
Service Location and Multiparty Peering
for Mobile Ad-hoc Communication

Dirk Kutscher and J̈org Ott

Technologiezentrum Informatik (TZI), Universität Bremen,
Postfach 330440, 28334 Bremen, Germany,

{dku|jo }@tzi.uni-bremen.de

Abstract. Flexible personal communications may require dynamically discov-
ering, using, and combining a number of services to support the activities of
a mobile user. However, many service discovery and service control protocol
frameworks are not designed with requirements for ad-hoc and group commu-
nication in a changing environment in mind. In this paper, we motivate the case
for personalized group communications based upon a (static) office application
scenario featuring simple remote device control and then enhance the scope to-
wards service location and dynamic establishment of group communications for
mobile users: ad-hoc multiparty peering. We particularly explore the issues re-
lating to group communication setup and robustness in the presence of changing
connectivity and present a framework for mobile multiparty ad-hoc cooperation.

1 Introduction

A variety of mobile personal computing and communication equipment is available to-
day providing a wide range of functions, e.g., to enable rich interactions with other
persons or to gain access to a broad spectrum of information resources. Such per-
sonal devices are usually optimized for a certain class of tasks and, mostly due to their
form factors, none of them is likely to meet all the conflicting user requirements at the
same time: e.g., devices are not light and smallandoffer a comfortable keyboard and
a large display. Given the diversity of specializations, it appears sensible to combine
the strengths of the individual components dynamically as needed to carry out a certain
task – rather than attempting to manufacture them into a single device that would be
subject to the aforementioned tradeoffs.

Component-based architectures have been used for many years e.g., for flexibly
composing sophisticated communication endpoints from independent application enti-
ties or devices with well-defined interfaces. Each of these entities focuses on dedicated
services; they are combined to form a coherent system by means of a component infras-
tructure, and different (wireless) personal (e.g., Bluetooth) and local area (e.g., WLAN)
networking technologies may provide the basis for communications.

A particular set of issues arises when such modular systems comprise more than two
entities and operate in mobile and highly dynamic ad-hoc environments and are required
to cooperate with an arbitrary number of peers to fulfill a certain task: 1) the individual
entities cannot rely on well-identifiable service brokers to locate peers providing desired
services; 2) different components may be located in different networks without direct



communication paths between all of them; 3) network attachments and addresses may
change; 4) (group) communications between all involved entities needs to be provided;
and 5) secure communications without pre-shared configurations is needed.

In this paper, we address these issues for the deployment of group communication
technologies in mobile ad-hoc communication environments. In section 2, we describe
a sample scenario for multiparty peering, followed by a brief discussion of related work
in section 3. Section 4 outlines our approaches to group communication (Mbus) and
service location and association (DDA) and reviews their present limitations. Section
5 introduces extensions of the DDA approach for accommodating multiparty peering
scenarios, and section 6 enhances the Mbus protocol to provide group communication
services in dynamically changing network topologies. Finally, section 7 concludes this
paper with a summary.

2 Modular Mobile Multimedia Conferencing

Our (non-ad-hoc, non-mobile) starting point for such a scenario is a user’s multimedia
conferencing endpoint that is made up of numerous devices and software components
available around the user’s desk: an IP telephone for placing and receiving regular phone
calls, a workstation with camera, video communication tool, and application sharing
software; a laptop with the user’s mail folder and all current documents; and a PDA,
containing an address book and a calendar. When the user establishes a call, she may
combine any of these entities according to her needs for a particular conversation. Ap-
plication state (such as the input focus in a distributed editor, the current speaker, etc.)
is shared locally so that the application entities can act coherently.

This scenario can be extended to include mobile (nomadic) users who do not have an
associated desk area environment – at a certain time or permanently. Examples include
employees visiting co-workers in other offices or subsidiaries who want to stay con-
nected as well as environments with non-territorial offices. Such users need to dynami-
cally locate the devices or services they want to use in an ad-hoc fashion: in the simplest
case they may just require access a single device in a foreign environment, e.g. to place
a phone call controlled from a portable device, so that only point-to-point communi-
cation needs to be established dynamically, e.g. from a PDA to an IP phone[KO03].
If more application components need to be involved as for multimedia conferencing,
group communication sessions need to be set up among a number of components in an
ad-hoc fashion.

What is needed is an ad-hoc communication environment that allows components to
dynamically locate each other based upon the services they offer (service discovery and
selection), securely establish bi-lateral or group communication relationships among
selected entities (service association), cooperate to carry out the respective task(s) (ser-
vice control), and, finally, disband the coupling again (service dissociation).

3 Related Work

Ad-hoc communication for the coordination of application components is essentially
related to two research domains: 1) coordination-based protocols and architectures for



ad-hoc communication and 2) component-based application development. In addition
to ad-hoc communication aspects, there is also the issue of (auto-)configuration, e.g.,
through mechanisms such as DHCP, IPv6 stateless auto-configuration and zeroconf pro-
tocols.

Frameworks for ad-hoc communications typically provide a set of functions, i.e.,
service/peer location, association procedures and the actual communication mecha-
nisms that may comprise different communication patterns such as request/response
communication and event notifications. In the following, we briefly describe two promi-
nent solutions in that area: theService Location ProtocolandUniversal Plug and Play.
Jini and Salutation are additional ad-hoc communication frameworks. We have provided
a more detailed discussion of ad-hoc communication solutions in [KO03].

– The Service Location Protocol(SLP, [GPVD99]) is a framework for service dis-
covery and selection, intended for automatically configuring applications that want
to use services such as network printers or remote file systems in an administrative
domain. SLP was designed to only solve the problem of locating services, not as-
sociating to the services themselves. Service association (i.e., allocating a service
resource, exchanging confidential access credentials) needs to be done in a sec-
ond step, with a different protocol so that SLP alone is rather incomplete for our
purposes [KO03].

– Universal Plug and Play(UPnP, [Cor00]) is an architecture for device control and
provides protocols for discovery, device description, transmission of control com-
mands and event notification. UPnP is intended to provide peer-to-peer commu-
nication between different types of devices without manual configuration, e.g., in
home networks where devices from different vendors are connected spontaneously.
To allow these devices to interwork they must dynamically learn their capabilities
and exchange information without knowing each other in advance.

For most environments, such as enterprise application development, component-
based software development can now be considered an acknowledged design princi-
ple. We can distinguish between frameworks for the composition of program binaries
such as COM and JavaBeans and distributed component architectures such as DCOM
[BK98] and Corba [OMG]. The latter support spreading system components across var-
ious devices (e.g. PCs, laptops, stand-alone networked appliances, PDAs, etc.) allowing
to employ dedicated pieces of equipment where appropriate or just spread the work load
as needed.

Many existing protocols rely on point-to-point communication between components
and employ classical RPC interactions. Group communication is only used as a ren-
dezvous mechanism for service discovery because multicast connectivity is usually re-
stricted to single links and thus cannot be relied upon. Furthermore, many protocols are
designed for static scenarios where service availability and reachability do not change
after the discovery process. Such protocols are difficult to deploy in ad-hoc communi-
cation scenarios, where services can appear and disappear dynamically and where both
service providers and clients may be mobile.

However, we argue that group communication is an important element for service
coordination because it is a natural solution for many coordination scenarios and may



simplify several kinds of interactions. This is especially true for the development of
systems intended for dynamic environments where network addresses are not necessar-
ily persistent for the duration of a session. Group communication in conjunction with,
e.g.,soft-stateprotocols help to make these systems more robust against intermittent
connectivity and changing service availability.

Our approach is significantly simpler than a generic multicast routing protocol for
ad hoc networks, e.g., as described in [OT98] and [GLAM99], because we do not have
to take large scale ad hoc networks with unconstrained mobility into account. In par-
ticular, our approach is driven by application scenarios where a user device coordinates
distributed application components in a dynamic, heterogeneous network environment
– which typically comprises infrastructure-based components to many of which mobile
ad hoc networking (MANET) protocols are not applicable. For example in an office
environment, a user’s laptop and wireless IP telephone would be connected using the
fixed WLAN infrastructure and would thus rely on the available IP connectivity. In
these scenarios, mobility is an issue when users and/or devices enter or leave networks,
but it is not issue with respect to node mobility and changing network topologies. In
our scenario, where a central user device is connected to a set of personal devices in
the environment using different link layer technologies, it would not be helpful to im-
plement a MANET protocol implementation on each device, because the device would
not have to participate in MANET routing and packet forwarding anyway. Instead, it
is sufficient (and more practical) to have the central user device become aware of the
connected network links and the available communication peers.

4 Mbus/DDA-based Ad-hoc Peer-to-Peer Cooperation

In [KO03], we have presented a local coordination environment for mobile users that
addresses service discovery and remote control of multimedia communication equip-
ment (such as IP phones) in mobile ad-hoc networks. TheDynamic Device Association
(DDA) concept is used to locate, select, get hold of, and release devices and services as
described in section 4.1. The actual device interaction takes place using the Mbus we
have developed for group communications component-based systems with a particular
focus on multimedia conferencing (section 4.2).

4.1 Dynamic Device Association

The DDA framework addresses the discovery of and the secure association with ser-
vices. It comprises five phases:

1. Service and device discovery
Fixed and mobile devices announce their availability in regular intervals; in addi-
tion a query mechanism is supported. The announcements include service descrip-
tions and rendezvous URIs to allow other entities to contact them as needed. The
Session Announcement Protocol (SAP) [HPW00] is used for the announcements,
augmented by a dedicated query message. Device and service descriptions are rep-
resented using the Session Description Protocol (SDP) [HJ98].



2. Device selection
User devices searching for peers with certain functionality scan the announcements
for the service sought. Once a set of suitable devices has been found, one or more
of them are selected as required by the user or some automated algorithm.

3. Service and device association.
The purpose of the association step is to initiate an application protocol session
between two entities. For each device and service chosen, an association process
is invoked by the user device. The selected device is contacted and, if necessary,
an authentication procedure is carried out. Finally, the intended application proto-
col is bootstrapped. To support all kinds of application protocols (including SIP
[RSC+02], Mbus [OPK02], HTTP [FGM+99], and SOAP [BEK+02]), the DDA
session description language may contain arbitrary key-value-pairs for protocol-
specific information.

4. Application protocol operation
The application protocol runs in the context of the established association. This
may involve all kinds of interactions between the mobile and the associated de-
vice. When no longer needed, the application protocol session is terminated (which
may but need not lead to a device dissociation). In our scenario, we invoke Mbus
[OPK02] as application protocol running the call and conference control profile
[OKM01].

5. Service and device dissociation
Eventually, when the associated device is no longer needed, the user’s mobile de-
vice dissociates from the device and potentially makes the device fully available
again to the public.

In figure 1, a service client (the PDA) receives service announcements from two
entities (IP phones), selects one phone and initiates the association process. After au-
thenticating the PDA’s user, the phone answers the association request and provides
the application session configuration parameters in an association process. Both parties
join the corresponding application session and communicate over the specific session
protocol.

4.2 Group Communication with the Mbus

We have developed a group communication environment, theMessage Bus(Mbus,
[OPK02]) for component-based systems in multicast-capable environments. Mbus is
a message-oriented coordination protocol that provides group and point-to-point com-
munication services, employing a network-layer addressing scheme. Each Mbus session
member provides a single, unique Mbus address chosen by the application. A fully qual-
ified Mbus address is used for Mbus unicasting, partly qualified and empty addresses
for multicasting and broadcasting, respectively.

The payload of an Mbus message is a list ofMbus commandswith application-
defined semantics. Commands may represent status updates, event notifications, RPCs
and other interaction types. Each may include a list of parameters, such as strings, num-
bers and lists. Mbus also provides a set of control messages, particularly for dynamic



AnnouncementAnnouncement

Association Request

Association Response

Application Protocol Session

Termination Request

Termination Response

Filtering,
User selection

Setup application
session

Terminate DDA
session

Authenticate user,
prepare application
session

Tear down
session

Fig. 1.The DDA process

group membership tracking based upon regular announcements (mbus.hello() mes-
sages).

Mbus messages may be transmitted as UDP multicast and unicast datagrams. A
receiver-driven filtering process delivers those messages to applications that carry a
destination address matching the own fully-qualified entity address. Messages that are
directed to a single entity only (i.e., providing a sufficiently qualified destination ad-
dress) can optionally be sent via unicast. The necessary Mbus-to-UDP address mapping
can be inferred from the regular membership announcements as each Mbus messages
carries the sender’s fully qualified Mbus address.

The Mbus provides security services such as authentication and messages integrity
based on hashed message authentication codes (HMACs) and confidentiality based on
encryption (relying on symmetric cryptography and shared keys). In order to join an
Mbus session, an application has to know the Mbus transport address (i.e., multicast
address and port number) and security parameters, which are distributed out-of-band,
i.e., configured manually or communicated using other protocols. In this particular case,
we use the DDA protocol.

While DDA and Mbus address the need for secure establishment of ad-hoc coop-
eration scenarios, the present protocol mechanisms are still not capable of supporting
group communications – although Mbus in principle does. This is mainly because of
two reasons:

Firstly, similar to other approaches, the DDA model relies on the concept of a one-
to-one relationship of service providers and users. A service user contacts exactly one



DDA service provider and requests the necessary configuration data to establish a point-
to-point communication session. For multiparty peering, the same user device needs to
contact multiple service providers (aiming at setting up a group). But applying a series
of DDA association steps will usually result in disjoint configuration settings so that
the user device ends up with multiple point-to-point sessions instead of a single group
session, even if each individual set of application protocol parameters is suitable for
group communications.

Secondly, the current Mbus transport specification [OPK02] relies on native mul-
ticast connectivity. If multicast does not work, the Mbus entities may not be able to
communicate, even if an enhanced DDA mechanism is able to configure them properly
for a single Mbus session. This aspect is addressed in section 6.

5 Multiparty Peering for DDA

The main requirement for a generalized DDA concept is the usability for both client-
server and multiparty association. This mainly pertains to the association phase that
needs to allow for a common transport configuration to be established among all de-
vices. Multiparty considerations may also affect renewing leases for individual devices
– in which case it must be ensured that the configuration settings do not change. Using
DDA to initiate an Mbus session, we need to provide an explicit address binding for
each entity between the two protocols: If a user deviceA invites devicesB andC via
DDA to an Mbus session, it must be able to unambiguously recognize their respective
entities in order to exclude address clashes.

Finally, if a user device has multiple network interfaces to receive service announce-
ments and to communicate with its peers, it needs to coordinate the use of multicast
addresses and choose the same for Mbus communications across all interfaces. This
is needed to avoid reconfiguration in case of network topology changes, e.g., if peers
move from one network to another. A user device may need to allocate multicast ad-
dresses and ensure that the same address is available on all locally connected links prior
to initiating the first association.

The basic extension to the DDA process is to generalize the association and to en-
able DDA clients to not only request a configuration from a DDA service but to option-
ally invite a service into a session by providing it with the required session parameters.
Where applicable, service entities should allow for both forms of association, i.e., be
able to offer a session configuration and to be invited into a session. Service entities that
are restricted to either mode indicate their preferred association mode in their service
announcement to avoid unnecessary requests/response cycles.

For the HTTP-based DDA protocol we have implemented the “invitation” mode
with an HTTP POST [FGM+99] request. Note that the authentication requirements do
not change for association invitations: for digest authentication, the DDA client would
still provide the credentials in the request message. For DDA for Mbus sessions, we
have defined additional attributes for the session description that allow both parties to
express their Mbus and corresponding UDP/IP endpoint addresses. Because both parties
have to know each other’s addresses in advance, we allow for both the request and the
response in every DDA HTTP request (GET and POST) to contain a message body. For



example, when a DDA service is invited and has received a corresponding association
invitation, it will send a session description fragment responding to the request and thus
provide the required address information.

AnnouncementAnnouncement

Association Request

Association Response

Application Protocol Session

Filtering,
User selection

Setup application
session

Mbus configurationA’s Mbus and UDP/IP address

C’s Mbus and UDP/IP address

Association Request

Mbus configuration

A’s Mbus and UDP/IP address

AB C

Application Protocol Session

B’s Mbus and UDP/IP address

Fig. 2.DDA in invitation mode

Figure 2 depicts the message exchange for the DDA invitation mode.A chooses an
application session configuration and conveys this information to bothB andC. After
the two DDA associations have been completed, all three entities can join the Mbus
session and check for the availability of the other sides, using the Mbus address infor-
mation that has been exchanged in the DDA process. For scenarios where IP multicast
connectivity is not available we have defined aprobingprocess that helps to determine
the optimal communication mode (e.g., multicast or direct unicast) between the initia-
tor (the user device) and the invited service entity. The probing process is described in
section 6.2.

6 Multiparty-Peering for Mbus

The initial scenario described in section 2 has implicitly assumed full multicast con-
nectivity between all application entities – a safe assumption for an environment built
around a single link of a local area network with today’s operating systems. However,
this assumption is unlikely to hold as soon as mobile devices (such as PDAs or laptop
computers) become involved making use of WLAN infrastructure or even engage into



ad-hoc communications with other devices using dedicated Bluetooth or infrared links,
in addition to their connection to the (W)LAN. For security reasons, WLANs are usu-
ally connected via access routers or firewalls which may prevent multicast forwarding
(deliberately or accidentally), WLAN access points may have multicast forwarding dis-
abled to protect the bandwidth constrained wireless network. If different subnetworks
are involved, any regular router (even if multicast-enabled) prevents Mbus messages
from propagating as they are constrained to link-local communications.

As Mbus-based applications rely on Mbus session-wide multicast connectivity,
Mbus extensions are necessary that preserve this communication property despite the
limitations listed above. We have chosen to keep Mbus simple and straightforward
and have devised minimal enhancements to support non-uniformly connected Mbus
entities based upon our target application scenario (rather than designing a sophisti-
cated application-layer message routing and forwarding overlay). This section presents
the Mbus enhancements designed and implemented to enable robust ad-hoc multiparty
peering using Mbus.

Key to the Mbus enhancements is the concept of acoordinator entity(6.1), repre-
sented by the same device that has also initiated the DDA process and brought together
all the Mbus entities. The coordinator probes the connectivity to all the associated Mbus
entities (6.2). All entities report the peers visible to them (6.3) and, based upon this in-
formation the coordinator determines when to forward messages between links (6.4).
The proposed enhancements also deal with topology changes and failures (6.5) and
require minimal changes to our existing Mbus implementation.

6.1 Coordinator Concept

As discussed in the previous section, the Mbus session is created dynamically in the
context of a particular application scenario: after a service discovery phase, all the ser-
vices are contacted by the initiating entity. Obviously, this very entity – thecoordinator
– has a complete overview of the components it has sought to carry out the intended
task. Furthermore, the coordinator may have used different link layer technologies to
contact the various peers so that it is the only one in a position to take up the responsi-
bility of initially establishing reachability between all involved parties and also act as a
hub if native multicast connectivity is not available. Finally, the coordinator is the only
entity capable of re-invoking the DDA procedures, e.g., to update Mbus configuration
parameters or to prolong service leases.

Usually centralized architectures are considered risky as they introduce a potential
bottleneck and a single point of failure. With the DDA scenario in mind, however, there
may be no other way to establish connectivity between the entities in the first place.
And, as the Mbus is used to communicate control messages only (rather than large
data volumes), processing power and communication bandwidth are not considered to
be problematic. While the coordinator could obviously be a single point of failure, we
achieve fate-sharing with the intended application as the coordinator is also in control
of the other devices; hence, its failure will likely cause the application to fail anyway.
Nevertheless, we consider enhanced robustness here an important subject of further
work.



Figure 3 shows three conceivable settings with a coordinatorA and three devicesB,
C, andD. In setting a), full multicast connectivity is available so that there is no need
for the coordinator to perform any kind of message forwarding. Setting b) shows device
B being on a separate link:A andB can communicate via unicast and multicast, and so
canA, C, andD. But B has no way to talk toCandDand vice versa, neither with unicast
nor with multicast. Setting c) depicts a scenario withB on a separate link again, with
C andD sharing the same link whileA is connected via a router (or some other entity
blocking link-local multicast). As a result,A andB can talk via unicast and multicast
and so canCandD. A andCas well asA andDcan only communicate via unicast.

B C D

A
a) b) c)

B C D

A

C D

A

Multicast connectivity Unicast link

B

Fig. 3.Three multiparty peering scenarios

Those three settings can be taken representatively for most connectivity variants that
one may experience in local ad-hoc communications. Note also that even though we do
not explicitly discuss asymmetric connectivity in this paper, we have verified that the
algorithms presented below will work in those cases, too.

6.2 Connectivity Discovery

As outlined above, the coordinator needs to determine what kind of connectivity is
available to its peers. As it was able to initially contact them and create an association,
plain IP connectivity is obviously available. The next step is to determine whether the
respective entities are also reachable via multicast or only via unicast.

For this purpose, we introducembus.probe(m|u seq-no) messages that are pa-
rameterized with a flag indicating whether this message is sent, at the IP layer, via uni-
cast (“u”) or multicast (“m”) and with a sequence number (for matching probes and their
responses). The coordinator starts sendingmbus.probe messages to each of the newly
associated entities using their Mbus unicast addresses (learned from the DDA associ-
ation messages). These messages are sent once via IP unicast (using the “u” flag) and
once via IP multicast. (using the “m” flag). For each message sent, regardless whether
unicast or multicast, the sequence number is incremented by one. The coordinator re-
transmits the messages up to three times to deal with possible packet loss.

A receiver of such a message responds to each of the messages, again once by
unicast and once by multicast – so that up to six messages are exchanged in total.
Each response message –mbus.probe.ack (m|u seq-no*) – again contains a flag



indicating whether the message was sent via unicast or multicast and contains a list of
mbus.probe sequence numbers received from the coordinator for the last few seconds.

If the coordinator receivesmbus.probe responses via unicastand multicast, ac-
knowledging both unicast and multicast probes, full unicast and multicast connectivity
is available. Otherwise, the combination of response messages received (via unicast
and/or multicast) and their acknowledged sequence numbers reveal in which direction
multicast connectivity is available, if at all. For simplicity, in all cases but the first, the
communication between the coordinator and the probed Mbus entity will only use uni-
cast communication. The result of this process is used to configure the message routing
for both the coordinator and the Mbus entity. Connectivity probing may be repeated
when topology changes are suspected, e.g., when an entity has become invisible on a
link.

6.3 Visibility Reporting

Mbus entities announce their presence in regular intervals by means ofmbus.hello()

messages to become aware of each other. In a setting with potentially disjoint commu-
nication links, the coordinator needs to determine which Mbus entities can talk directly
to each other and which require its help to forward messages.

To establish this view, each Mbus entity transmits periodicvisibility reports, i.e.,
Mbus messages containing a list of other Mbus entities it is aware of. We distinguish
two kinds of visibility: native visibilityrefers to Mbus entities whosembus.hello()

messages were received directly, i.e., without the help of the forwarding coordinator;
effective visibilityrefers to all Mbus entities from whichmbus.hello() messages
have been received recently. An Mbus visibility report is defined asmbus.visible

((<Mbus address> [native])*) , i.e., it provides a list of peers, each indicating
the Mbus address being reported and a “native ” flag showing whether the message
has been received directly from the respective entity. If both native and relayed mes-
sages are received from another entity, the native reporting takes precedence.

When all Mbus entities start communicating, only native visibility reports are pos-
sible. If the coordinator observes that all entities can see all others natively no fur-
ther actions are necessary on its part. Otherwise, the coordinator can determine from
the visibility reports how the Mbus session is partitioned and start forwarding mes-
sages between those partitions. All Mbus messages except formbus.hello() are for-
warded unchanged.mbus.hello() needs to receive special processing to allow dis-
tingushing native messages from relayed ones: a single parameter peer(via <Mbus

coordinator-address>) is inserted into the message yieldingmbus.hello ((via

<coordinator-address>)) .

As soon as the coordinator starts forwarding messages, Mbus entities will add also
those peers to their visibility reports whose messages have been forwarded. The co-
ordinator uses the effective visibility to determine when full connectivity of the Mbus
session has been achieved. It continues to use the native visibility to constantly monitor
the overall connectivity and adapt its forwarding behavior when necessary.



6.4 Message Transmission and Forwarding

Mbus message transmission is conceptually extended to support multipleinterfaces
per Mbus entity. A regular Mbus entity (i.e., not the coordinator) provides a multicast
interface and may provide one or more unicast interfaces and uses only a single link.
Each interface is basically similar to a link layer interface with routing table entries
(based on Mbus addresses) pointing to this interface. The original Mbus design has a
default route for all traffic pointing to the multicast interface and may have one unicast
interface per known Mbus entity for the unicast optimization.

For Mbus sessions with partial multicast connectivity and a coordinator acting as
a “hub”, the transmission behavior of Mbus entities needs to be adapted only slightly.
Mbus entities that have full multicast connectivity with their coordinator do not need
to change; the above rules just work. Mbus entities that have only unicast connectiv-
ity to their coordinator and no multicast connectivity to other entities (i.e., do not see
any native visibility reports except from the coordinator) use their unicast interface to
the coordinator as default interface. Mbus entities that have directly reachable multicast
peers but only a unicast interface to the coordinator, create two default routes and thus
duplicate their outgoing Mbus messages (except for those using the unicast optimiza-
tion) transmitting them via multicast and sending them to the coordinator.

The coordinator is responsible for relaying Mbus messages and modifying
mbus.hello messages in transit. Its forwarding functions are configured based on the
visibility reporting and the connectivity discovery. It may have any number of unicast
and multicast interfaces on different links. Each incoming Mbus message is examined
with respect to its target Mbus address. If this is a multicast address, the coordinator
forwards the message to all interfaces (except for the one it has been received on) and
forwards a local copy to its own application. Otherwise, the coordinator examines –
based upon native visibility reports – to which interface the message needs to be for-
warded or hands the message to its local application.

6.5 Change and Failure Handling

The coordinator permanently monitors effective and native visibility as reported from
each endpoint. In case multicast connectivity improves, the coordinator will notice fur-
ther entities reporting native visibility of each other and so the coordinator can reduce
forwarding. If multicast connectivity is lost, incomplete effective visibility reports indi-
cates that additional forwarding needs to be installed. If the coordinator looses contact
to an entity, (e.g. by missingmbus.hello() messages), it may need to re-enter the
connectivity discoveryagain. If this does not reveal ways to re-establish connectivity
(e.g. because the entity is not longer reachable), the coordinator may attempt a DDA
re-association or go through the entire service location procedure again to look for a
different device offering the same services.

7 Conclusions

We have described scenarios and solutions for multiparty peering of service entities,
considering the aspectsservice discoveryandgroup communicationand the special is-
sues for ad-hoc communication scenarios, such as changing network topologies and



peer mobility. The discussion of these scenarios has shown that group communication
is a desirable feature for many component-based services in local networks. However, it
has also been evident that its implementation is not always trivial, because general mul-
ticast connectivity cannot be assumed and because dynamic communication scenarios
require concepts that address potential changes in network topology while maintaining a
continuous group communication session at the application layer. The service discovery
approach that we have presented addresses the requirements for ad-hoc communication
by employing a service announcement scheme based on soft-state communication that
has been designed with respect to scalability and efficiency. We have extended the DDA
service association protocol to support multiparty peering and have discussed the use
of these extensions for establishing Mbus sessions.

Using the Mbus as a basis, we have developed a group communication model that
provides the concept of a group communication session that can encompass multiple
underlying multicast and unicast sessions. One key aspect of this model is a central
coordinating entity that manages the individual sessions, monitors entity visibility and
provide message relay functions where appropriate. By adding some minimal changes
to the Mbus protocol (adding new membership information messages) and by extend-
ing the Mbus implementation requirements slightly, Mbus entities can accommodate
changing multicast connectivity, dynamic changes to the group membership and mixed
multicast/unicast environments – characteristics that are typical for in dynamic com-
munication scenarios. The central role of the coordinator is not considered an issue
for most cases because the fate of the coordinator is coupled to the user’s application
anyway.

The link-state monitoring and forwarding functions that we have described are not
to be misinterpreted as elements of a general layer 3 ad-hoc networking routing pro-
tocol such as AODV [PBRD03]. While routing protocols for ad-hoc networks provide
multihop routing between potentially mobile hosts in order to establish and maintain an
ad-hoc IP network, our approach is much simpler and highly efficient: The main goal is
to provide group communication in scenarios where no comprehensive multicast con-
nectivity between the intended group member can be established, and the forwarding is
restricted to specific messages of a selected application protocol (Mbus). Moreover, we
rely on a special case, where there is always a central entity (the coordinator) that has a
direct link to each of the session members.

In summary, the DDA framework peered with Mbus provides a lightweight yet pow-
erful infrastructure for ad-hoc group cooperation in dynamic mobile environments. Our
approach largely builds upon existing and well-established protocols simplifying inte-
gration with all kinds of personal devices.

References

[BEK+02] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn,
Henrik Frystyk Nielsen, Satish Thatte, and Dave Winer. Simple Object Access Pro-
tocol (SOAP) 1.1. W3C Note 08, May 2002.

[BK98] N. Brown and C. Kindel. Distributed Component Object Model Protocol –
DCOM/1.0, January 1998. draft-brown-dcom-v1-spec-03.txt.



[Cor00] Microsoft Corporation. Universal Plug and Play Device Architecture. available online
at http://www.upnp.org/, June 2000.

[FGM+99] Roy T. Fielding, Jim Gettys, Jeffrey C. Mogul, Henry Frystyk Nielsen, Larry Mas-
inter, Paul Leach, and Tim Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1.
RFC 2616, June 1999.

[GLAM99] J. J. Garcia-Luna-Aceves and Ewerton L. Madruga. A multicast routing protocol for
ad-hoc networks. InINFOCOM, pages 784–792, 1999.

[GPVD99] Erik Guttmann, Charles Perkins, John Veizades, and Michael Day. Service Location
Protocol, Version 2. RFC 2608, June 1999.

[HJ98] Mark Handley and Van Jacobsen. Session Description Protocol. RFC 2327, April
1998.

[HPW00] Mark Handley, Colin Perkins, and Edmung Whelan. Session Announcement Proto-
col. RFC 2974, October 2000.

[KO03] Dirk Kutscher and J̈org Ott. Dynamic Device Access for Mobile Users. InProceed-
ings of the 8th Conference on Personal Wireless Communications, 2003.

[OKM01] Jörg Ott, Dirk Kutscher, and Dirk Meyer. An Mbus Profile for Call Control. avail-
able online at http://www.mbus.org/, February 2001. Internet Draft draft-ietf-mmusic-
mbus-call-control-00.txt, Work in Progress.

[OMG] OMG. CORBA/IIOP Specification. available online at
http://www.omg.org/docs/formal/02-12-06.pdf.

[OPK02] J̈org Ott, Colin Perkins, and Dirk Kutscher. A Message Bus for Local Coordination.
RFC 3259, April 2002.

[OT98] K. Obraczka and G. Tsudik. Multicast routing issues in ad hoc networks, 1998.
[PBRD03] Charles E. Perkins, Elizabeth M. Belding-Royer, and Samir R. Das. Ad hoc On-

Demand Distance Vector (AODV) Routing, February 2003. Internet Draft draft-ietf-
manet-aodv-13.txt, Work in Progress.

[RSC+02] Jonathan Rosenberg, Henning Schulzrinne, Gonzalo Camarillo, Alan Johnston, Jon
Peterson, Robert Sparks, Mark Handley, and Eve Schooler. SIP: Session Initiation
Protocol. RFC 3261, June 2002.


