Congestion Control for Real-time Media over QUIC

Mathis Engelbart
Technical University Munich
Munich, Germany
mathis.engelbart@tum.de

ABSTRACT

QUIC is the new transport protocol for the Internet, designed for
secure, reliable communication, especially with the web in mind.
While multimedia streaming, allowing for some playout delay, has
been widely run on top of reliable transport protocols, conversa-
tional multimedia usually requires unreliable ones, often using RTP
over UDP. A recent extension to QUIC supports unreliable data-
grams within QUIC connections so that also real-time media can be
supported. In this paper, we investigate a recent design for RTP over
QUIC with a focus on congestion control and the related signaling.
We implement a strawman using Gstreamer and quic-go and eval-
uate different permutations of congestion control algorithms and
signaling in a simple testbed.

CCS CONCEPTS

» Networks — Transport protocols.

KEYWORDS
RTP, QUIC, Congestion Control, SCReAM, New Reno

ACM Reference Format:

Mathis Engelbart and J6rg Ott. 2021. Congestion Control for Real-time Media
over QUIC. In Workshop on the Evolution, Performance and Interoperability
of QUIC (EPIQ ’21), December 7, 2021, Virtual Event, Germany. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3488660.3493801

1 INTRODUCTION

Carrying real-time multimedia traffic across the Internet requires
transport protocols that keep media senders in control of trans-
mission timing and error correction and give receivers immediate
access to received media packets for playout management and er-
ror concealment. Therefore, real-time transport protocols such as
RTP [25] run on top of UDP (or DTLS, DCCP) to avoid undesirable
feature interactions with lower layers such as head-of-line (HoL)
blocking. Without much support from the underlying transport,
RTP implements its own control signaling (RTCP) to monitor media
session quality [3, 25], perform error (e.g., [2, 14]) and congestion
control [21, 23].

QUIC [11] offers secure, reliable transport on top of UDP. Nu-
merous efforts explored how to allow QUIC to also carry real-time
media [20]. Mapping traditional DASH media streaming to QUIC

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

EPIQ °21, December 7, 2021, Virtual Event, Germany

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9135-1/21/12.

https://doi.org/10.1145/3488660.3493801

Jorg Ott
Technical University Munich
Munich, Germany
ott@in.tum.de

[1, 15, 16] appears rather straightforward as DASH is designed
to run on top of reliable transports in the first place. To prevent
HoL blocking when carrying conversational real-time media over
QUIC, one suggestion included mapping each video frame to a new
stream and canceling streams as soon as the frame can no longer
be delivered in time.

With the advent of proposals that extend QUIC to support unre-
liable datagrams [19], carrying conversational real-time media over
QUIC no longer requires the above workarounds. Instead, media
packets can be mapped to QUIC datagram frames and thus RTP over
QUIC can be easily implemented. After early discussions [18, 20],
several concrete—and quite similar—mappings for RTP onto QUIC
have been proposed [8, 17].

With such appropriate mapping in place, two main issues remain
for carrying RTP over QUIC: (1) How to do proper real-time media
congestion control, given that RTP realizes its own congestion con-
trol mechanisms [6, 13, 28] as does QUIC [10]? (2) For RTP-based
congestion control, how to leverage information readily available
within QUIC and avoid, or at least minimize, duplicate signaling in
RTCP? In this paper, we use the RTP mapping defined in [17] and
compare different approaches to congestion control—SCReAM [13]
at the RTP level vs. NewReno in QUIC—as well as explicit RTCP
signaling vs. inferring RTCP feedback information from QUIC. We
implement the different schemes by extending GStreamer [5] and
integrating it with quic-go [22] and evaluate 14 different permuta-
tions in a simple testbed.

2 MAPPING RTP TO QUIC

The above two Internet Drafts describing a mapping of RTP onto
QUIC use QUIC’s unreliable datagram extension [19], and a flow
identifier prepended to each datagram to demultiplex multiple RTP
sessions on the same QUIC connection.

QUIC datagram frames do not count to any flow control limits,
which may lead to dropped datagram payloads if a receiver does not
have the resources to handle them. Unlike flow control, connection-
wide congestion control also applies to QUIC datagram frames, as
sent datagram frames increase link utilization and may thus lead
to link congestion. Datagram frames have to be acknowledged by a
receiver because they are so-called ack-eliciting frames, although
they are not retransmitted if lost [11].! Additionally, the current
version of the draft allows a QUIC implementation to expose these
acknowledgments to an application, a feature of which we will make
use of in section 3.4. The draft also encourages implementations
to provide an API for prioritizing datagram frames relative to each
other and QUIC streams.

!Note that some recent proposals also suggest non-ack-eliciting datagram frames but
turn ACKs off is optional so that desirable reception feedback could be maintained.
See https://github.com/quicwg/datagram/issues/42 for the corresponding discussion.

https://doi.org/10.1145/3488660.3493801
https://doi.org/10.1145/3488660.3493801

EPIQ ’21, December 7, 2021, Virtual Event, Germany

If the RTP to QUIC mapping is implemented as an additional
layer on top of an existing QUIC implementation, the QUIC im-
plementation must fulfill specific interface requirements. Since the
proposed mappings use the QUIC unreliable datagram extension,
it is obvious that the QUIC implementation has to implement that
extension. Section 3.4 will introduce an optimization of real-time
congestion control for RTP over QUIC, which adds further require-
ments to the QUIC implementation and its APIL

Due to the bandwidth limitations of most links and the large
data rates of raw video, video is encoded before being encapsu-
lated in RTP packets. When using congestion control as outlined
in section 3.2, the congestion controller produces a target bitrate,
which will be fed back to the media encoder. The remainder of this
work will focus on calculating a good bitrate to configure the me-
dia encoder to produce output that optimally utilizes the available
bandwidth.

3 CONGESTION CONTROL

RTP and QUIC both provide some form of support for congestion
control and it is important to carefully design congestion control
when using both combined. This section explains the basics of
congestion control in QUIC and RTP. We then discuss why it may
be useful to use QUIC and RTP congestion control simultaneously
and the impact it may have in 3.3 before looking at how QUIC
features can help reduce RTCP overhead in section 3.4.

3.1 Congestion Control for QUIC

The QUIC specification does not mandate a certain congestion
control algorithm to use. Instead, it suggests using an algorithm
similar to TCP NewReno, while allowing implementations to use a
different algorithm by providing connection statistics that may be
used to implement different congestion control algorithms [10].

3.2 Congestion Control for Real-time Media

Real-time applications are delay-sensitive. This makes the loss-
based congestion algorithms (e.g., NewReno or Cubic) as they are
widely used in TCP less applicable for real-time traffic. Loss-based
algorithms alternate between filling queues on network elements
and draining them when congestion is detected. This causes a lot of
delay variation and large bitrate changes, which is not acceptable
for real-time media coding [4].

Congestion control for real-time media has been the topic of the
RMCAT working group of the IETF in recent years. RTP itself does
not include any form of congestion control. Still, congestion control
can be added through an extension and using RTCP to fulfill the
feedback requirements of any congestion control algorithm.

A way to avoid the problems of loss-based algorithms for real-
time media is to use congestion control algorithms that are delay-
based or a mix of delay-based and loss-based.

With Self-Clocked Rate Adaptation for Multimedia (SCReAM)
[13] and Network-Assisted Dynamic Adaptation (NADA) [28], the
RMCAT working group has published two real-time congestion
control algorithms. A third one, Google Congestion Control (GCC)
was published by Google [6]. The RMCAT working group addition-
ally published an RTCP feedback format for congestion control,
which can be used for all of the 3 algorithms [23].

Mathis Engelbart and Jorg Ott

Like many loss-based congestion control algorithms, all of these
algorithms require the receiving side to provide feedback about the
arrival of packets such as for whether a packet has been received or
lost and when the packet has arrived. The receiver can then send
the feedback to the sender via RTCP, which uses it to calculate the
maximum available bandwidth and configure the media encoder to
utilize the link as much as possible without exceeding its capacity.

In this paper, we use SCReAM as an example of a real-time
congestion control algorithm.

3.3 Mixing QUIC- and Real-time Congestion
Control

QUIC’s streams and datagrams open up the possibility to send
many data streams concurrently. A question that comes up is, how
traffic should be congestion-controlled if the same connection is
used to send real-time traffic as well as non-real-time traffic simul-
taneously. A simple option would be to prohibit the transmission of
non-real-time data on the same connection, which is currently used
for an RTP session. This RTP-only connection could then easily
be congestion-controlled by replacing QUIC’s default congestion
control algorithm with one of the proposed real-time congestion
control algorithms. However, it would be useful in many scenarios,
to be able to carry reliable and real-time data within the same con-
nection. An example would be a typical multimedia conferencing
session comprising audio and video streams as well as a slide presen-
tation or shared whiteboard. The audio and video streams should of
course arrive in real-time, even if that comes at a cost of losing some
packets. The presentation, on the other hand, does not have such
strict real-time requirements but should ensure that the content is
delivered reliably and lost packets should be retransmitted. Such a
multimedia session, as described here, would benefit from a shared
connection setup and avoid competing for the same resources in-
dependently. A downside of this approach is the need for possibly
complex prioritization between different data transmissions on the
same QUIC connection, as we will see in section 6.4.

To explore and evaluate the different options of using congestion
control for RTP over QUIC, we implemented different combinations
of congestion control algorithms. When we are not using a real-
time congestion control algorithm, we still need to find a suitable
bitrate to configure the media encoder. While real-time congestion
control protocols explicitly expose such a sending rate, QUIC does
not. To cope with this, we implemented a simple algorithm, which
uses the growth of the RTP queue length, to decide whether to
increase, decrease or keep the bitrate at the current level. The levels
used by this algorithm are the following discrete values tailored
to our use case: 256 kbit/s, 512 kbit/s, 768 kbit/s, 1024 kbit/s, 1280
kbit/s, which somewhat resembles a very simple DASH scheme,
but without any intention to mimic the established complex DASH
mechanisms.

We considered the following combinations of algorithms:

e Only Trivial Rate Control No congestion controller is
used in QUIC, but we use the trivial rate controller to set the
encoder bitrate.

e Trivial Rate Control and NewReno Enables QUIC’s in-
ternal congestion control using NewReno, which applies to
all outgoing traffic in addition to the trivial rate controller.

Congestion Control for Real-time Media over QUIC

e Only SCReAM RTP is congestion-controlled using SCReAM,
and congestion control feedback via RTCP.

e SCReAM and NewReno Combining QUIC and RTP conges-
tion control using NewReno and SCReAM. NewReno applies
to all outgoing traffic, while SCReAM only applies to the
RTP datagrams.

e SCReAM without RTCP Only RTP is congestion-controlled
using SCReAM, but instead of using RTCP feedback, only
rely on the connection state provided by QUIC as described
in section 3.4.

e SCReAM and NewReno without RTCP Combining QUIC
and RTP congestion control using NewReno and SCReAM
and again only rely on the connection state provided by
QUIC instead of using RTCP.

3.4 RTP Congestion Signaling

As mentioned in section 3.1 and section 3.2, the QUIC congestion
controller as well as the real-time congestion controller require
some feedback information. Since the QUIC connection already
gathers a lot of the feedback that is also needed by the real-time
congestion controller, it should be easy to re-use some of this infor-
mation, to reduce the RTCP overhead introduced when the real-time
congestion controller has to gather all the feedback by itself. The
inputs listed in the following table are required for the different real-
time congestion controllers. Not all congestion controllers might
need all the inputs, but all should be able to compute an optimal
target bitrate using not more than these inputs.

EPIQ ’21, December 7, 2021, Virtual Event, Germany

the last known RTT by two. All of the other inputs listed above are
either trivial to compute or gather from the QUIC implementation.
Optimization of the pkt_delay_list can be made by replacing the
receive time calculation using RTT by using an explicit one-way
delay measurement as proposed in [7].

The generated feedback can now be passed to the congestion
controller, either at regular intervals or when a particular packet or
frame was acknowledged, depending on the needs of the congestion
controller in use.

4 IMPLEMENTATION

In this section, we describe the implementations for our evaluation.
We use Gstreamer as the video source and sink, all the way to
the RTP encapsulation. We then implement two bridge modules to
forward the RTP packets from/to Gstreamer: one that connects to
the quic-go implementation for RTP-over-QUIC and one that simply
sends and receives RTP in UDP packets. This structure simplifies
switching between the different encapsulation formats. Since the
plain UDP forwarding is straightforward—we simply encapsulate
an RTP packet in a UDP datagram—this section focuses on RTP
over QUIC, for which we use the packet format described in [17].

Name Content

t_current A current timestamp.

pkt_status_list A list of RTP packets that were acknowledged by
the receiver.

For each acknowledged RTP packet, the delay be-
tween send- and receive-timestamps of the packet.

pkt_delay_list

latest_rtt The latest RTT sample measured by QUIC.

min_rtt The minimum observed RTT.

smoothed_rtt An exponentially weighted moving average of the
observed RTT values.

rtt_var The mean deviation in the observed RTT values.

ecn Optionally ECN marks if supported by the net-
work.

To acquire this information, we need to extend the QUIC im-
plementation interface, which we briefly discussed in section 2.
Firstly, the unreliable datagrams implementation must also provide
an interface to signal the datagram frame’s acknowledgments or
losses to the application. Secondly, QUIC needs to expose its con-
nection statistics, such as the path RTT, to the application. Lastly,
an optional enhancement would be signaling explicit congestion
notifications (ECN) from QUIC to the RTP mapping. A congestion
controller could use ECN signals for optimization, but this cannot
be a hard requirement since they are not reliably available to begin
with.

To locally generate the state information that RTCP would usu-
ally provide, the sender has to keep track of all RTP packets sent.
Using the acknowledgement signals, the sender can produce the
pkt_status_list. The pkt_delay_list, can be generated by cal-
culating an estimation of the receive time of the packet by dividing

Gstreamer
scream-go IncomingFeedback
EricssonResearch/
seroam bR
uic-go
x264enc | quicg
SendRTP

rtph264pa

P pay RTP Queue

appsink |

Figure 1: Sender side architecture for integrating Gstreamer,
SCReAM and quic-go

Gstreamer

SendFeedback

UDP/ scream-go
quic-go
EricssonResearch/ avdec_h264
. scream
ReceiveRTP 1tph264depay

\[’1 appsrc

Figure 2: Receiver side architecture for integrating Gstreamer,
SCReAM and quic-go

Figure 1 shows a conceptual view of the sender-side application:
a Gstreamer pipeline reads a raw video from a source file, encodes
it using H.264, and packetizes the encoded video in RTP packets.
We use the Gstreamer appsink element to pass the resulting buffer
to a Go-application, which uses an internal queue for RTP packets.
Before the next packet from the queue is passed to quic-go, the
application prepends the flow identifier.

On the receiving side, shown in figure 2, quic-go accepts each
datagram and passes it to our application, which strips off the flow
identifier that indicates the stream to which the packet belongs and
passes it on to a corresponding Gstreamer pipeline. The pipeline

EPIQ ’21, December 7, 2021, Virtual Event, Germany

depacketizes and decodes the video and stores the raw video in a
file.

To integrate SCReAM, we build a Go-wrapper around the SCReAM
implementation, the latter of which is provided as open source by
Ericsson Research [12]. If SCReAM is enabled, the sending side
notifies the SCReAM implementation about incoming packets from
the Gstreamer pipeline and each packet sent by quic-go.

5 TEST ENVIRONMENT

In this section, we describe the test setup to evaluate the RTP over
QUIC implementations. First, we sketch out the general architecture
of our testbed and explain our choice of parameters to simulate
different network conditions. In 5.3 we show which metrics we use
to assess the results of our experiments.

5.1 Testbed Setup

Encoder

Bitrate
Gstreamer. ate UDP QUi Encoded GStreamer:
Transport 5

Video encoding Encoded Transport < 5 Transport Video Data
* Video Data Sender Receiver +
ing Video decoding

i l

Video Quality Analysis
(PSNR, SSIM)

Raw Video File Raw Video File

Figure 3: Testbed setup for automated evaluation of RTP over
QUIC implementations

The testbed is shown in figure 3. We run our Sender and Receiver
on the same physical host. To simulate the network conditions, each
peer runs in a docker container with a separate virtual network
interface. The host machine automatically applies different network
conditions to both virtual network interfaces using Linux tc. Since
there are no network elements between the peers, the round-trip
delay is set as the sum of the delay applied to both interfaces.

We run all implementations twice to test the effects of different
kinds of traffic on the same connection. Once only sending real-
time traffic and once sending real-time traffic competing with a
QUIC stream constantly sending data on the same connection.

There are two aspects to congestion control, real-time media or
not: on the one hand, how an algorithm impacts the performance
of a given data stream itself and, on the other hand, how fair the
algorithm is against other connections (using the same or different
congestion control). In this paper, we focus on the former one as
we seek to understand the use of control loops at different layers
and the feature interactions if multiple such loops exist. We leave
the latter part for future work.

5.2 Test Parameters

The network parameters are configured based on the test cases
defined in RFC8867 [24] and RFC8868 [26]. The link between the
peers is limited to 1 Mbit/s using a Token Bucket Filter with a
queueing latency of up to 400ms on each interface, i.e., 50 KB at
1 Mbit/s. To simulate a variable network capacity, we reduce the
capacity to 500 kbit/s after 30 seconds. After another 30 seconds,
we set the bandwidth back up to 1 Mbit/s until the end of the test.

Mathis Engelbart and Jorg Ott

Each experiment is run with four different one-way propagation
delay settings: 1, 50, 150, and 300ms.

5.3 Metrics

To evaluate our measurements, we use mainly the two metrics
described in this section. The first metric evaluates the quality of
the video received by the receiver compared to the original video
file, and the second metric assesses the behavior of the congestion
control in use.

SSIM. We use the structural similarity index (SSIM) [27] to evaluate
the perceived quality of the received video stream. SSIM compares
the original raw video file with the resulting raw video file, and we
look at the average SSIM over all frames and the time series over
all frames. 2

Target Bitrate. To compare the performance of SCReAM and our
trivial bitrate adaption algorithm in combination with or without
QUIC’s built-in congestion control, we analyze the target bitrate,
which is output by the algorithms and signaled to the encoder.

6 EVALUATION

We organize discussing the results of our experiments following
the different combinations of congestion controllers presented in
section 3.3 used on the RTP over QUIC implementation. Results for
the UDP reference implementation are not explicitly discussed, but
mentioned where we compare QUIC and UDP. Since the one-way
propagation delay makes no big difference for most experiments, we
only look at the experiments using 50ms, except where otherwise
noted.

6.1 Only Trivial Rate Control

The first experiments disabled QUIC’s NewReno and only used
our trivial rate adaption algorithm. Since QUIC does not perform
any congestion control, the rate adaption algorithm sees an almost
empty queue of outgoing RTP packets most of the time. It thus
uses the highest bitrate option of 1280 kbit/s, causing very high
packet loss, which results in a low average SSIM of 0.78. Since the
algorithm does not detect the congestion of the link, the algorithm
behaves very similarly when a QUIC stream is opened in parallel
to send competing data. Due to more packet loss, the average SSIM
decreases to 0.75.

6.2 Trivial Rate Control and NewReno

When using NewReno with our trivial rate controller, the average
SSIM increases to about 0.78. The bitrate alternates between the
highest and lowest level very fast as shown in 4. The NewReno
congestion control causes the RTP queue to grow at high bitrates,
leading to bitrate decreases. At low bitrates, which do not use the
full capacity of the link, the queue of outgoing RTP packets shrinks,
which then causes the bitrate to increase again. With a second
stream sending data next to the RTP datagrams, the RTP queue
never shrinks enough for the bitrate adaption algorithm to increase

2We also calculated the peak-signal-to-noise ratio (PSNR), another metric to assess
the quality of a received video by comparing it with the source file. We decided only
to include SSIM in this paper since it produces more significant differences between
the experiments.

Congestion Control for Real-time Media over QUIC

CC Target Bitrate
<0 ik Capa —
0 0 10
S

Figure 4: Target bitrate of our trivial rate controller used to
configure the encoder when running on a QUIC connection
with NewReno.

the target bitrate. Thus, the target bitrate stays at the lowest level
most of the time, which, combined with some packet loss, leads to
a very low average SSIM of 0.69.

6.3 Only SCReAM

CC Target Bitrate
» 12003 [
= 800
ﬁ 408 Transppitted
Link Capucgn [—
[| |
0 60 120
S
CC Target Bitrate
« 1200 - : . |
g 80 TV Iy Vi . 4
= 0 L V | VA Tmm%i:lu:-i——
Link Capacity ———
[| |
0 60 120
S

Figure 5: SCReAM target bitrate and rate transmitted using
only SCReAM on a real-time media flow without any back-
ground traffic on QUIC (top) and UDP (bottom).

Next, we look at the SCReAM algorithm on the outgoing RTP
traffic. In this scenario, RTP over QUIC reaches a very similar per-
formance as the UDP reference. In both cases, RTP throughput
comes close to the maximum bandwidth of 1 Mbit/s after the initial
ramp-up phase. When the link capacity reduces, the target bitrate
first drops to almost zero before starting a new ramp-up phase
and reaching the maximum capacity. SCReAM then tries to keep
the bitrate stable, as frequent changes can lead to a worse QoE,
which leads to the delay between the increase of the link’s capacity
at 90 seconds and the next ramp up phase. The UDP implemen-
tation reaches an average SSIM of 0.8, while the RTP over QUIC
implementation even reaches an average of 0.87. Figure 5 shows
the target bitrate. Compared to UDP, the target bitrate over QUIC
slightly lower, which is caused by a larger packet header overhead,
but in general, this shows, that QUIC datagrams can be used as an
alternative to RTP over plain UDP.

When introducing a parallel QUIC stream to send data concur-
rently to the RTP stream, we have a prioritization problem. The
QUIC implementation has to decide how much bandwidth to al-
locate to the stream or the datagrams. Since our test constantly

EPIQ ’21, December 7, 2021, Virtual Event, Germany

sends data on the stream, while the RTP packets vary in size, the
non-RTP data streams received a significantly larger share of the
bandwidth. This leads to SCReAM reducing the target bitrate even
further which drops to zero almost immediately.

It might even be better for the RTP stream, to disable the real-
time congestion controller, to receive a bigger share of the available
bandwidth. However, this is a very artificial setup because, in real-
world configurations, the background traffic is more likely on/off
traffic, such as occasional HTTP request/response bursts of variable
sizes instead of a constant data stream.

In future experiments, we plan to evaluate how the bandwidth
would be shared between a more natural form of background traffic
and whether a higher prioritization of datagrams could improve
this scenario.

6.4 SCReAM and NewReno

CC Target Bitrate
» 12003 | . 1
% 800
= 49
Link Cupuc%ly —_—
| | |
0 60 120
S
CC Target Bitrate
» 1200 2] .
£ W0 — A —
ﬁ 408 v U L Transmitied —
Link Capacity e
| | |
0 60 120
S

Figure 6: SCReAM target bitrate and rate transmitted using
SCReAM and NewReno on a real-time media flow with one-
way propagation delays of 1ms (top) and 50ms (bottom).

Now we enable QUIC’s NewReno on all outgoing traffic, together
with SCReAM on the RTP transmission. The sender initially be-
haves similarly to the previous case. Since SCReAM does not try
to find the link capacity as aggressively as NewReno might try,
the datagrams are sent too slow for QUIC even to try to increase
its congestion window, leading to an underutilization of the link.
A problem with this combination appears when the link capacity
reduces. The combination of SCReAM and NewReno reduces the
target bitrate to zero because both algorithms react to the reduced
capacity. This is shown in figure 6. After the link capacity recovers,
the target bitrate takes very long to recover because the ramp up
happens much later than after the initial startup if it happens at all.
This also has an impact on the video quality, which results in an
average SSIM of 0.78.

When sending data on the parallel QUIC stream, the setup be-
haves similar to the one without NewReno in the previous section.
The target bitrate drops to zero very fast due to the missing priori-
tization between real-time and non-real-time data.

6.5 SCReAM without RTCP

In this section, we look at the potential RTCP overhead reduction
reached by the techniques described in 3.4. Since this scenario

EPIQ ’21, December 7, 2021, Virtual Event, Germany

does not change much compared to the results of the previous
subsections, we ignore the data transmission on parallel streams
for now.

CC Target Bitrate

CC Target Bitrate
xmé P/y il
0
T

T
0 60 20 0 60
s s

kbit/s
&

CC Target Bitrate CC Target Bitrate
{

kbit/s

[T [T 1
0 60 120 0 60 120

s s
CC Target Bitrate CC Target Bitrate
o

kbit/s
528
sz

[T [T 1
0 60 120 0 60 120

s s
CC Target Bitrate CC Target Bitrate

T
0 60 20 0 60

Figure 7: SCReAM target bitrate and rate transmitted using
SCReAM with only feedback gathered from QUIC connection
statistics (left) and RTCP feedback (right) at different one-
way delay settings from top to bottom: 1ms, 50ms, 150ms,
300ms.

Figure 7 shows the target bitrate of video transmission using
only the SCReAM congestion controller with and without RTCP
feedback at different one-way delays. The implementation gener-
ates all required information as described in 3.4. To calculate the
arrival time of RTP packets, we tried to use the smoothed_rtt and
the latest_rtt sample. We found that using the latest_rtt gen-
erally yields better results, and thus, we only consider those results
in our evaluation. Here we observe that the generated feedback
can be used to calculate a target bitrate close to the target bitrate
calculated using the RTCP feedback. However, the ramp-up phase
takes a very long time to reach a good link utilization in some cases.
In experiments with a shorter one-way propagation delay, SCReAM
reaches a better link utilization, which is also reflected in the video
quality. The two lower link delays lead to SSIM values equal or
even higher than in the experiment using RTCP feedback. The two
larger delays lead to slightly lower SSIM values of 0.85 and 0.83.
This indicates that more fine-grained connection statistics may be
required to replace the RTCP feedback.

The RTT measurements provided by QUIC may be inaccurate
when acknowledgments are delayed on the return path, which
is unlikely in our artificial test environment. However, a QUIC
endpoint is allowed to delay and aggregate acknowledgments of
multiple packets, and it will inform the sender about the delay
since the last received packet. This may lead to situations in which
the generated feedback does not include an arrival timestamp for
the latest RTP packets, even though they have already arrived at
the receiver. This feedback report is likely different from what the
RTCP feedback would provide.

Alternatively to the RTT, precise one-way delay measurements
may provide more accurate information of the characteristics of
the path. A method to explicitly measure the one-way delay was
proposed in[7]. The Acknowledgement Frequency draft[9] could
provide another optimization. The draft allows a sender to control

Mathis Engelbart and Jorg Ott

how frequent acknowledgments are sent by the receiver, improving
the timing of acknowledgments and feedback generation.

6.6 SCReAM and NewReno without RTCP

In sections 6.4 and 6.5, we described the experiments using SCReAM
without RTCP and SCReAM combined with NewReno. In both
setups, we saw issues that all come together when using SCReAM
without RTCP and combined with NewReno at the same time. The
results are thus very unreliable. In some cases, it leads to a link
utilization similar to the ones in the previous sections, in others,
the target bitrate drops to almost zero without ever ramping up.

7 DISCUSSION AND CONCLUSION

In this paper, we have presented an implementation of RTP over
QUIC. The focus of our work is on different schemes of conges-
tion control for real-time media over QUIC. We have seen that it is
possible to stream video in real-time over QUIC, using RTP encapsu-
lated in QUIC datagrams with an appropriate congestion controller.
While relying on QUIC’s default NewReno algorithm combined
with a trivial encoder rate adaption is possible, we achieved much
better quality using a real-time congestion control algorithm like
SCReAM. When we combined NewReno with a real-time conges-
tion controller, they initially did not seem to interfere with each
other significantly. However, as soon as the network conditions are
bad enough for both algorithms to react to it, the link utilization
gets much worse than when only one controller is enabled.

One issue we encountered when using RTP over QUIC appeared
when non-real-time data was sent simultaneously on the same
flow using QUIC streams. This issue was not caused by congestion
control but by the lack of prioritization of datagrams and streams
in our implementation.

We have shown that by leveraging the QUIC connection state,
mainly datagram acknowledgments and RTT estimations, it is pos-
sible to generate feedback reports similar to RTCP, however, it does
not provide the same quality. The quality might be improved in
future experiments using explicit one-way delay measurements
and letting the sender control the acknowledgment frequency of
the receiver.

Future work needs to be done to evaluate other possible conges-
tion control configurations and adding relative priorities to QUIC
datagrams and streams. We have not yet looked at a setup to use
two independent congestion controllers, one for real-time traffic
only and the other one for non-real-time traffic only. The results of
this setup will likely depend on the prioritization issue we already
encountered in the designs we evaluated in this work. Other setups
which need further experimentation involve other topologies such
as multiple independent connections sharing a common bottleneck.
The competing connections could be other RTP over QUIC streams
using the same congestion control or other traffic types, e.g., TCP
using different congestion control algorithms. Moreover, one could
develop more sophisticated improvements to the input to the con-
gestion control algorithms by combining observations from the
real-time and non-real-time streams. E.g., one could try to use data
that does not have any real-time requirements sent on streams to
probe for higher bandwidths. Packet loss, in this case, would not
be an issue, as retransmissions can be done at any time.

Congestion Control for Real-time Media over QUIC EPIQ ’21, December 7, 2021, Virtual Event, Germany

REFERENCES [25] Henning Schulzrinne, Stephen L. Casner, Ron Frederick, and Van Jacobson. 2003.
[1] Divyashri Bhat, Amr Rizk, and Michael Zink. 2017. Not so QUIC: A Performance RTP: A Transport Protocol for Real-Time Applications. RFC 3550. https://doi.
Study of DASH over QUIC. In Proceedings of the 27th Workshop on Network org/10.17487/RFC3550

and Operating Systems Support for Digital Audio and Video (Taipei, Taiwan) [26] Varun Singh, Joerg Ott, and Stefan Holmer. 2021. Evaluating Congestion Control

(NOSSDAV’17). Association for Computing Machinery, New York, NY, USA, 13-18. for Interactive Real-Time Media. RFC 8868. https://doi.org/10.17487/RFC8868
https://doi.org/10.1145/3083165.3083175 ’ T ’ [27] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. 2004. Image quality

[2] Carsten Burmeister, Jose Rey, Noriyuki Sato, Joerg Ott, and Stephan Wenger. 2006. assessment: from error visibility to structural similarity. IEEE Transactions on

Extended RTP Profile for Real-time Transport Control Protocol (RTCP)-Based IrflageA Processing 13, 4 (2(204)‘, 600-612. https://doi.org/m.1109/TIP.2003.819861

Feedback (RTP/AVPF). RFC 4585. https://doi.org/10.17487/RFC4585 [28] Xiaoging Zhg, Rong Pan ,Mlchael A: Ramalho, and Serglo Mena de lg Cruz. 2020.
[3] Ramon Caceres, Alan Clark, and Timur Friedman. 2003. RTP Control Protocol Network-Assisted Dynamlg Adaptation (NADA): A ,UmﬁEd Congestion Control

Extended Reports (RTCP XR). REC 3611. https://doi.org/10.17487/RFC3611 Scheme for Real-Time Media. RFC 8698. https://doi.org/10.17487/RFC8698

[4] Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and Saverio Mascolo. 2016. Anal-
ysis and Design of the Google Congestion Control for Web Real-Time Communi-
cation (WebRTC). In Proceedings of the 7th International Conference on Multimedia
Systems (Klagenfurt, Austria) (MMSys '16). Association for Computing Machinery,
New York, NY, USA, Article 13, 12 pages. https://doi.org/10.1145/2910017.2910605

[5] GStreamer Team. 2021. GStreamer: open source multimedia framework. Retrieved
September 24, 2021 from https://gstreamer.freedesktop.org/

[6] Stefan Holmer, Henrik Lundin, Gaetano Carlucci, Luca De Cicco, and Saverio
Mascolo. 2016. A Google Congestion Control Algorithm for Real-Time Communi-
cation. Internet-Draft draft-ietf-rmcat-gcc-02. Internet Engineering Task Force.
https://datatracker.ietf.org/doc/html/draft-ietf-rmcat-gcc-02 Work in Progress.

[7] Christian Huitema. 2021. Quic Timestamps For Measuring One-Way Delays.
Internet-Draft draft-huitema-quic-ts-06. Internet Engineering Task Force. https:
//datatracker.ietf.org/doc/html/draft-huitema-quic-ts-06 Work in Progress.

[8] Sam Hurst. 2021. QRT: QUIC RTP Tunnelling. Internet-Draft draft-hurst-quic-rtp-
tunnelling-01. Internet Engineering Task Force. https://datatracker.ietf.org/doc/
html/draft-hurst-quic-rtp-tunnelling-01 Work in Progress.

[9] Jana Iyengar and Ian Swett. 2021. QUIC Acknowledgement Frequency.
Internet-Draft draft-ietf-quic-ack-frequency-00. Internet Engineering Task Force.
https://datatracker.ietf.org/doc/html/draft-ietf-quic-ack-frequency-00 Work in
Progress.

[10] Jana Iyengar and Ian Swett. 2021. QUIC Loss Detection and Congestion Control.
RFC 9002. https://doi.org/10.17487/RFC9002
Jana Iyengar and Martin Thomson. 2021. QUIC: A UDP-Based Multiplexed and
Secure Transport. RFC 9000. https://doi.org/10.17487/RFC9000
Ingemar Johansson. 2014. Self-Clocked Rate Adaptation for Conversational
Video in LTE. In Proceedings of the 2014 ACM SIGCOMM Workshop on Capacity
Sharing Workshop (Chicago, Illinois, USA) (CSWS ’14). Association for Computing
Machinery, New York, NY, USA, 51-56. https://doi.org/10.1145/2630088.2631976
Ingemar Johansson and Zaheduzzaman Sarker. 2017. Self-Clocked Rate Adapta-
tion for Multimedia. RFC 8298. https://doi.org/10.17487/RFC8298
[14] Adam H. Li. 2007. RTP Payload Format for Generic Forward Error Correction.
RFC 5109. https://doi.org/10.17487/RFC5109
Abhijit Mondal and Sandip Chakraborty. 2020. Does QUIC Suit Well With
Modern Adaptive Bitrate Streaming Techniques? IEEE Networking Letters 2, 2
(2020), 85-89. https://doi.org/10.1109/LNET.2020.2991867
[16] Minh Nguyen, Hadi Amirpour, Christian Timmerer, and Hermann Hellwagner.
2020. Scalable High Efficiency Video Coding Based HTTP Adaptive Streaming
over QUIC. In Proceedings of the Workshop on the Evolution, Performance, and In-
teroperability of QUIC (Virtual Event, USA) (EPIQ "20). Association for Computing
Machinery, New York, NY, USA, 28-34. https://doi.org/10.1145/3405796.3405829
[17] Joerg Ott and Mathis Engelbart. 2021. RTP over QUIC. Internet-Draft draft-
engelbart-rtp-over-quic-01. Internet Engineering Task Force. https://datatracker.
ietf.org/doc/html/draft-engelbart-rtp-over-quic-01 Work in Progress.
[18] Joerg Ott, Roni Even, Colin Perkins, and Varun Singh. 2017. RTP over QUIC.
Internet-Draft draft-rtpfolks-quic-rtp-over-quic-01. Internet Engineering Task
Force. https://datatracker.ietf.org/doc/html/draft-rtpfolks-quic-rtp-over-quic-01
Work in Progress.
Tommy Pauly, Eric Kinnear, and David Schinazi. 2021. An Unreliable Datagram Ex-
tension to QUIC. Internet-Draft draft-ietf-quic-datagram-04. Internet Engineering
Task Force. https://datatracker.ietf.org/doc/html/draft-ietf-quic-datagram-04
Work in Progress.
Colin Perkins and Jorg Ott. 2018. Real-Time Audio-Visual Media Transport
over QUIC. In Proceedings of the Workshop on the Evolution, Performance, and
Interoperability of QUIC (Heraklion, Greece) (EPIQ’18). Association for Computing
Machinery, New York, NY, USA, 36-42. https://doi.org/10.1145/3284850.3284856
[21] Colin Perkins and Varun Singh. 2017. Multimedia Congestion Control: Circuit
Breakers for Unicast RTP Sessions. RFC 8083. https://doi.org/10.17487/RFC8083
quic-go authors and Google, Inc. 2021. A QUIC implementation in pure Go.
Retrieved September 24, 2021 from https://github.com/lucas- clemente/quic-go
[23] Zaheduzzaman Sarker, Colin Perkins, Varun Singh, and Michael A. Ramalho.
2021. RTP Control Protocol (RTCP) Feedback for Congestion Control. RFC 8888.
https://doi.org/10.17487/RFC8888
[24] Zaheduzzaman Sarker, Varun Singh, Xiaoqing Zhu, and Michael A. Ramalho.
2021. Test Cases for Evaluating Congestion Control for Interactive Real-Time
Media. RFC 8867. https://doi.org/10.17487/RFC8867

[11

[12

[13

=
A

[19

[20

[22

https://doi.org/10.1145/3083165.3083175
https://doi.org/10.17487/RFC4585
https://doi.org/10.17487/RFC3611
https://doi.org/10.1145/2910017.2910605
https://gstreamer.freedesktop.org/
https://datatracker.ietf.org/doc/html/draft-ietf-rmcat-gcc-02
https://datatracker.ietf.org/doc/html/draft-huitema-quic-ts-06
https://datatracker.ietf.org/doc/html/draft-huitema-quic-ts-06
https://datatracker.ietf.org/doc/html/draft-hurst-quic-rtp-tunnelling-01
https://datatracker.ietf.org/doc/html/draft-hurst-quic-rtp-tunnelling-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-ack-frequency-00
https://doi.org/10.17487/RFC9002
https://doi.org/10.17487/RFC9000
https://doi.org/10.1145/2630088.2631976
https://doi.org/10.17487/RFC8298
https://doi.org/10.17487/RFC5109
https://doi.org/10.1109/LNET.2020.2991867
https://doi.org/10.1145/3405796.3405829
https://datatracker.ietf.org/doc/html/draft-engelbart-rtp-over-quic-01
https://datatracker.ietf.org/doc/html/draft-engelbart-rtp-over-quic-01
https://datatracker.ietf.org/doc/html/draft-rtpfolks-quic-rtp-over-quic-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-datagram-04
https://doi.org/10.1145/3284850.3284856
https://doi.org/10.17487/RFC8083
https://github.com/lucas-clemente/quic-go
https://doi.org/10.17487/RFC8888
https://doi.org/10.17487/RFC8867
https://doi.org/10.17487/RFC3550
https://doi.org/10.17487/RFC3550
https://doi.org/10.17487/RFC8868
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.17487/RFC8698

	Abstract
	1 Introduction
	2 Mapping RTP to QUIC
	3 Congestion Control
	3.1 Congestion Control for QUIC
	3.2 Congestion Control for Real-time Media
	3.3 Mixing QUIC- and Real-time Congestion Control
	3.4 RTP Congestion Signaling

	4 Implementation
	5 Test Environment
	5.1 Testbed Setup
	5.2 Test Parameters
	5.3 Metrics

	6 Evaluation
	6.1 Only Trivial Rate Control
	6.2 Trivial Rate Control and NewReno
	6.3 Only SCReAM
	6.4 SCReAM and NewReno
	6.5 SCReAM without RTCP
	6.6 SCReAM and NewReno without RTCP

	7 Discussion and Conclusion
	References

