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Abstract—Opportunistic networking is one way to realize
pervasive applications while placing little demand on network
infrastructure, especially for operating in less well connected
environments. In contrast to the ubiquitous network access model
inherent to many cloud-based applications, for which the web
browser forms the user front end, opportunistic applications
require installing software on mobile devices. Even though app
stores (when accessible) offer scalable distribution mechanisms
for applications, a designer needs to support multiple OS plat-
forms and only some of those are suitable for opportunistic
operation to begin with. In this paper, we present a web-
based framework that allows users to interact with opportunistic
application content without installing the respective app and
thus also includes users whose mobile OSes do not support
opportunistic networking at all via minimal stand-alone infras-
tructure. We describe our system and protocol design, validate
its operation using simulations and a testbed. We implement web
versions of two existing native mobile opportunistic applications:
PeopleFinder and Here & Now.

I. INTRODUCTION

Research into opportunistic networking over the past decade
has spawned a large number of different systems and archi-
tectures (e.g., Haggle [23], MobiClique [19], SCAMPI [8],
IBR-DTN [4], PodNet [11], and NetInf [3]). These platforms
come with a variety of applications that work in environments
with limited or no Internet connectivity. Instead of detouring
information exchange via a centralized “cloud”, these systems
disseminate the information directly between co-located de-
vices over short range links.

Opportunistic networking architectures can be broadly di-
vided into two categories: fully ad-hoc and infrastructure-
assisted. Systems of the former are based only on direct
encounters between nodes, while those belonging to the
latter introduce distributed infrastructure components, some-
times called “throwboxes” [30], which serve as (possibly
temporary) fixed points that offer services to nearby mobile
nodes. One such opportunistic infrastructure architecture is
the Liberouter system [7], which combines an inexpensive
embedded hardware platform (Raspberry Pi or Intel Edison)
with an opportunistic networking middleware (SCAMPI, IBR-
DTN) to create a do-it-yourself opportunistic router. In this
paper, we extend our Liberouter platform to support mobile

devices running just web browsers. Our extension framework
enables interactions with existing opportunistic networking
applications from unmodified web browsers within the vicinity
of a Liberouter device. [15]

Enabling access via web browsers to opportunistic network-
ing applications has two main benefits:

1. Support for more platforms. Implementing a native
opportunistic networking platform requires support from op-
erating system that many mobile OSes do not provide (e.g.,
long running background processes capable of doing network-
ing). However, every mobile OS platform has a modern web
browser, which the users are accustomed to using as a gateway
to rich online services.

2. No need to install native software. Even users of devices
that can support a native opportunistic networking platform are
required to install and run an application to access the network.
While today’s users are accustomed to installing hundreds of
apps on their devices, each additional step the user must take
will reduce the uptake the service gets. Furthermore, the users
are used to installing apps from the OS vendor’s app store,
while in an opportunistic scenario the apps are likely to be
distributed via other channels. For example, the Liberouter
devices distribute the apps directly to the users via a local
web portal, which may feel foreign to some users and cause
the OS to throw up security warnings.

The main challenge that needs to be solved by the frame-
work is the interworking between the peer-to-peer style op-
portunistic networking and the client-server style web access
approaches. While native opportunistic networking platforms
are designed to exploit short, random encounters between
nearby nodes to pass around messages, web browsers are
designed around the client-server model where application data
and logic are fetched from always-accessible servers. Fur-
thermore, the software development and distribution models
for native mobile apps are well developed and understood,
which also holds for many native opportunistic networking
applications. However, the development and application dis-
tribution mechanisms for web browser-based adaptations of
mobile opportunistic applications are unsolved problems.

Our solution is based on leveraging two key concepts: a
throwbox based deployment and self-contained and semanti-
cally meaningful messages. While not every opportunistic net-
working system exhibits these characteristics, many practically978-1-7281-0270-2/19/$31.00 2019 IEEE
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Fig. 1: Overview of the Liberouter based system model.

deployable systems do. In particular, throwboxes are needed
for very low density deployments, and self-contained messages
for store-carry-forward routing.

Throwboxes serve as natural points to deploy web servers, to
which the web browsers can connect. Our framework runs on
these throwboxes, serving opportunistic web apps accessible
through unmodified web browsers.

Self-contained and semantically meaningful messages allow
us to attach the necessary logic to interpret content of the
message. This solves the problem of distribution of a web
application logic in the mobile opportunistic environment and
allows web apps to have simple semantics and design.

Next, in Section II, we describe our system model and
architecture at a high level, and provide a justification for
our message based approach from a distributed systems view
point. We then provide the detailed design of our framework in
Section III, and its proof-of-concept implementation, including
integration with an opportunistic network platform and adap-
tation of two existing applications, the Google People Finder
native application and Here & Now, to use our framework, in
Sections IV and V. We end with a simulation and testbed based
validation of the design in Section VI, a look at the related
work in Section VII, and our conclusions in Section VIII.

II. SYSTEM MODEL

There are two main aspects to the underlying system model:
1) the network model that defines the communicating entities,
their roles and interactions, and the application messaging
characteristics, and 2) the application model that defines the
structure and the behavior of the web applications targeted by
our framework. We describe these different aspects next.

A. Network Model

We assume an underlying opportunistic networking system
composed of stationary lightweight infrastructure nodes and
mobile data carrier nodes—our implementation extends the
Liberouter [7] neighborhood networking system, but the de-
sign is generally applicable to other proposed systems such
as the IBR-DTN [4]. As is usual for opportunistic networks,
we only assume the existence of transient, direct, short-range,

peer-wise communication contacts, which result in a space-
time network without instantaneous end-to-end paths. This
assumption naturally leads to a messaging model with two
key characteristics. First, the messages are assumed to be large,
semantically-meaningful and self-contained, which allow them
to be forwarded and replicated between nodes without the
need for end-to-end packet paths. Second, since the delays
and delivery probabilities are highly variable, no globally
consistent state is reached and instead the applications create
locally consistent states from the random subset of messages
that they have received at any given point in time.

The approach we take is to extend the lightweight infras-
tructure nodes—the Liberouters—with a new framework that
allows them to provide nearby nodes access to web adapta-
tions of native opportunistic networking applications using an
unmodified web browser. Figure 1 shows the high level model
of these nodes. The stationary nodes that act as Wi-Fi access
points (Liberouter AP in the figure) to which nearby mobile
clients can connect as Wi-Fi stations. We consider two types
of users: 1) native users who have installed the opportunistic
networking software and applications (bottom left), and 2) web
users who are assumed to only run an unmodified smartphone
with no special software installed (bottom right). This leads to
native and HTTP links respectively. The additional application
interactions that we aim to enable through our framework are
between the web browser users and the native opportunistic
network users (the native users can already interact among
themselves). We extend the opportunistic routing functionality
of the Liberouter devices by adding the Web-based Framework
between the local opportunistic router instance and a local web
portal. The interactions are bi-directional, allowing the web
users to both consume and produce content for the existing
opportunistic networking applications.

B. Application Model

Interactive applications with (graphical) user interfaces,
such as these running on mobile devices, opportunistic or
not, can conceptually be described by the the Model-View-
Controller (MVC) paradigm [20], which may also serve as an
implementation model for such systems. We are not tied to
this model, but rather use it in the following for illustration
purposes. As shown at the top of Figure 2, the MVC model
comprises three elements: a data model (M) (schema plus
actual data) represents the application state as structured data,
a view (V) of this model is rendered to the user via a GUI,
and a controller (C) receives input from the user via the GUI
and acts upon the input by modifying the model accordingly
(after validating the input). The code for such (opportunistic)
applications usually resides in the user device (e.g., tablet,
smartphone) and thus requires installation before being able to
interact with the respective application and its contents. Instead
of having the users install binaries, our framework allows the
application developer to replicate parts of the view and con-
troller code along with the model for message interpretation
and generation inside the message itself in addition to the com-
plete (self-contained) state as shown in top-right of Figure 2.
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Fig. 2: Application model: (a) basic MVC model; (b) sample
extension of MVC to a distributed system with a synchronous
communication channel between two controllers exchange
manipulations (deltas) to the model; (c) MVC variant with
an asynchronous channel and controllers exchanging full state
in self-contained messages; (d) including model interpretation
and manipulation code in messages; (e) utilizing the interpre-
tation code to render content in a web browser over HTTP.

To execute the code embedded in the framework-compliant
messages, we design an application-independent interpreter
that is integrated with an opportunistic networking router and
has access to its buffered messages. The interpreter screens
messages queued in the router and processes those containing
framework-compliant code. It extracts and formats the contents
to make it accessible via standard web technologies (HTTP as
transport and HTML5 for presentation/interaction) so that any
smart mobile device can interact with the contents, as depicted
at the bottom Figure 2. This enables any node to dynamically
interpret and render messages of any framework-compliant
applications, allowing web users to access and interact with the
contents, generate replies, and create entirely new messages.

We foresee that the router (e.g., SCAMPI or IBR-DTN) and
the interpreter run on dedicated opportunistic (infrastructure)
devices, e.g., Liberouters, which also serve as access points
and message relays for mobile devices. However, they could
also run on other mobile user devices.

III. WEB APP INTERACTION FRAMEWORK

We now turn to the details of the framework. We begin with
the description of the framework and its functionality at a con-
ceptual level in Section III-A. Section III-B provides a detailed
description of the framework including functionality and inter-
actions between the components. Section III-C describes the
bootstrapping of web applications. Finally, in Section III-D,
we discuss security implication for the framework design.

A. Conceptual Model

Our goal is to enable users to interact with existing native
opportunistic networking applications via a web browser. To
achieve this, we need to design a generic web-framework that

can replicate the native application models with the ability
to both present application-specific content received from the
network and to generate new content into the network in
a form interoperable with the native applications. This is
made possible by the nature of opportunistic networking (see
Section II-A), where communications between applications do
not happen via tight end-to-end control loops, but rather via
a public, asynchronous, unreliable exchange of self-contained
and semantically meaningful messages. This allows the web-
framework to run a generic approximation of the native
application model and expose it to web browsers.

Conceptually, the core idea of the framework is the ability
create generic approximations of the native applications. We
achieve this by mapping the popular MVC paradigm (see
Section II-B) to transformations between applications state,
views and messages as shown in Figure 3. In the figure
(top left), the MVC model corresponds to the app state, the
MVC view to the app view and message views, and the
MVC controller logic to transformations between these. The
evolution of the application model in response to received and
deleted messages is shown at the top of the figure, which
illustrates how the transformations are simply functions that
advance the state (model) or create views in response to
message events. Similarly, the bottom of the figure shows
how a new message can be created from a user input via
transformation functions.

While the generic MVC structure is the same for all apps,
each different application has its own custom details for the
business logic. This application-specific behavior is captured
by the transformations. In essence, they are a discrete and
concise representation of the application’s business logic,
which we can then attach to the messages generated by the ap-
plication. The combination of the generic framework installed
in a device, such as a Liberouter, and the application-specific
transformations that are carried along with the messages, is
everything that is needed to produce an approximation of the
native application accessible via a web browser.

For the app view transformations, we define four types:
application presentation, message presentation, message cre-
ation, and message response. The application presentation
transformation maps the application state into an HTML view
to be displayed via a web browser. For example, in a photo
sharing app, it could correspond to a list of photos view. The
message presentation transformation generates a concise view
of a particular message. This transformation could correspond
to a detailed photo view together with its comments, in a photo
sharing app. Additionally, we also allow the app to define
custom transformations that use the application state to return
arbitrary data. The remaining two transformations are used
for generation of new messages via the web browser. The
message creation and response transformations produce views
that can be used for submission of the new message content.
Although they output views, we consider them to be a part of
the controller, as data submitted through them leads to creation
of a new message. The only difference between them is that the
message creation transformation does not take any input as it
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Fig. 3: Processing of messages for content extraction and
presentation in web browsers.

produces a new context for the message, whereas the message
response transformation uses context of the message to which
the user responds as the input parameter. In the example of
a photo app, the message creation transformation could be
used for submitting new photos, while the message response
transformation is used for commenting on an existing photo.

For the app controller transformations, we define four types:
message addition, message deletion, message server creation,
and message server response. The message addition transfor-
mation is executed always when a new application message is
received by the framework. It takes the application state and
the newly arrived message content to generate the updated
application state as the output. Similarly, the message deletion
transformation is executed when an application message is
deleted. It takes the application state and the content of
the deleted message and produces the updated state. The
message server creation and the message server response
transformations can be used for modifying data submitted via
the message creation or the message response transformation
respectively before the actual new message is created. This is
useful for custom operations specific to the app that may not
be performed by a frontend logic (e.g., uploaded file must be
compressed to a specific format).

B. Framework Design

The system design for the framework is shown in Fig-
ure 4. It comprises five main components: Message Processor,
Message Generator, application state storage, web server and
sandbox. In addition, to decouple the framework from an
underlying opportunistic system, the framework defines a DTN
Communicator which 1) tracks changes in the opportunistic
router storage (e.g., a Liberouter in the figure), and 2) acts
as an adapter for the message format of the underlying
system. Note that the opportunistic router storage contains only
raw messages, whereas the application state storage contains
states of applications generated by transformations from the
opportunistic messages as they are received.
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Fig. 4: Framework architecture.

The Message Processor handles processing of newly arrived
(or deleted) messages by supervising the execution of an
appropriate controller transformation and updating the ap-
plication state in the storage. The execution of the trans-
formations are done by the sandbox for security reasons
(see Section III-D). Change of the application state triggers
execution of appropriate view transformations that are affected
by the updated state.

The web server is the user facing component. It presents
application content to the web user by exposing a set of
endpoints, exposes application data to the front-end logic and
handles requests for new content creation. The presentation of
content is provided by a view transformation, which is exe-
cuted inside an endpoint handler. Exposure of application data
is realized by a custom transformation. Finally, the web server,
upon receiving a request to create new application content,
validates it, executes an appropriate controller transformation
if required and passes it to Message Generator component.
The Message Generator creates a new message from the
submitted data and publishes it using the DTN Communicator.

C. Bootstrapping Applications and Nodes

So far in our design the transformations are always shipped
along with the content. This ensures compatibility between the
content and the application logic. However, it also implies that
web users can generate content for a web application only if
the framework they connect to has already stored a message for
the application (which contains the necessary transformations).
In practice, this means that every web application must be
bootstrapped from its native equivalent. To overcome this
limitation, we take two further steps: 1) distribute native
applications within the framework to increase their availability
in the opportunistic network, and 2) allow creation of initial
content from the web applications.

To address 1), the framework offers the disconnected “app
store” functionality by making all native applications available
to web users for download via the web browser. For 2), we
also include transformations in the messages used to distribute
native applications. A user connected to a framework instance



can then choose to install a native version of an application,
or create new content using just the Web version.

D. Security considerations

To guarantee robust and secure operation of the framework,
our security considerations focus on two issues: 1) secure
execution of a transformation and 2) message authenticity.
To this end, our threat model assumes an adversary that: 1)
disrupts the framework functionality by executing malicious
code, 2) obtains unauthorized access to the framework or
application state storage, and 3) impersonates another user
by sending a message that masquerades its originator for
another user. Furthermore, our threat model assumes also: 1)
the presence of basic Linux platform security mechanisms,
and 2) presence of a disconnected public key distribution
system [27] which assigns a public key to an identifier of the
message originator in the opportunistic network. Examples of
such PKI systems are SocialKeys [16] and PeerShare [13].

Secure execution of transformations. Execution of transfor-
mations of an unknown origin poses a serious threat to the
secure functioning of the framework. A malicious transfor-
mation may include system calls causing disruption of the
framework operation and possibly even the whole device the
framework is running in (e.g., the transformation switches off
all network interfaces). The other set of threats comes from
unauthorized content access. These include pollution of con-
tent by generation of fake messages, deletion of messages and
illegal modification of another application state. These threats
motivate implementation of file system level isolation and
system call filtering. The file system level isolation constrains
the transformation to access only the data contained inside
the message and parts of the shared memory that are related
to it. As system calls are still available to the transformation
(via system libraries), the system call filtering must prevent
invocation of any system calls other than I/O operations on
the message content to which the transformation belongs (see
section IV for details). Since transformation access to the file
system is constrained and it cannot invoke system calls other
than file system I/O, the security requirements are fulfilled.

Message authenticity. We address the threat of user mas-
querading by providing mechanisms to verify message au-
thenticity. This requires that the messages are signed by
their originators. Verification of the message authenticity is
realized in the web browser (via Web Cryptography API) and
it assumes that the public key is accessible in the browser
for the web application (e.g., it is present in the IndexedDB).
Section IV provides implementation details.

IV. IMPLEMENTATION

We now turn to the implementation details. We first cover
the implementation of the core framework components, fol-
lowed by the security component details. Then we explain the
web application transformations and finally conclude this part
with a brief performance evaluation of the framework.

Core framework. The Message Processor is written in Java
and processes updates of the Liberouter storage by: 1) parsing
the metadata of received messages and storing them inside
Redis1 (acting as the app state storage) and 2) clearing Redis
of data removed from the Liberouter storage. It also uses a
Redis queue to notify the web server about the changes.

The web server is written as a Node.js application. It
implements the generic Web application model as a set of
HTML templates with empty divs, which are filled with trans-
formation outputs. The template engine uses EJS2. In addition,
the web server enables web applications for querying app
data using a REST API. As a result, modern web frameworks
(e.g., React) can be used for the web app development. The
generic web application model enables content generation for
the web users through application specific HTML forms. The
web server validates submitted forms and sends them to the
Message Generator using a Redis queue. Finally, the web
server provides the “app store” functionality by allowing web
users to upload native applications via an HTML form.

The Message Generator is a native Java application that: 1)
reads a new content request from the message queue sent by
the web server, 2) performs application-specific encoding of
the message, and 3) publishes it to the Liberouter cache.

Security components details. Recall from Section III-D that
our threat model calls for implementating the file system level
isolation and the system call filtering. We do the file system
level isolation by putting all message related data inside one
directory, which is put inside a chroot jail. The system
call filtering is realized using seccomp-bpf [1]. It allows
whitelisting of a subset of system calls that a transformation
has a permission to access. Since the transformation should be
given access to all the metadata carried by the message, our
seccomp-bpf profile whitelists system calls that open and
operate on files. The entire sandbox is implemented in C.

Verification of message authenticity requires a public key
availability in the browser via HTML5 local storage or access
to the device persistent storage (e.g., the File API). Both of
these features are supported by all modern browsers. The
authenticity verification is realized fully inside the JavaScript
code via the Web Cryptography API.

Web application transformation. The transformations are
implemented in Python, and must follow the basic guidelines
described in Section III-A. The framework gives the trans-
formations access to the Bootstrap library, so that they can
generate a sophisticated HTML presentation of the content
without carrying additional CSS style files.

Framework performance evaluation. We evaluated our
framework implementation by measuring the execution time
of each component while processing a single message of
the GuerrillaTags application [7]. The experiments were per-
formed on a Macbook Pro (2.66 GHz Intel Core i7 CPU with

1https://redis.io/
2https://ejs.co/



8GB of RAM) running OS X 10.10.1 and repeated 30 times
to obtain statistical significance.

The Message Processor and the sandbox are the most
resource consuming components (Fig. 5). Further analysis
showed that their performance was I/O bound, and both of
them perform high number of I/O operations compared to the
other components. Overall, the average execution time of a
new message in the storage is about 400ms, while generation
of a new message takes about 15ms. Our implementation has
not been optimized for performance and we believe significant
gains could be made.
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Fig. 5: Mean execution time (measured in milliseconds) taken
by each framework component (logarithmic scale).

V. INTEGRATION WITH A DTN PLATFORM

Our framework is designed to be independent and not bound
to any specific opportunistic platform. To enable integration
with every platform that follows the messaging model de-
scribed in Section II, we provide the DTN Communicator
component. In the simplest case, the framework operations
can be purely local file system reads and writes, and no dis-
semination happens beyond the Liberouter device. To enable
content dissemination beyond the local device, the framework
needs to be integrated with some opportunistic platform. To
demonstrate this concept in practice, we integrated framework
with SCAMPI, an opportunistic networking platform.

SCAMPI. SCAMPI is an opportunistic network platform that
fulfills all the requirements of the opportunistic platform. It
provides: 1) a data cache, 2) a publish-subscribe communica-
tion model, and 3) a network layer implementation capable of
delivering messages based on the store-carry-forward network-
ing. Our tech report [14] contains more details on SCAMPI.

Implementation of the DTN Communicator for SCAMPI
requires: 1) developing a cache monitor as a directory tracker
(SCAMPI implements cache as a set of file system directories),
and 2) using the SCAMPIAppLib library to publish new
content to network.

Developing web applications. To build a web version of an
existing native application, the developer must implement the
transformations required for the application functionality and
attach them to the application messages as metadata. As a bare
minimum to support presentation of content, message addition,

message deletion and application presentation transformations
must be implemented. The remaining transformations are
required for providing more sophisticated functionality.

To facilitate the development process, we also built a simple
transformation development environment. It allows the devel-
oper to test correctness of the implementation by: 1) executing
the transformation, and 2) verifying that the generated HTML
view matches expectations.

We present two applications: People Finder and Here and
Now, as examples of web application development for our
framework. We focus on these two applications, as they are
relatively complex, but additionally we have also created web
versions of Guerrilla Pics and Guerrilla Tags [7] apps.

People Finder. People Finder is the adaptation of Google
Person Finder web application into disconnected environ-
ments. Google’s version of the application has proven its
usability in various disastrous scenarios starting from 2010
Haiti earthquake. The application allows generating records of
a missing person and attaching notes to those records. Each
message generated by the application contains the record and
a set of notes related to the record known by the sender. The
application view is generated from the person records. Notes
attached to a person are displayed in the detailed view, which is
generated by the message presentation transformation. Adding
a new note for an existing record is done through the message
response transformation, which gets the original record (and
notes) as a parameter. This transformation appends a new note
to the existing ones, and generates a new aggregate message
with the record and all known notes. A new missing person
record is generated by the message creation transformation.

Here and Now. Here and Now is an experience sharing
application. It allows to share media content (i.e., photos and
videos) among people that are physically collocated. Users
can also comment on the content they see and give “likes”
to it. Media content together with comments and “likes” are
grouped into topics. The application offers two different views
for presenting topics. The first one is called “trending topics”
and it includes topics sorted according to the number of “likes”
in the descending order (topics that lack a single “like” are not
presented in this view). The second one is called “happening
now topics” and it includes all topics sorted according to
the most recent content posting time. Finally, the application
provides also the third view called “around me” in which users
that were observed in the last one minute are listed. We have
implemented the web version of the application using React,
as huge number of user interactions makes “classic” JavaScript
state management challenging and we want to take advantage
of the state management provided by React. We implement the
whole application UI as the React app to provide the same
functionality as its native equivalent. User interactions like
adding a new photo, or commenting on an existing one are
implemented as AJAX requests. These requests are handled
by the message server response transformation. In addition,
to provide the good user experience, the React app regularly
sends requests to the custom transformation to fetch the latest
content. The whole React app is the compiled piece of code



(a) Native version (b) Web version

Fig. 6: Comparison of native and web-based user interface for
Here and Now app.

that is attached to messages as meta data. It is loaded by the
application presentation transformation. Figure 6 shows the
native Here and Now, and its web version.

VI. VALIDATION

Our framework offers, in principle, content access to web
users (in addition to native app users). To achieve this, the
framework requires code to be shipped along with message
state updates, which incurs overhead. In the following, we
first evaluate the overhead and its impact. We then turn
our attention to how many web nodes could be reached by
content if those nodes choose to look at messages. Finally, we
evaluate our framework implementation by running a series of
experiments in a testbed environment.

A related question is if web users moving between access
points would also contribute to the connectivity of an op-
portunistic network. We have shown that they can make a
difference if the Liberouter nodes instrument the web storage
of mobile browsers for relaying messages [15].

A. Overhead

To evaluate overhead, we measure the actual message sizes
of our implementation for a text messaging and photo sharing
applications with sample contents. For a text messaging ap-
plication, the message size grows almost 50-fold from 350B
to 16kB. However, this is only due to the small size of the
native messages. If the content size of the application messages
increases, the overhead becomes more reasonable. For photo
sharing, with small photo size of 65–120 KB, including the
framework code adds just 5–10% overhead.

Obviously, the overhead added via the framework is a
function of the complexity of the logic required to interpret,
render, and construct messages: simpler applications will need
less code. The overhead is obviously also a function of
the content size so that more elaborate content will cause,
even if more complex code is needed, limited overhead only.
One can argue that trends in web site complexity and size3

show that increasing amounts of effort are put into conveying

3http://www.websiteoptimization.com/speed/tweak/average-web-page/
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Fig. 7: Impact of the overhead introduced by the framework
(reflected in different message sizes) on the coverage for
messaging (top) and photo sharing (bottom) with all three
loads for the SPMBM model.

probably roughly the same amount of content. Thus, adding
more sophisticated interaction framework code for a better
experience mirrors what is already done on the Web.

In opportunistic networks, the most important question is
if and how the larger message sizes affect message delivery
performance. To this end, we carried out simulations using
the ONE simulator [9] with two different mobility models: 1)
SPMBM: Shortest Path Map-Based Movement between way-
points chosen from the Helsinki downtown map (4.5×3.4km2)
[9] for 50, 100 and 200 pedestrians moving with speeds
v = U(0.5, 1.5) m/s without predefined points of interest.
2) Same as 1) but additionally we introduce 10, 65 and 325
static access points. Our nodes communicate at a net bit rate
of 2 Mbit/s with a radio range of 50 m. The nodes use simple
epidemic routing [26]. We choose a random node to generate
a new message every 12 s, 60 s, and 300 s, referred to as high,
medium, and low load, respectively. Messages expire after
5400 s. The message sizes correspond to those for native and
framework-enhanced messages for the text and photo sharing
applications to pick two extremes. We measure the fraction of
nodes that obtain a copy of each message, termed coverage,
and plot the average of ten 12-hour simulation runs.

As shown in Figure 7, we find that the overhead of the
framework does not notably impact the performance results.
The coverage remains the same both for using native appli-
cation messaging and for the framework-enhanced messaging
for the text chat application (top) as well as for photo sharing
(bottom).

Further, a maximum message rate limit was also observed
in past experiments, which have shown that the per-message
overhead of protocol implementations appears to be more
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Fig. 8: Coverage achieved for 50 and 500 web nodes for the
SPMBM model with 10 − 325 access points for the medium
load for text messaging (top) and photo sharing (bottom).

dominant in communication performance than the per-byte
overhead. This was, for example, found in a comparison of
three different DTN bundle protocol implementations [12],
particularly for growing the payload size from 10 bytes to
10 KB and beyond. Our own (not yet statistically significant)
experiments seem to confirm this. While implementation de-
tails play an important role here, there are also systematic
aspects to consider: nodes that meet need to exchange vectors
which messages they have, decide which ones to replicate,
and then perform a forwarding process for each message,
which causes per-message overhead. Researchers also found
that neighbor discovering and pairing with peers is expensive
and takes easily tens of seconds [18] while a 20 KB data
transfer takes only 160 ms even assuming just 1 Mbit/s data
rate. We therefore argue that the framework overhead is not
of substantial importance in practice.

B. Content Reach

The previous subsection suggests that the overhead intro-
duced by our framework won’t degrade performance for native
nodes. But how well does the framework allow reaching out
to web nodes? We conduct further simulations to answer this
question, using largely the same setup as above, but we intro-
duce 10−325 access point nodes (APs) which, besides running
the DTN middleware protocols, serve as WLAN access points
and run the server side of the interaction framework (cf. Figure
4). We also add web nodes that only interact with the access
points, but neither with each other nor with regular DTN
nodes. We choose the number of web nodes to be equal (L1),
five-fold (L5), or ten-fold (L10) the number of DTN nodes.

Obviously, how many web nodes we can reach will depend
on the movement patterns of those nodes and where the
access point nodes are located, and how they move. However,
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Fig. 9: System model for the testbed evaluation.

our simulation results shown in Figure 8 hint that we can
notably increase the visibility of content generated by native
applications; without the web framework this content would
not be accessible by web nodes. In our simulation results, we
find that the content coverage may come close to that of the
native nodes and reach close to 40% of the web nodes with
only 10 APs deployed. Increasing number of access points
causes significant improvement in the content coverage, as
almost 60% of web nodes are reached with 325 APs available.
Comparing this to Figure 7, content availability is roughly
equal for web nodes and native nodes. Note that, the fraction
of web nodes reached gets bigger as their number increases
from L1 to L5 to L10, so the absolute number of additional
nodes reached grows even more.

C. Testbed Evaluation

To validate the system implementation, we conducted a
testbed evaluation with 10 APs and 20/30 DTN carriers run-
ning in virtual machines (VMs). We generate and receive con-
tent of the Here and Now application from the web framework
via Selenium4—a web app testing framework using a real web
browser (Chromium) as a driver—with a single Selenium in-
stance continuously attached to each web framework instance.
We do not emulate movement for the web clients, instead focus
on how content produced in one framework instance spreads
to the other ones via the DTN carriers. This provides the upper
bound for end-to-end web client performance, with the actual
performance being dependent on the mobility patterns—i.e.,
how frequently the web clients meet framework instances.

The system model for the testbed is shown in Figure 9.
Our scenario with 30/40 VMs was run on a Dell rack server
with Intel Xeon E5-2640 v4 2.2 GHz CPUs with a total of 40
threads and 756 GB of RAM available to the VMs running on
OpenNebula. Each DTN carrier VM had 4 GB RAM and 0.5
virtual CPUs, and each web framework VM had 6 GB of RAM
and 1 virtual CPU. The DTN carrier VMs were running a
SCAMPI instance on a Debian 9.6 distribution, while the web
framework VMs ran the full web framework and a SCAMPI
instance on a Debian 9.7 distribution. Network characteristics
were emulated by instructing the SCAMPI instances to open
and close TCP links between each other via a host-local virtual
network in real time based on a connectivity trace generated

4https://www.seleniumhq.org/
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from a simulation. The trace was similar to the ones used in the
simulations above, with 10 web framework instances placed
in intersections in downtown Helsinki and 20/30 DTN carriers
moving according to the SPMBM model for 12 hours. Another
host (Intel Xeon E5-2640 v3 2.6 GHz, 32 threads, 132 GB
RAM), connected over a wired 10 Gbps link to the emulation
host, was used to run the TCP link controller and the Selenium
clients to generate HTTP test traffic for the web frameworks.
One Selenium client was connected to each web framework
instance to publish one Here and Now application message
every 10 minutes and to poll for new content every 5 seconds.
We base our results on the logs of the Selenium instances,
which give us the full end-to-end behavior equivalent to the
experience of a web user of the Here and Now application
connected to a framework instance.

The results shown in Figure 10 (top) establish an upper
bound for the web client performance, i.e., when the content
becomes available in each AP—actual performance will be
worse since mobile web clients would have to wait to reach
an AP to pick up new messages. These are not directly
comparable to the simulation cases, as we cannot run as many
nodes in the testbed as we can in a simulator, and we also do
not emulate web user mobility (only DTN carriers). The results
are, however, qualitatively similar to the simulations with the
coverage—fraction of APs that receive a message published
in another one—stabilizing at 60 − 80% within 4 − 7 hours
of message propagation, with a median delay of around two

hours. Interestingly, we note that adding carriers does not seem
to reduce the delivery delay, but improves the coverage.

In summary, when web users connects to an AP, they see
content that is typically two hours old and each AP contains
a minority of the total content that has been generated—
reinforcing our point from Section II-A that the apps must
be designed without assuming global consistency of data.
Furthermore, for each individual message, the dissemination
pattern varies significantly as shown in Figure 10 (bottom).
First, not every message reaches every AP, but for those
that do, the delay varies greatly—in the figure we show the
fastest message reaching all framework instances in about 100
minutes, while in that time the slowest one has only reached
a single AP and taking 300 minutes to reach them all.

Although the above results are strongly determined by the
mobility patterns assumed for the DTN carriers, they validate
the practical feasibility of our design by demonstrating full
browser-to-browser app interactions on real software running
on constrained VMs significantly less powerful than typical
hardware devices (e.g., smartphones).

VII. RELATED WORK

Our framework borrows concepts from different fields of
related work to create a unique combination. Most important
is the concept of embedding programs into messages and
executing them in network nodes, discussed in the past as
active networking [25] and mobile code. Lee et al. [10] present
a a node architecture allowing to deploy in-network services
in a next generation Internet. Its main contribution is the
concept of making the core network become a distributed
service execution environment. It also describes an architecture
for extensible router allowing for implementing new router
features. Similar concepts of extensible router architecture can
be also seen in the work of Router Plugins [2]. SOFTNET [29]
and PLAN [6] are examples of active networking systems
that assume network packets to contain programs, which are
used to manage network nodes. All these systems concentrate
on executing code inside the network in order to improve
network capabilities, while our solution takes advantage of
transformation execution to enable content access to web
users. Moreover, active networks focus on individual (small)
packets, thus limiting the amount of code that can be carried,
while our message-based system is not limited by MTU size.

Security aspects of mobile code are covered by Arden et
al. [17]. He introduces a new architecture for secure mo-
bile code that developers can use, publish and share mobile
code securely across trusted domains. Older work presenting
security aspects of mobile code are Rubin et al. [21] and
Zachary [28]. Kosta et al. [22] present the concept of using
mobile code for improving code execution on mobile devices
by offloading part of code execution to the cloud. Similar work
by Simanta et al. [24] describe an architecture for offloading
mobile code execution in hostile network environments. Un-
like these works, our system uses mobile code as a tool for
message content presentation and our main concern is offering
an isolated execution environment for the application code so



that the code does not harm the node running it (which is
similar to protecting routers in Active Networks).

Douceur et al. [5] shows an alternative approach for using
native applications in the web browser by the web users. This
system requires web servers to have an (application-specific)
gateway installed that translates a native app into a web app.
Our framework is more flexible, as it carries all transformation
code inside the messages themselves so that no node requires
prior knowledge of specific applications.

VIII. CONCLUSION

In this paper, we have presented a DTN based system
for enabling modern web applications to be developed for
and deployed in opportunistic networks. Our design is based
on the idea of distributing small, self-contained pieces of
application content directly in the network, rather than sending
it to a centralized database, and bundling the presentation
and interaction logic as code together with the message. This
approach enables browser-to-browser interactions in scenarios
without a well-connected infrastructure network.

Beyond the design of our system, we showed and evaluated
the practicality of our approach through a prototype implemen-
tation on our Liberouter platform. Further, we demonstrated
how to apply our design to two existing applications to develop
their web versions. Finally, we showed through simulations
that the overhead imposed by our design is low enough that it
does not have a significant negative impact on the message
dissemination by the underlying networking platform. We
further validated our system by running a series of real-world
experiments in the testbed.

There are a number of open issues for our future work.
These include enhancing security and privacy functionality of
the framework by enabling access to encrypted content for web
users and provide support for closed communication groups.
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[7] T. Kärkkäinen and J. Ott. Liberouter: Towards Autonomous Neighbor-
hood Networking. In Proc. of IEEE WONS, 2014.
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[12] J. Morgenroth, T. Pögel, S. Schildt, and L. C. Wolf. Performance
Comparison of DTN Bundle Protocol Implementations. In Proc. of
ACM CHANTS, 2011.

[13] M. Nagy, N. Asokan, and J. Ott. PeerShare: A System Secure
Distribution of Sensitive Data Among Social Contacts. In Proc. of
NordSec, October 2013.
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