Delay-tolerant Networking

Postgraduate Seminar

Jörg Ott <jo@netlab.hut.fi>

Overview

- Seminar (3 ETCS points)
- Introductory lecture
- Seminar presentations spread across two days
 - 30 – 45min Presentation and discussion per topic
 - One opponent per topic
- Overview and assignments: today
- Dates and venue: 18.10.2005, 15:00 (D302)
 20.10.2005, 15:00 (D302)
Requirements

- Seminar presentation
 - 30 minutes
 - Slides (digital: PS, PDF, or PPT)
 - Will be provided on the course web page after the seminar
 - Preparation meeting by individual appointment to discuss contents

- Written summary: 5 – 10 pages
 - Double column style of IEEE journal / conference proceedings
 - Should be sent one week prior to the seminar (11.10. and 13.10. respectively)
 - Also to the opponent
 - Will be published on the course web page

- Material
 - Material available on the course web page (mostly including links)
 - Complement by own literature research as needed (e.g. for some basics)

Examples for DTNs…
Vehicular Networks

- Car area communications
 - Connecting on-board devices
 - Real-time requirements

- Inter-car communications
 - Wireless communication, e.g., based upon infrastructure-less UMTS
 - Direct: car to car within a limited range (less than one to a few km)
 - Indirect 1: using other cars for real-time routing
 - Critical mass (density) of cars is important
 - Indirect 2: using other cars for application-layer store and forward
 - Applications: traffic data exchange, emergency notifications
 - Also: entertainment (e.g., exchanging MP3 files)

- Car-to-fixed infrastructure
 - Delivering and receiving e.g., traffic data
 - Via GRPS, UMTS, GSM, SMS, also via broadcasting and WLANs

Other Moving Things

- Communications from and to trains
 - Cellular + satellite communications

- Airplanes
 - Internet access in the sky (e.g., connexion by Boeing) via satellites
 - Opportunistic communications with ground stations

- Ships
 - Intermittent connectivity via satellites
 - Opportunistic contacts between ships

- People!
Satellites

- Geostationary satellites
 - A bit of delay
 - 250ms one-way link propagation delay
 - Noticeable error rate (e.g. weather conditions)

- Low earth orbit (LEO) satellites
 - Lower data rates, lower link propagation delay
 - Multi-hop routing, handover, on-board processing
 - Store and forward operation
 - E.g. collect weather data while orbiting and transmit data collection during short periods of connectivity to earth stations

Deep Space Networks

- Communications with space crafts, space stations, satellites
 - E.g. Mars explorers
 - Low data rates, high error rate
 - Long propagation delays
 - Moon: ~3 seconds
 - Mars: ~2 minutes
 - Pluto: 5 hours
 - Link interruptions
 - Planetary dynamics
 - Scheduled communications
 - Pre-calculate next chance to communicate
 - Different requirements for “routing”
 - Retransmissions and interactive protocols are not workable
Meteor Burst Communications

- Using ionized particles behind tiny meteors for reflection
 - About 10^{12} meteors enter the atmosphere per day
 - Burning in atmosphere between 80 and 120 km height
 - Only small fraction is usable (right trajectory, energy, etc.)

- Communication characteristics
 - Communications time < 1s
 - Burst communications
 - Average 1000 bits/minute
 - Permanent probing and quick response required
 - Error rate
 - Non-predictability

Acoustic Underwater Networks

- Interconnecting ocean bottom sensor nodes, autonomous underwater vehicles (AUVs), and surface stations (gateways)
 - Environment monitoring, underwater surveillance

- Propagation delay at the speed of sound (~1480m/s)

- Range and frequency significantly influence transmission loss
 - Doppler effects with moving vehicles
 - Multipath effects
 - Differences in deep and shallow water

- Range from 10s or meters to 1 – 10km, also 100 – 200km

- Data rates from 20 bit/s to a few kbit/s
 - Extremes: short range 500 kbit/s, long range 1 bit / minute

- Use “data buoys” for store and forward
 - Use ships for physical carriage
Carrier Pigeons

- RFC 1149, RFC 2549
- Implemented by Bergen Linux users group
 - Printed datagrams on paper
- Further experiments in Israel (Wi-Fly)
 - Used tiny memory of 1.3 GB per pigeon
- Characteristics
 - High delay
 - Don’t fly at night (your favorite surfing time)
- Up to 1.5 Mbit/s data rate, faster than simple ADSL

Data Mules

- Sámi Network Connectivity
 - Provide Internet Connectivity for Sámi population of Reindeer Herders
 - Nomadic users, no reliable communication facilities
 - Mix of fixed and mobile gateways
 - Routing based on probabilistic patterns of connectivity
 - E-Mail, Web-access, file transfer
- DakNet
 - Internet access for remote villages in India and Cambodia
- Pocket-based communications
 - Exploiting people’s motion for data transfer
 - Use buses, motor cycles, postal mail
Data Mules (2)

- Sensor networks without end-to-end path
 - Traditional ad-hoc routing not applicable
 - Collect and store data, forward opportunistically
 - Offload to fixed or mobile access gateways

- Zebranet
 - Monitoring a wild-life habitat with networked computers
 - Ad-Hoc Networks, computers on Zebra exchange information dynamically

- Applications in Oceanic studies
 - Measurements using sensors on seals, whales, etc.
 - Also: fixed underwater measurement equipment

- Seismic and fire monitoring in remote areas

Mobile Hosts and Networks

- Host Mobility
 - Internet host roam across the Internet, use different points of attachment
 - Different link layer technologies, get different addresses
 - Addressed by Mobile IP, HIP for persistent identifiers, etc.

- Mobility support for networks
 - E.g., planes, trains, buses that carry a network of hosts
 - Mobile router connects on-board network to the Internet
 - Local network topology remains constant, external points of attachment may change

- Issue
 - Still need to deal with loss of connectivity
 - Expected, unexpected, short or long-lasting, user-controlled or not, etc.
Ad-hoc Networks

- Mobile Ad-hoc network (MANET)
 - An autonomous system of mobile routers (and associated hosts)
 - Frequent topology changes

- MANET protocols
 - Routing protocols that exchange topology/reachability information
 - Have to address a set of interesting characteristics
 - Low bandwidth, power constraints, frequent topology changes, fast conversion, scalability

- Issue: Assumptions about degree of connectivity
 - Trend towards consideration of intermittent connectivity
 - Development of DTN routing protocols for MANETs

Asymmetry

- Dimensions of asymmetry
 - Communication direction
 - Data rate
 - Transmission latency
 - Error rate

- Asymmetric link layers
 - xDSL, cable networks, powerline networks, DVB-RCS, (GPRS)

- Simultaneous use of hybrid technologies
 - Low speed interactive link (e.g. GPRS, GSM, UMTS)
 - Including possibly asynchronous messaging (SMS, MMS)
 - Broadcast downlink
 - DVB-S/S2/T/C/RCS
 - Very different cost functions associated with these ways
Constrained (Network) Elements

- Limited lifetime
 - Environmental conditions
 - Third-party influence
 - Material, construction

- Power constraints
 - Limited transmission / reception time
 - Limiting forwarding capacity

- Limited transmission range
 - Direct vs. indirect communications (other nodes may need to route)

- Memory and processing constraints

Brief Summary of Issues

- Intermittent, unpredictable connectivity periods and blackouts
 - Short-lived connectivity
 - Non-existent end-to-end paths

- Transmission characteristics
 - Potentially: Low data rate, high error rate, asymmetry
 - High propagation delay
 - Due to link latency (in space, underwater), intermittent connectivity

- Node and environmental constraints
 - Lifetime, availability, density
 - Non-availability of infrastructure

- Changes communication semantics, application paradigms
 - Adds complexity to routing protocols
Contents

(A) DTN Research Group and Interplanetary Internet (Architecture)
(B) DTNRG Routing Concepts
(C) Pocket-switched Networks
(D) Message Ferries
(E) Epidemic Routing I: General and ZebraNet
(F) Epidemic Routing II: SNC
(G) Daknet
(H) People networks (humans as data carriers)
(I) DTN Routing I
(J) DTN Routing II
(K) DTN Routing and Erasure Coding
(L) DTN Routing and Network Coding
(M) DTN Routing and Energy Efficiency
(N) Lower layers for DTNs: Licklider Transmission Protocol (LTP)

Spares: (O) DTN Communication Services and (P) DTN Security