, we kept the window size large
enough not to be a bottleneck. Next, we consider the effect
of smaller window size on the performance of HACK and
SACK. It is clear that when there are a number of errors

Fig 22. Throughput for 5% burst error for various burst lengths
 (window size of 64KB)

4.458

7.118

2.825

11.81111.900

7.908

8.565

0.750 0.211
0
2
4
6
8

10
12
14

1 5 10
Length of Burst Error (packets)

Th
ro

ug
hp

ut
 (K

B
/s

)

hack+sack
hack
sack

4.294
4.252

5.446

2.828

5.167

3.925

1.903

0.0450.251
0
1
2
3
4
5
6
7

1 5 10
Length of Burst Error (packets)

Th
ro

ug
hp

ut
 (K

B
/s

)

hack+sack
hack
sack

Fig 20. Throughput for 10% burst error for various burst lengths
(window size of 16KB)

10.705

4.656

14.3264

12.04513.7424

12.393

6.275

0.267

15.230

0
2
4
6
8

10
12
14
16
18

1 5 10
Length of Burst Error (packets)

Th
ro

ug
hp

ut
 (K

B
/s

)
hack+sack
hack
sack

Fig 18. Throughput for 2% burst error for various burst lengths

2.467

5.975
6.826

8.834

4.928

9.435

0.824
0.106

8.851

0

2

4

6

8

10

12

1 5 10
Length of Burst Error (packets)

Th
ro

ug
hp

ut
 (K

B
/s

)

hack+sack
hack
sack

Fig 19. Throughput for 5% burst error for various burst lengths
 (window size of 16KB)

Fig 21. Throughput for 2% burst error for various burst lengths
(window size of 64KB)

13.701

10.812

3.746

18.775

21.080

17.858

13.732

2.365
0.4890

5

10

15

20

25

1 5 10
Length of Burst Error (packets)

Th
ro

ug
hp

ut
 (K

B
/s

)

hack+sack
hack
sack

Fig 23. Throughput for 10% burst error for various burst lengths
(window size of 64KB)

1.455

7.264

4.460

3.765

5.265

2.596

6.834

0.121 0.015
0
1
2
3
4
5
6
7
8
9

1 5 10
Length of Burst Error (packets)

Th
ro

ug
hp

ut
 (K

B
/s

)

hack+sack
hack
sack

316 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

and window size is small, more timeouts and hence slow
starts are likely to occur, resulting in throughput degrada-
tion.However, HACK will keep the pipe flowing because
of the `special' ACKs, and hence will result in better
throughput. To confirm this, we compared the effects of
various window sizes on SACK and HACK. We ran this
experiment over long latency links for burst errors with
burst lengths ranging from 1 to 10 packets. We transferred
256 KB of data from the client to the server with two dis-
tinct window sizes: 16KB and 64KB. Figs. 18 – 20 show
the throughput of the various TCP schemes under different
burst error lengths for burst error probabilities of 2%, 5%,
and 10%, respectively, for a window size of 16 KB. As can
be seen, HACK performs better than SACK even when the
window size is small (thus becoming a limiting factor in
determining the amount of data that can be sent over a
link), and HACK+SACK performs better than HACK. The
reasons for these improvement are as stated previously.
Figs. 21 - 23 show the results for the same error probabili-
ties and burst lengths but for a window size of 64 KB. In
this case as well, HACK performs much better than SACK
and HACK+SACK performs better than HACK.

These results clearly show that HACK performs better
than SACK in bursty error conditions for window sizes
which are typically used by many TCP stacks (without the
optional window scaling option enabled). Note that the
superior performance of HACK over SACK is more
prominent for smaller window size.

VI. DEPLOYMENT

In scenarios where it may be difficult to determine if
HACK is necessary (e.g., if the end user is unaware of the
existence of any lossy links within the network), a feasible
solution would be to place TCP tunnels (similar to IP tun-
nels except that TCP is used for the encapsulation) across
those links and enable HACK for those tunnels.

These tunnels would be deployed by the network adminis-
trators of the lossy links. Traffic entering these lossy links
will be encapsulated within TCP tunnels and these tunnels
can then use the Header Checksum option to maximise
their throughput over these lossy links. In this scenario, the
end users do not have to change any of their software or
even be aware of the presence of lossy links in the network
to benefit from the use of the Header Checksum option.
The properties of TCP tunnels is described in [13] and a
complete system which provides quality of service (QoS)
guarantees while using TCP tunnels is described in [1].

VII. CONCLUSIONS

In this paper, we have presented the TCP Header Check-
sum extensions to TCP to recover from packet loss due to

corruption in lossy environments. HACK allows TCP to
detect packet loss due to corruption and recover the neces-
sary information so that the sender may be notified of this
corruption allowing it to retransmit the corrupted segment
immediately. The sender avoids throttling its sending rate
as the loss is not indicative of congestion.

Our experiments have shown that HACK performs sub-
stantially better than SACK in environments where burst
corruptions are prevalent. In these environments, SACK
will time out incessantly whereas HACK manages to keep
the data pipe flowing somewhat. The optimal level of per-
formance is achieved when HACK is run together with
SACK.

Work is being done to test the effectiveness of HACK and
HACK + SACK in situations where ACKs are also suscep-
tible to packet corruption, and where congestion occurs
along with corruption. We also plan to extend our test and
measurements of HACK to real wireless and satellite links.

ACKNOWLEDGMENTS

The authors would like to acknowledge the generous
funding support from National Science and Technology
Board (NSTB) and Infocomm Development Authority of
Singapore (IDA) for the Singapore Advanced Research
and Education Network (SingAREN) project, under which
the above work was carried out.

REFERENCES

 [1] R. K. Balan, “Chameleon – A system for Adaptive
QoS Provisioning ”, Master’s Thesis, School of Com-
puting,NUS,2000.

 [2] A. Bakre, B. R. Badrinath, “Handoff and System

Support for Indirect TCP/IP”, Proceedings of Second
Usenix Symposium on Mobile and Location-
Independent Computing, April 1995.

 [3] University of Illinois at Urbana Champagne,

http://dast.nlanr.net/Projects/Iperf.

 [4] R. Bruyeron, B. Hemon, L. Zhang, “Experimentatio
ns with TCP Selective Acknowledgement”, ACM
SIGCOMM, April 1998

[5] B. S. Bakshi, P. Krishna, N. H. Vaidya, D. K. Prad-

han, “Improving Performance of TCP over Wireless
Networks”, Proc. IEEE 17th ICDCS'97, 1997

 [6] H. Balakrishnan, S. Seshan, E. Amir, R. H. Katz,

“Improving TCP/IP Performance over Lossy Net

317 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

works”, Proc. 1st ACM Int’l Conf. On Mobile Com-
puting and Networking (Mobicom), Nov 1995.

 [7] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, R.

H. Katz, “A Comparison of Mechanisms for Improv-
ing TCP Performance over Lossy Links”, IEEE/ACM
Transactions on Networking, Dec 1997.

[8] K. Fall, S. Floyd, “Simulation-based Comparisons of

Tahoe, Reno, and SACK TCP”, Computer Communi-
cations Review, July 1996.

 [9] S. Floyd, “TCP and Explicit Congestion Notification”,

ACM CCR, October 1994.

 [10] J. Hoe, “Startup Dynamics of TCP’s Congestion
Control and Avoidance Schemes”, Master’s Thesis,
MIT, 1995

 [11] J. Hoe, “Improving the Startup Behaviour of a

Congestion Control Scheme for TCP”, ACM SIG-
COMM 1996.

 [12] Van Jacobson, “Congestion Avoidance and Control”,

ACM SIGCOMM 1988.

 [13] B. P. Lee, R. K. Balan, L. Jacob, W. K. G. Seah, A.
L. Ananda, “TCP Tunnels: Avoiding Congestion
Collapse”, LCN 2000.

 [14] M. Mathis, J. Mahdavi, “Forward Acknowledgement:

Refining TCP Congestion Control”, ACM SIG-
COMM 1996.

 [15] S.Ostermann,“tcptrace”,
http://jarok.cs.ohiou.edu/software/tcptrace/tcptrace.
html, Dec 1997

 [16] J. Postel, “Transmission Control Protocol”, RFC793

 [17] M. Allman, D. Glover, L. Sanchez, “Enhancing TCP
Over Satellite Channels using Standard Mecha-
nisms”, RFC2488

 [18] M. Allman, V. Paxson, W. Stevens, “TCP

Congestion Control”, RFC2581

 [19] M. Mathis, J. Mahdavi,S. Floyd, A. Romanow ,
“TCP Selective Acknowledgment Options”,
RFC2018

 [20] K. K. Ramakrishnan, S. Floyd, “A Proposal to add

Explicit Congestion Notification (ECN) to IP”,
RFC2481

 [21] S. Floyd, T. Henderson, “The NewReno

Modification to TCP's Fast Recovery Algorithm”,
RFC2582

 [22] T. Sheppard, “xplot”,
 ftp://mercury.lcs.mit.edu/pub/shep, Aug 1997

 [23] W. R. Stevens, "TCP/IP Illustrated, Volume 1",

Addison-Wesley Publishing Company, 1994.

318 IEEE INFOCOM 2001

http://jarok.cs.ohiou.edu/software/tcptrace/tcptrace.html
http://jarok.cs.ohiou.edu/software/tcptrace/tcptrace.html
ftp://mercury.lcs.mit.edu/pub/shep

