
DASHing Towards Hollywood

Saba Ahsan
Aalto University
Espoo, Finland

saba.ahsan@aalto.!

Stephen McQuistin
University of Glasgow

Glasgow, UK
sm@smcquistin.uk

Colin Perkins
University of Glasgow

Glasgow, UK
csp@csperkins.org

Jšrg Ott
TU Munich

Munich, Germany
ott@in.tum.de

ABSTRACT
Adaptive streaming over HTTP has become the de-facto standard
for video streaming over the Internet, partly due to its ease of de-
ployment in a heavily ossi!ed Internet. Though performant in most
on-demand scenarios, it is bound by the semantics of TCP, with
reliability prioritised over timeliness, even for live video where the
reverse may be desired. In this paper, we present an implementation
of MPEG-DASH over TCP Hollywood, a widely deployable TCP
variant for latency sensitive applications. Out-of-order delivery in
TCP Hollywood allows the client to measure, adapt and request
the next video chunk even when the current one is only partially
downloaded. Furthermore, the ability to skip frames, enabled by
multi-streaming and out-of-order delivery, adds resilience against
stalling for any delayed messages. We observed that in high latency
and high loss networks, TCP Hollywood signi!cantly lowers the
possibility of stall events and also supports better quality down-
loads in comparison to standard TCP, with minimal changes to
current adaptation algorithms.

CCS CONCEPTS
¥Information systems ! Multimedia streaming ; ¥Networks
! Transport protocols ;

KEYWORDS
dynamic adaptive streaming over HTTP, DASH, multimedia stream-
ing, head-of-line blocking, transport layer multistreaming

ACM Reference Format:
Saba Ahsan, Stephen McQuistin, Colin Perkins, and Jšrg Ott. 2018. DASHing
Towards Hollywood. InMMSysÕ18: 9th ACM Multimedia Systems Confer-
ence, June 12Ð15, 2018, Amsterdam, Netherlands.ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3204949.3204959

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro!t or commercial advantage and that copies bear this notice and the full citation
on the !rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci!c permission
and/or a fee. Request permissions from permissions@acm.org.
MMSysÕ18, June 12Ð15, 2018, Amsterdam, Netherlands
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associ-
ation for Computing Machinery.
ACM ISBN 978-1-4503-5192-8/18/06. . .$15.00
https://doi.org/10.1145/3204949.3204959

1 INTRODUCTION
Video has grown to be the dominant class of tra"c on the Internet
in recent years, and it is expected to grow further. This growth has
been driven by a rising number of cord-cutters: users who have
switched to consuming video solely over the Internet. HTTP Ad-
aptive Streaming (HAS) protocols, including proprietary protocols
such as AppleÕs HTTP Live Streaming (HLS) and the MPEG-DASH
standard, underpin much of this tra"c. HTTP uses TCP at the
transport-layer, however, which is suboptimal for applications that
wish to trade-o# reliability and order for timeliness, including In-
ternet video applications.

HAS protocols operate on a pull-based technique, driven by
the client application. An HTTP server provides video in discrete
chunks of equal duration. Each chunk is provided in several dif-
ferent encodings, each at a di#erent bit-rate. The client requests
each chunk in turn, determining the appropriate representation to
request based on its rate adaptation algorithm. The client then plays
out these chunks in order, using a bu#er to attempt to reduce stalling
behaviour when a chunk doesnÕt !nish downloading in time to play.
However, the application is bound by the reliable delivery semantics
of TCP: the applicationmustwait for undelivered chunks. Stalling
for undelivered chunks a#ects quality-of-experience, not only with
the stall itself, but with the signals that the delay provides to the
rate adaptation algorithms. Transient network issues are ampli!ed.

In this paper, we develop an MPEG-DASH system that uses
TCP Hollywood [11, 12], a variant of TCP that provides an un-
ordered, multi-streaming delivery model. The changes made in
TCP Hollywood are intended to reduce the impact of losses on
quality-of-experience in high-delay networks. In high-delay and
high-loss networks, adopting it for HAS results in total stall dura-
tion that is seven times lower than that of standard TCP (i.e., TCP
without the TCP Hollywood modi!cations). Further, we show small
improvements in start-up delay and average media bit-rate.

Similar results could be achieved by using multiple simultaneous
transport-layer connections. However, these connections maintain
separate $ow and congestion control states, resulting in degraded
performance. Multi-streaming in HTTP/2 allows a single transport-
layer connection to be used by multiple ordered streams. Sending
each chunk within its own stream would remove application-layer
head-of-line blocking, but not the head-of-line blocking introduced
by TCP. Our approach allows for a single transport-layer connection
to be used, with the bene!ts that come with this, while eliminating
head-of-line blocking.

1

MMSysÕ18, June 12Ð15, 2018, Amsterdam, Netherlands S. Ahsan, S. Mc!istin, C. Perkins, and J. O"

The remainder of this paper is structured as follows. Section 2
brie$y introduces TCP Hollywood, and how its delivery semantics
are useful for our application. Section 3 describes the changes re-
quired to our MPEG-DASH client and server to work across TCP
Hollywood. The testbed environment is described in Section 4, and
the evaluation results are discussed in Section 5. Finally, Section
6 discusses related work, and how our contribution !ts with this,
while Section 7 concludes.

2 TCP HOLLYWOOD
TCP Hollywood [11, 12] is an unordered and time-lined transport
protocol. While maintaining wire compatibility with standard TCP,
TCP Hollywood removes two sources of transport-layer latency:
in-order delivery and reliability. In-order delivery results in head-
of-line blocking: data is not made available to the application un-
til all earlier data has been delivered. Providing reliability over a
best-e#ort network requires retransmissions, adding latency while
loss is detected and retransmissions are sent. TCP Hollywood uses
message-oriented semantics, and eliminates head-of-line blocking
by delivering messages to the receiver in the order that they arrive.
TCP Hollywood also relaxes standard TCPÕs reliability guarantee,
providingpartial reliability instead. The TCP Hollywood API allows
applications to specify a deadline for each message, after which it
will no longer be sent Ð this means that if a retransmission of a lost
message is unlikely to arrive before its deadline, it will not be sent;
an unexpired message will be sent instead (i.e., the retransmitted
TCP segmentÕs payload is di#erent to the original transmission).
Making use of this functionality requires that the application be
aware of the TCP Hollywood extensions and the content being sent,
such that it can set a deadline for each message.

The scope of this work is to evaluate the impact of HAS-over-
TCP Hollywood on video quality-of-experience, while minimising
change at the application-layer (i.e., maintaining alignment with
the MPEG-DASH standard). One of the core tenets of the MPEG-
DASH architecture is that the application logic is driven by the
client: it determines when, and at which rate, chunks are requested.
This means that the server can be a generic HTTP server Ð much of
MPEG-DASHÕs popularity is owed to this approach. Given that TCP
HollywoodÕs deadline API requires state to be held at the server,
we only consider the bene!ts of its unordered delivery feature in
this paper.

The bene!ts of TCP Hollywood alone have been analysed [11,
12]: eliminating head-of-line blocking signi!cantly reduces the
latency in lossy networks. However, the impact of these savings is
muted, unless the application is structured such that it can make
use of them: data sent in each TCP Hollywood message must be
independently (of other messages) useful. Under standard MPEG-
DASH, when a frame is to be played out, but has not yet arrived, the
application will stall waiting for the missing data to arrive. When
using standard TCP, this is a sensible design choice: subsequent
frames are not available to the application. However, under TCP
Hollywood, the frames that arrive while the missing frame is re-
transmitted may be available to be played out: this makes skipping
frames a viable design choice. Rather than waiting for the missing
frame, it is better to use error concealment techniques to minimise

!

"! #! #! #! #! $! #! #! #! #! #!%&'()!*+,-(. !

/!/!/!

/!/!/!

/!/!/!/!/!/!

!"
#

$%
"#

#

/!/!/!/! /!/!/!/!

0$12 34567!89:;< !

=8$!7)>>?@))'!0(..,A(!

=8$B"$!6(A-(;C.!

Figure 1: Illustration of the terminology used in this paper,
and transport-layer encapsulation.

the impact of loss (as far as possible) and continue play-back. How-
ever, rate adaptation algorithms have not been designed to consider
loss, and must be reevaluated when TCP Hollywood is used.

In introducing TCP Hollywood, and therefore out-of-order deliv-
ery, at the transport-layer, we must consider two design choices at
the application-layer: the data that should be sent in each message,
such that the bene!ts of out-of-order delivery are maximised, and
the operation of the rate adaptation algorithm when some data may
be missing. This paper will investigate these design choices.

3 UNORDERED DELIVERY IN MPEG-DASH
MPEG-DASH is designed for an ordered transport protocol. Adapt-
ing it for an unordered transport protocol requires several consid-
erations. These changes are in two broad areas: the HTTP request
and response semantics, and the rate adaptation algorithms. We
consider both of these in turn below.

Given that our approach spans multiple layers of the stack, we
must use carefully de!ned terminology. The MPEG-DASH standard
sendschunks; these are groups of videoframesthat have the same
duration. In our approach, the server will send these using TCP
Hollywood messages. A chunk may be split across more than one
message, but a message will never contain data from more than one
chunk. Finally, messages are sent in TCPsegments; a segment may
contain data from more than one message, and may contain only
some of the data for a message. Figure 1 illustrates this terminology.

3.1 HTTP Request/Response Semantics
As discussed in the previous section, the transmission unit of TCP
Hollywood is a message: complete messages are delivered to the
application when they arrive. Care must be taken in deciding what
should be sent in each message: if a message is too large, then
its loss will have a greater impact on the applicationÕs quality-of-
experience; too small, and the ratio of payload to header will be
low. Sending an entire chunk per message means that, in the event
a segment that makes up the message is lost, upwards of 1 second
of video data is not delivered to the application. Alternatively, the
message boundaries can be aligned with the underlying digital
container format. For example, MPEG-TS streams use 188 byte
packets with Forward Error Correction (FEC). Sending each MPEG-
TS packet as a message would minimise the impact of loss on QoE,
but reduce the e"ciency of our application by sending a TCP/IP
header for every 188 bytes of payload. Sending a single video frame

2

DASHing Towards Hollywood MMSysÕ18, June 12Ð15, 2018, Amsterdam, Netherlands

is a reasonable choice for streams that donÕt allow for error re-
covery of a partially received frame, however, this comes at the
cost of content-awareness at the server. In this study, we opt for a
compromise: we send !xed-size (1400 byte) messages. This reduces
the impact of loss (though not minimally), while amortising the
header across a larger payload and preserving a content-agnostic
HTTP server.

TCP Hollywood supports multi-streaming over a single TCP
connection, allowing for the separation of the control and data
channels. We use separate streams for HTTP request and response
headers, sending each as separate TCP Hollywood messages. This
allows the client to request later chunks while earlier chunks are
still downloading. The server still sends chunks sequentially, but
does not have to wait for the next request to arrive; this is especially
useful in high latency networks. Figure 2 illustrates chunk retrieval
with HTTP over both standard TCP and TCP Hollywood.

Our use of multi-streaming in TCP Hollywood is similar to
HTTP/1.1 pipelining and bundle requests in HLS [13]. However,
these approaches require quality estimates to be submitted for all
chunks at request time. This means that a quality estimate may be
two or more chunk durations old before being used at the server.
Fluctuations in network conditions in the interval between request
and response mean that these quality estimates can be incorrect.
Under TCP Hollywood, requests can be sent while chunks are
downloading, allowing for the server to receive a more recent and
accurate estimate of network conditions. This reduces the likeli-
hood of an under or over estimation of performance, improving
quality-of-experience. Further, HTTP/1.1 pipelining su#ers from
transport-layer head-of-line blocking in standard TCP, which is
eliminated under TCP Hollywood.

Finally, TCP Hollywood can discard late messages and continue
delivering data to the application, thereby limiting stall events only
to those cases when the play-out bu#er is completely empty.

The requested chunks of video are transmitted on a single stream,
using !xed size messages. As the server is content-agnostic, it is
unable to set an expiry time for messages, and all messages are
sent reliably. A content-aware server would set this to the relative
presentation time of the chunk, subsequently reducing unnecessary
retransmissions. For the sake of simplicity, the audio stream is not
used. Each message is appended with a monotonically increasing
sequence number and a stream o#set. The stream o#set is the o#set
of the last byte of the message within this stream, where a stream
includes all chunks that have been transmitted previously. Both
!elds are used by the receiver to reorder the messages and detect
losses. We expand the function of the play-out bu#er to include
de-jittering and reordering of the incoming messages.

The commonly used ISO Base Media File Format (MP4) is not
suitable for TCP Hollywood due to its lack of tolerance for packet
losses. Hence, we use MPEG Transport streams (MPEG-TS), which
are allowed as part of the MPEG-DASH standard and also used in
HLS.

3.2 Rate Adaptation Algorithms
Performance of an MPEG-DASH system relies heavily on a good
rate adaptation algorithm. Such algorithms use application-level

!

"!#$%&'($)$*+! ,$(-./!0.(! %/%,+%+-.*!$&+-)%+-.*!1!0-(&+!23'*4!
!

!5.),6$+$!23'*4!/.7*6.%/ !
!
""!#$%&'($)$*+! ,$(-./!0.(!%/%,+%+-.*!$&+-)%+-.*!1!&$2.*/!23'*4! !
!

!

!

8-
)$

!

" " !

" !

56-$*+!9$(:$(!

85; !

<!

=!

" " !

" !

56-$*+!9$(:$(!

85;!>.66?7../ !

<!

=!

@!

Figure 2: An illustration of chunk download with HTTP
over TCP and over TCP Hollywood. The TCP Hollywood cli-
ent requests the next chunk while the current chunk is still
downloading. The shaded area represents the measurement
period for each chunk.

measurements such as bu#er length, throughput, time to down-
load a chunk, or a combination of these to select an appropriate
quality for download [1, 10, 14]. There is some consensus among
researchers that bu#er-based algorithms are more performant and
reliable in a wider variety of network conditions, when compared
with other algorithms [7, 9].

Our TCP Hollywood-based MPEG-DASH client uses the open-
source BOLA (Bu#er Occupancy based Lyapunov Algorithm) rate
adaptation algorithm [14] adapted from the MPEG-DASH refer-
ence client implementation, dash.js.1 BOLA uses the amount of
video currently bu#ered to calculate the quality level (bit-rate level)
for the next chunk. For live video, where bu#er sizes are limited,
the algorithmÕs implementation uses throughput estimates to fur-
ther reduce over-estimation and stalling. Algorithm 1 shows the
operation of rate adaptation using BOLA in a typical TCP based
DASH client. Note that the quality estimation logic of the BOLA
algorithm was adapted from dash.js without any modi!cations and
remains unchanged (even when used in our TCP Hollywood-based
approach), hence we do not further explain the inner workings of
the estimation process.

In the presence of loss and duplication, as is possible with TCP
Hollywood, the calculation mechanisms for measurements have to
be modi!ed. BOLA algorithm is written for standard TCP, where
head-of-line blocking means that the client must wait for all data to
arrive. In TCP Hollywood, head-of-line blocking is eliminated, al-
lowing the client to continue even if some data hasnÕt arrived. There-
fore, we introduce a new parameter,RxT , the Receive Threshold:
when the ratio of the bytes received in a chunk reachesRxT , the

1https://github.com/Dash-Industry-Forum/dash.js/wiki

3

MMSysÕ18, June 12Ð15, 2018, Amsterdam, Netherlands S. Ahsan, S. Mc!istin, C. Perkins, and J. O"

Algorithm 1 BOLA rate adaptation under TCP

1: procedure D�������S�����
2: n ! index of current chunk
3: N ! Total number of chunks
4: B ! Maximum Bu!er Length
5: bnow ! Current Bu!er Length
6: Sq

n ! Size of chunk with index n and quality q
7: Bq

n ! Bytes received for chunk with index n and quality q
8: while n < N do
9: if bnow > B then

10: �t ! B " bnow
11: W aitForDuration(�t)
12: end if
13: q ! GetBolaQualit! Estimate(bnow)
14: DownloadChunk(q,n)
15: end while
16: end procedure

client continues with its rate adaptation as if the entire chunk had
arrived. Care is needed when selecting the value ofRxT ,: if it is
too low, the rate adaptation will be performed on a partial view of
network conditions, which may result in selecting an unsuitable
rate; settingRxT too high would diminish the impact of eliminating
head-of-line blocking. After experimenting with a range ofRxT
values between 0.75 and 0.99, under stable network conditions, we
chose 0.9. We found this value was su"ciently high to include the
current chunk as part of the bu#ered duration (only 10% of the
chunk remains to be downloaded, with some data in-$ight, and a
limited number of messages that may be delayed and subsequently
discarded by TCP Hollywood if they miss their deadline) and gather
measurements for the next chunk, while su"ciently low as to en-
able the bene!ts of TCP Hollywood. Our experiments withRxT
only considered 1 second chunks, however, we expect this value to
hold for other chunk durations. Finally, with TCP Hollywood, some
messages may be discarded due to late arrival. In order to prevent
over-estimation in the presence of losses, we reduce the length of
the bu#er level by one chunk duration in this case. If the bu#er
level is under one chunk duration, the algorithm would any way
select a low bit rate. In the current model, the algorithm does not
di#erentiate between losses and would behave the same regardless
of the type of loss. We discuss this further in Section 5.5 as an av-
enue for future work. The modi!ed operation for TCP Hollywood
is shown as Algorithm 2. Note that throughput measurements used
by the BOLA algorithm, while not shown as part of the pseudocode
for the sake of clarity, will also be calculated using only the partial
download of the chunk.

TheRxT parameter can be used with other adaptation algorithms
as it impacts only the measurements and not the quality estimation
mechanism. Preliminary testing for this study was carried out using
both the bu#er-based BOLA algorithm and the throughput-based
Probe And Adapt (PANDA) algorithm [10]. Generally, we found
BOLA outperformed PANDA for standard TCP and TCP Holly-
wood, in terms of stall avoidance and bit rate switching, a !nding
con!rmed by previous studies [9]. Note that the main advantages

Algorithm 2 BOLA rate adaptation under TCP Hollywood

1: procedure D�������S�����
2: n ! index of current chunk
3: N ! Total number of chunks
4: B ! Maximum Bu!er Length
5: bnow ! Current Bu!er Length
6: Sq

n ! Size of chunk with index n and quality q
7: Bq

n ! Bytes received for chunk with index n and quality q
8: RxT ! Receive Threshold
9: L ! Losses since last download

10: T ! Duration of chunk
11: while n < N do
12: if bnow > B then
13: �t ! B " bnow
14: W aitForDuration(�t)
15: end if
16: if L > 0 & bnow > T then
17: bnow ! bnow " T
18: end if
19: q ! GetBolaQualit! Estimate(bnow)
20: InitiateChunkDownload(q,n)
21: W aitUntil(Bq

n < RxT #Sq
n)

22: end while
23: end procedure

of TCP Hollywood (shown in Figure 2) are the removal of head-of-
line blocking, and the addition of chunk request pipelining. These
remain regardless of the algorithm used.

4 EVALUATION METHODOLOGY
We evaluate MPEG-DASH performance using both standard TCP
and TCP Hollywood, to understand how the changes to the trans-
port protocol a#ect quality of experience for streaming video. Both
standard TCP and TCP Hollywood use the CUBIC congestion con-
trol algorithm; both would be impacted by any change to the variant
of TCP used.

Our evaluation setup consists of a virtual environment that uses
Mininet2 to create a virtual network with a modi!ed Linux kernel
including the TCP Hollywood patches. We used our own MPEG-
DASH server and client implementation. The TCP Hollywood API
was disabled when testing with standard TCP, and a persistent
HTTP/1.1 connection was used in both cases. The virtual network
used included a single client and server connected through a switch.
Path characteristics were emulated at the server interface using
netem3 Token Bucket Filter tra"c control, with a !xed 5Mbps
line rate, a reasonable value for our test videos, where the highest
quality is 5600kbps. The test cases are divided into two categories:
(i) a loss rate of 0.2% (random loss) with network latencies (RTT)
between 150 to 400ms; and (ii) loss rates between 0 and 1% with
network latency of 100ms. Additional testing was carried out with
varying network conditions to evaluate adaptability.

2https://mininet.org
3https://wiki.linuxfoundation.org/networking/netem

4

DASHing Towards Hollywood MMSysÕ18, June 12Ð15, 2018, Amsterdam, Netherlands

Index Encoding bit-rate
(kbps)

Chunk bit-rate
(kbps) PSNR SSIM

1 1200 1301 37.220176 0.955177
2 1800 1941 39.142917 0.967720
3 2400 2584 40.478799 0.974580
4 3000 3228 41.515695 0.978962
5 3500 3766 42.226845 0.981527
6 4000 4304 42.845958 0.983509
7 5000 5328 43.868625 0.986314
8 5600 6030 44.387282 0.987527

Table 1: Video representations; all representations have a
resolution of 1920x1080p. PSNR and SSIM of re-encodings
calculated against original Y4M reference.

We used Big Buck Bunny4 with 8 quality levels as a video test
sequence. The encoding bit-rates ranged from 1200 to 5600kbps
with a constant resolution of 1920x1080p. The constant resolution
eliminates the need for re-scaling in objective Quality of Experience
(QoE) computations, which require the videos to be of the same
resolution. MPEG-TS is used to allow loss recovery. The use of
MPEG-TS adds about 10% in metadata overhead to the streams in
our case (the use of MPEG-TS is not essential to our approach, and
any encoding or container format that is robust to packet loss could
be used). The encoding details for the di#erent quality levels of the
test sequence are given in Table 1. As TCP Hollywood is designed
for low-latency applications, we use a 16 second bu#er, with a 1
second chunk duration.

To compare the performance of MPEG-DASH over standard TCP
and TCP Hollywood, we use a number of Quality of Service (QoS)
and QoE metrics:

Start-up delay
The amount of time from the start of the test until 2 seconds
of video has been downloaded and demuxed.

Stall duration
The total amount of time the video stalls due to a completely
empty bu#er. The client would wait for one additional chunk
to be downloaded before resuming play-out when a stall
occurs.

Adaptability and stability
Adaptability is a measure of how quickly the adaptation
algorithm can adapt to change in network conditions and
stability is characterised by the clientÕs ability to mitigate
frequent bit rate $uctuations. These are measured using two
metrics: (i) the average bit-rate of the downloaded chunks
(adaptability), and (ii) the percentage of chunks with a down-
ward bit-rate switch during play-out (stability).

Objective QoE
To measure the level of distortion produced due to a dis-
carded message, we use the objective QoE metrics Peak Sig-
nal to Noise Ratio (PSNR) and Structural Similarity (SSIM).
Both metrics are full-reference. We use the original Y4M
sequence as reference and FFmpeg5 for the computation.

4https://peach.blender.org
5https://#mpeg.org/#mpeg-!lters.html

Since PSNR and SSIM values will be lower for lower quality
chunks, the metrics also provide a measure of quality even
in the absence of discarded messages.

These metrics were chosen since they are widely used and have
been shown to be representative of di#erent aspects of the user
experience for MPEG-DASH video.

The code used in our evaluations is described in Appendix A.

5 RESULTS
In this section, we present the !ndings of our evaluation. All test
cases were repeated ten times and the depicted values are trimmed
averages taken after discarding the highest and lowest values. Fur-
thermore, graphs contain error bars, which extend from the20th

to 80th percentile unless explicitly indicated otherwise. Note that
due to the random nature of losses in the network emulated during
testing, outliers are inevitable, which is why we have chosen to
focus on the middle population of the values. To the best of our
knowledge, this approach does not produce any bias towards either
protocol.

5.1 Stall Events
The single most impactful impairment for MPEG-DASH video user
experience has been found to be stall events [6]. A perfect adapta-
tion algorithm would eliminate stall events during video play-out
by pre-bu#ering content and by adjusting the download quality of
the video to match the network performance. However, in reality,
stall events occur, due to imperfect estimates of network conditions.

As we might expect, TCP Hollywood o#ers most bene!t in the
presence of moderate losses and high delay. Figure 3 shows the
e#ect of network latency on the total stall duration experienced
over standard TCP and TCP Hollywood when the line rate and
loss rate were kept constant at 5Mbps and 0.2% respectively. At
lower network latency, loss recovery is quick and hence TCP Hol-
lywood and standard TCP have similar performance. However, for
higher network latency, head-of-line blocking in standard TCP pre-
vents data that has already arrived from reaching the application.
When the missing TCP segment does arrive, the client can read
a larger amount of data into its play-out bu#er. On average, no
more than one or two TCP Hollywood messages are discarded at
network latencies of 300ms and 350ms. The additional performance
comes from the ability of the rate adaptation algorithm in our TCP
Hollywood-based MPEG-DASH client to compute metrics and de-
cide the quality of the next chunk before the delivery of the current
chunk (see Section 3). This would mean that the client does not
have to wait unnecessarily for the arrival of retransmissions before
requesting the next chunk, helping to avoid stalls.

When loss is high and delay is low, MPEG-DASH over TCP
Hollywood and over standard TCP generally have similar perform-
ance. As packet loss increases, the TCP Hollywood-based client
sees some performance bene!t. Figure 4 shows the results when
network latency is 100ms, line rate is 5Mbps and di#erent network
loss rates are used. When using loss rates of 0.6% and 0.8%, we ob-
served that the TCP Hollywood-based client is able to avoid some
stall events by discarding some late arriving messages, however
the bene!t is very small in comparison to standard TCP as loss
recovery is fast at low RTTs. At loss rates of 1%, we observe that

5

MMSysÕ18, June 12Ð15, 2018, Amsterdam, Netherlands S. Ahsan, S. Mc!istin, C. Perkins, and J. O"

0

50

100

150 200 250 300 350 400

Network latency (ms)

To
ta

l S
ta

ll
D

ur
at

io
n

(s
)

Hollywood TCP

Figure 3: Stall events. Test networks were 5Mbps with 0.2%
loss with variable delay. The client using standard TCP suf-
fers more from stalls than the client using TCP Hollywood,
with the latter being able to minimise stalls in the presence
of high network delay.

0

10

20

30

0 0.002 0.004 0.006 0.008 0.01

Network Loss Rate

To
ta

l S
ta

ll
D

ur
at

io
n

(s
)

Hollywood TCP

Figure 4: Stall events. Test networks were 5Mbps with 100ms
delay and variable loss rates. With high loss rates, loss re-
covery can be delayed due to lost retransmissions, leading
to more stall events for client using standard TCP.

the advantage of using TCP Hollywood is signi!cant, keeping the
stall values for that client at around 5 seconds, in comparison with
around 30 seconds in the case of the client using standard TCP
for a 10 minute video. At high loss rates, the possibility of losing
a retransmitted TCP segment become higher and loss recovery
becomes a time consuming process even at lower network delays.

5.2 Start-up Delay
We measure the start-up delay from the beginning of the test to the
point when two seconds of video (two chunks) have been down-
loaded and bu#ered, including the time taken to fetch the manifest
!le. We use persistent connections for both standard TCP and TCP
Hollywood, allowing the TCP connection establishment and slow
start latencies to be amortised across a longer duration. In the case
of TCP Hollywood, play-out can begin before the download of
the second chunk is complete, unlike standard TCP. However, as
we use a receive ratio of 0.9, the advantage is not signi!cant for
high speed networks. We still observe faster startup values for TCP
Hollywood in all scenarios because of its ability to request chunks
earlier. The higher the network latency, the greater the bene!t of
TCP Hollywood.

Figures 5 and 6 show startup delay values observed in our ex-
periments. In the presence of higher losses, the startup delay can
become less stable and statistical signi!cance in average values is

0

2

4

6

150 200 250 300 350 400

Network latency (ms)

S
ta

rt
up

 D
el

ay
 (

s)

Hollywood TCP

Figure 5: Start-up delay. Test networks were 5Mbps with 0.2%
loss with variable delay. The higher the network latency, the
greater the bene!t of TCP Hollywood.

0

1

2

3

4

0 0.002 0.004 0.006 0.008 0.01
Network Loss Rate

St
ar

tu
p

D
el

ay
 (s

)

Hollywood TCP

Figure 6: Start-up delay. Test networks were 5Mbps with
100ms with variable loss rates. The start-up delay is slightly
lower for the TCP Hollywood-based client, however, ran-
domness of emulated losses makes the values unpredictable.

lowered. For this reason, the median value after eliminating the
highest and the lowest observed values are shown in the graphs.

5.3 Adaptation and Stability
While stall durations can be signi!cantly reduced for high delay and
high loss networks by eliminating head-of-line blocking using TCP
Hollywood, these improvements only hold real signi!cance if a TCP
Hollywood-based client is able to deliver them while maintaining
the same level of video quality as a standard TCP-based client.
Figure 7 shows the e#ect of network latency on the average bit-
rate of the video chunks for each transport protocol. The error
bars indicate the standard deviation in the downloaded chunk bit-
rate; a higher standard deviation indicates a higher range of bit-
rate switching. It can be seen that TCP Hollywood has a higher
average bit-rate with a similar level of standard deviation when
network delay is 150ms and 200ms. For higher network delay, TCP
Hollywood continues to deliver chunks at a similar average bit-
rate value than standard TCP. In general, standard TCP appears
to be more stable, as exhibited by the percentage of chunks with
a rate drop shown in Figure 8. A rate drop is counted each time a
chunk is downloaded at a bit-rate which is lower than the chunk
immediately before it. The di#erence in rate drops is equivalent to
about 1 additional drop observed per minute for TCP Hollywood
than for standard TCP. We show only the rate drops here as they
have a higher impact on user experience than upward switching,
however, the observed trends were similar for both.

6

DASHing Towards Hollywood MMSysÕ18, June 12Ð15, 2018, Amsterdam, Netherlands

0

1000

2000

3000

150 200 250 300 350 400

Network Latency (ms)

A
ve

ra
ge

 M
ed

ia
 B

itr
at

e
(M

bp
s)

Hollywood TCP

Figure 7: Adaptation and stability. Test networks were
5Mbps with 0.2% loss with variable delay. The error bars rep-
resent standard deviation, indicating bit-rate switching. For
higher delay values, standard TCP shows lower standard de-
viation because it remains mostly at the lowest available bit-
rate.

0

1

2

3

4

150 200 250 300 350 400

Network Latency (ms)

C
hu

nk
s

w
ith

 R
at

e
D

ro
ps

 (
%

)

Hollywood TCP

Figure 8: Adaptation and stability. Test networks were
5Mbps with 0.2% loss with variable delay. The graph shows
the percentage of chunks that were downloaded at a lower
rate than the previous one. The standard TCP adaptation al-
gorithm is more stable for all networks. The test video had
597 chunks.

We observe that when packet loss is kept under 0.1%, clients
using both standard TCP and TCP Hollywood exhibit similar be-
haviour. As shown in Figure 9, where network delay is 100ms, the
TCP Hollywood-based client was able to deliver a higher average
bit-rate than the standard TCP-based client, as loss rates increased.
Figure 10 shows the stability of the rate adaptation algorithm under
both standard TCP and TCP Hollywood. At a loss rate of 0.2%, we
found that the TCP Hollywood-based client had higher stability
than the standard TCP-based client. However, for higher loss rate
values, the TCP Hollywood-based client is less stable, as it attempts
to download higher bit-rate chunks, while the standard TCP-based
client maintains stability at the lowest bit-rate.

5.4 Quality of Experience
None of the previously discussed metrics quantify the impact of
the dropped messages on a TCP Hollywood-based DASH client. A
discarded message will result in visual impairments that are not
possible for a client using a reliable TCP stream. Figure 11 and 12
show the observed PSNR and SSIM values of the received streams
for the di#erent transport options. The !gures show box plots
of frame-level PSNR and SSIM values observed during multiple

0

1000

2000

3000

4000

0 0.002 0.004 0.006 0.008 0.01
Network Loss Rate

Av
er

ag
e

M
ed

ia
 B

itr
at

e
(M

bp
s)

Hollywood TCP

Figure 9: Test networks were 5Mbps with 100ms with vari-
able loss rates. TCP Hollywood signi!cantly outperforms
standard TCP at loss rate of 0.2% with a higher average rate
and lower standard deviation. Error bars represent standard
deviation.

0

1

2

3

4

0 0.002 0.004 0.006 0.008 0.01

Network Loss Rate

C
hu

nk
s

w
ith

 R
at

e
D

ro
ps

 (
%

)

Hollywood TCP

Figure 10: Test networks were 5Mbps with 100ms with vari-
able loss rates. Hollywood is more stable for 0.2% and no loss
cases, however, at higher loss levels, standard TCP becomes
more stable.

iterations of the test. Note that although the two objective QoE
metrics represent the quality of the chunks and the level of visual
impairments due to discarded packets, it does not show the impact
of stall events, which were discussed in Section 5.1. Across all of the
tests we ran in these experiments, about 30% of streams discarded
at least one message during the 10 minutes of the video, however, of
these only 5% lost more than 10 messages. Furthermore, the impact
of a lost message is most evident when a part of an I frame is lost.
However, since chunks begin with an I frame, the e#ect of even
the worst visual impairment does not propagate farther than the
duration of the chunk, which in our case is 1 second.

5.5 Other Testing
We represent in this paper results from cases where the stall events
were within acceptable limits for a range of latency and loss values.
However, we tested for other conditions as well. For delay variation
testing with a !xed loss rate at 0.03%, we found that both protocols
performed equally with no stall event for delays as high as 400ms.
For a loss rate of 0.8%, the stall duration was about 300s even
at a delay of 200ms for the standard TCP-based client. For the
TCP Hollywood-based client, the stall events were reduced by 40%
but nearly 150 messages were discarded. Similarly, for a loss rate
of 2%, stall durations were as high as 300s when running over
standard TCP with a 100ms network latency, while the use of TCP

7

MMSysÕ18, June 12Ð15, 2018, Amsterdam, Netherlands S. Ahsan, S. Mc!istin, C. Perkins, and J. O"

Figure 11: Impact of delay on quality of experience. Test net-
works were 5Mbps with 0.2%loss with variable delay.

Figure 12: Impact of packet loss on quality of experience.
Test networks were 5Mbps with 100ms with variable loss
rates. The TCP Hollywood-based client maintains a higher
PSNR and SSIM than standard TCP.

Hollywood reducing stall durations to around 230s at the cost of
heavy losses. Given that such high levels of stalling will any way
be unacceptable to users, we feel that attempting to evaluate which
protocol performed better is of little consequence.

To evaluate the suitability of the adaptation algorithm in $uctu-
ating network conditions, we ran tests using the twelve network
pro!les (a - l) used by Spiteri et. al. in their evaluation of the BOLA
algorithm [14]. The pro!les cover a wide range of loss rates, delays
and bandwidths and network conditions are changed during the
tests every 30 seconds. Since some bandwidths in the test were
lower than the lowest bit-rate in our test videos and the bu#er
length was limited to 16 seconds, we observed stall events, espe-
cially for the more aggressively changing pro!les (pro!lesg to l).
Generally, the use of TCP Hollywood lowered the stall events, as
shown in Figure 13. Start-up delay was similar for clients using
both protocols, although some pro!les with longer network delays
in the beginning bene!ted slightly from the use of TCP Hollywood
as shown in Figure 14.

A violin plot of the PSNR and SSIM values shows the frequency
of each value in Figure 15. The similarity in the shape of the plot for
clients using both standard TCP and TCP Hollywood shows that
both protocols downloaded similar quality chunks, as observed in
the average bit-rate results shown in Figure 16. The TCP Hollywood-
based client had a lower number of downward rate switches than
the standard TCP-based client for almost all pro!les, as shown in
Figure 17. The client using BOLA working with TCP Hollywood
generally adapted faster to a higher bit-rate and was able to sustain

0

10

20

30

40

a b c d e f g h i j k l

Network Profile

To
ta

l S
ta

ll
D

ur
at

io
n

(s
)

Hollywood TCP

Figure 13: Stall events are reduced for TCP Hollywood for all
except pro!le k, where latencies are under 20 ms and band-
width levels between 9Mbps and 1Mbps.

0

2

4

6

8

a b c d e f g h i j k l

Network Profile

S
ta

rt
up

 D
el

ay
 (

s)

Hollywood TCP

Figure 14: Startup delays observed for di"erent network pro-
!les.

Figure 15: Quality of experience pro!les. PSNR and SSIM val-
ues of various network pro!les revealed similar results for
both standard TCP and TCP Hollywood-based clients. The
shape of the violin graph reveals more information about
the frequency of values, showing the similarity in the down-
load quality of both protocols with the tails in SSIM plot rep-
resenting the e"ect of lost messages.

a higher bit-rate for longer than the client using standard TCP.
However, this also meant that the TCP Hollywood client would drop
suddenly to a lower rate while the standard TCP-based client would

8

DASHing Towards Hollywood MMSysÕ18, June 12Ð15, 2018, Amsterdam, Netherlands

0

2000

4000

6000

a b c d e f g h i j k l

Network Profile

A
ve

ra
ge

 M
ed

ia
 B

itr
at

e
(M

bp
s)

Hollywood TCP

Figure 16: The average media bit rate was similar for all net-
work pro!les. The slight improvement for TCP Hollywood
is further explained in Figure 18.

0

1

2

3

4

a b c d e f g h i j k l

Network Profile

C
hu

nk
s

w
ith

 R
at

e
D

ro
ps

 (
%

)

Hollywood TCP

Figure 17: Fewer rate drops were observed over TCP Holly-
wood for all network pro!les.

2

3

4

5

6

0 200 400 600

Chunk Index

C
hu

nk
 b

it
ra

te
 (

M
bp

s)

Hollywood TCP

Figure 18: TCP Hollywood allows the adaptation algorithm
to adapt more quickly to higher bit-rates and also to sustain
them for longer periods in the presence of network degrad-
ation.

drop gradually. If the degradation lasted less than the 30 seconds
de!ned by the pro!les, as may be the case for real networks, the TCP
Hollywood-based client is more likely to sustain the current bit-rate
without dropping at all. A sample bit-rate adaptation for network
pro!le g is shown in Figure 18. Note from Figure 15 that the TCP
Hollywood-based client does su#er from message losses in pro!le
g and future work should include exploring improvements in the
adaptation algorithm to limit the number of discarded messages in
favour of stalls in the presence of high losses and possibly detecting
and adapting di#erently for di#erent kinds of loss.

6 RELATED WORK
HTTP adaptive streaming has become the de-facto standard for on-
demand video streaming. MPEG-DASH, an International Standard,
is similar to other $avours of HAS, in that the architecture involves
a client requesting discrete chunks of media over HTTP, at a rate
determined by its adaptation algorithm. HAS protocols, by virtue
of their use of chunked encodings and HTTP over TCP, introduce
signi!cant latency, and rely heavily upon bu#ering to maintain
quality-of-experience. However, a previous study has shown that
latency, in a local network, can be reduced to as low as 240ms[4].
The cost of this was higher packaging overhead, with increases of
up to 13%.

An obvious application-layer approach to reducing latency in
MPEG-DASH is to reduce the size of chunks; however, doing this
leads to a signi!cant increase in the number of HTTP requests
sent. Wei and Swaminathan [16] propose using HTTP/2Õs server
push mechanism to reduce the number of requests, potentially only
requiring a single HTTP request across the entire stream. Xiao
et al. [17] take a similar approach, but focus on mobile devices.
While HTTP/2 provides server push and multi-streaming (and so
eliminates head-of-line blocking at the application-layer), using
standard TCP means that the application will still be impacted by
head-of-line blocking. In the event of loss, data will be delayed by
more than one RTT [12]; this is problematic in low-latency applica-
tions. The use of multiple simultaneous TCP connections provides
a delivery model that is analogous to a multi-streaming protocol.
However, these connections do not share $ow and congestion con-
trol state, which degrades their performance. Further, managing
these connections introduces complexity at the application-layer.

Our approach attempts to eliminate the latency associated with
head-of-line blocking by using TCP Hollywood, whose message-
oriented unordered delivery model is well suited to low-latency
applications. Other transport-layer solutions include QUIC [8], a
UDP-based protocol with support for stream multiplexing. Evalu-
ations conducted over QUIC [2], without application-layer changes,
have shown that MPEG-DASH QoE is degraded.

Neither of these approaches Ð application-layer changes (e.g.,
using HTTP/2) or novel transport-layer protocols (e.g., TCP Holly-
wood or QUIC) Ð alone is su"cient to improve application perform-
ance. Both are required: application-layer changes are necessary,
but these must be supported by the semantics of the underlying
transport protocol. The application-layer modi!cations we pro-
pose here are likely to be compatible with other multi-streaming
transport-layer protocols, including QUIC.

Complementary latency-reducing approaches include a server
and network-assisted variant of MPEG-DASH, SAND [15]; this
is currently in development, and will form part of the MPEG-
DASH standard. SAND enhances MPEG-DASH with asynchronous
network-to-network and network-to-client quality-related message
exchange. A Software De!ned Networking (SDN) based approach
has been shown to improve user QoE by providing the client with
network performance and cache content information to assist the
cache and bit-rate selection while using the SDN network to op-
timise the caches [3]. Additionally, Fršmmgen et al. [5] propose a
programming model for multipath TCP scheduling; the delivery
model of TCP Hollywood, combined with the type of tra"c being

9

MMSysÕ18, June 12Ð15, 2018, Amsterdam, Netherlands S. Ahsan, S. Mc!istin, C. Perkins, and J. O"

carried, make this an interesting basis for future work. For example,
exposing message deadlines to a multipath scheduler may increase
the proportion of messages that meet their deadline.

7 CONCLUSION
In this work, we evaluated the e#ects of unordered delivery on
MPEG-DASH clients, using TCP Hollywood. We observed that by
eliminating head-of-line blocking on a chunk and message level,
an MPEG-DASH client using TCP Hollywood is able to signi!c-
antly reduce stall events while also slightly reducing start-up delay
and improving download quality. The observations and lessons
learnt during the course of this study can also be applied to other
transports that support non-reliable streams, such as SCTP and
QUIC.

A REPRODUCIBILITY
To aid with reproducibility, we provide all of the source code
used in generating the results described in this paper, alongside
a Make!le that describes and performs the process of performing
the experiments, processing and graphing the results, and pro-
ducing the paper. The source code for the paper is available at
http://dx.doi.org/10.5525/gla.researchdata.596.

Our evaluations require a modi!ed Linux kernel, and each run of
the evaluation simulates di#erent network parameters. To manage
this complexity, we have split the paperÕs build process into a series
of stages. In this section, we describe the inputs and outputs of each
stage; we also give approximate durations for each stage. We start
by describing the required dependencies.

Dependencies
The experiments are conducted within virtual machines, that use
Linux with the TCP Hollywood kernel extensions and API installed.
VirtualBox and Vagrant are used to manage these virtual machines.
Each experiment run involves streaming Big Buck Bunny over a
simulated network; after this, FFmpeg is used to perform SSIM and
PSNR analysis between the streamed version and a reference copy.
Finally, Python and R are used to analyse and graph the results of
the experiments. The versions that were used in our testing are
shown in brackets; other versions may work.

¥ FFmpeg (3.4.2)
¥ Python (2.7)
¥ R (3.4.3) and packages (rkvo, ggplot2, data.table)
¥ Vagrant (2.0.2)
¥ VirtualBox (5.2.6r120293)
¥ xz (5.2.3)

The experiments use the TCP Hollywood kernel and API. These
are located in the following repositories, and the versions used by
the experiments are speci!ed in the Make!le:

¥ Kernel: https://github.com/lumisota/tcp-hollywood-linux
¥ API layer: https://github.com/lumisota/hollywood-api-video

These versions of the TCP Hollywood kernel and API included
with the source code for the paper, in the data repository version
described above.

For readability, whenever this section refers to TCP Hollywood,
it is these versions that have been used.

Mininet6 (version 2.2.1) is used to simulate the network for each
run. This is installed, and run, within the TCP Hollywood Vagrant
box, and is not required to be installed on the host machine.

Stage 0 (15 minutes)
Where the TCP Hollywood kernel source code has not been provided,
the Make!le will pull a copy of it, using the repository and version
speci!ed. This takes place within an Ubuntu 14.04 virtual machine,
which clones the repository, and compresses it into a tarball; this
tarball is used in the next stage.

By performing this stage inside a Linux virtual machine, rather
than on the host machine, we avoid problems caused by case-
insensitive !le systems. The Linux kernel assumes case-sensitivity,
and there are a number of !les in the same directory whose name
only di#ers in case. These !les would be deleted if the repository
was cloned on a host that had a case-insensitive !le system; macOS,
by default, uses such a !le system.

The data repository package contains the TCP Hollywood source
code, as a tarball, in the stage0 directory.

Stage 1 (3-4 hours)
TCP Hollywood is comprised of a set of modi!cations to the Linux
kernel, and a user-space API layer. Stage 1 involves building a
virtual machine image that has the TCP Hollywood kernel. Vagrant
is used for this process; a clean Ubuntu 14.04 box is downloaded,
upon which the speci!ed version of the TCP Hollywood kernel
(fetched or provided in stage0) is installed.

Inputs.

¥ TCP Hollywood kernel
¥ Ubuntu 14.04 (trusty) Vagrant base box

Outputs.

¥ TCP Hollywood kernel Vagrant box

Stage 2 (15 minutes)
The next stage is to install the TCP Hollywood API within the
Vagrant box. The TCP Hollywood API is packaged in the source
code tarball described above, but if this is not available, the correct
version is fetched from the GitHub repository. This stage includes
installing the modi!ed HTTP client and server used in the experi-
ments. In addition, mininet is installed, for use in simulating the
network required by the experiments.

Inputs.

¥ TCP Hollywood kernel Vagrant box
¥ TCP Hollywood API

Outputs.

¥ TCP Hollywood Vagrant box

Stage 3 (20-25 minutes per experiment)
The third stage involves conducting the experiments themselves,
with a virtual machine (using the TCP Hollywood Vagrant box)
instantiated for each run. The experiments involve streaming Big
Buck Bunny over a network, simulated using Mininet. The network

6http://mininet.org

10

DASHing Towards Hollywood MMSysÕ18, June 12Ð15, 2018, Amsterdam, Netherlands

conditions are speci!ed by network pro!les (listed in the Make!le
asSN_RUNSandVN_RUNS); these are !les that describe the network
conditions (e.g., bandwidth, delay, loss rates). For each pro!le, the
experiment is run both with TCP and TCP Hollywood, to compare
the two. Finally, to produce the graphs in this paper, each run is
repeated. We use 10 repetitions by default; this can be controlled
using theRUN_NUMBERSvariable in the Make!le. With two protocols
(standard TCP and TCP Hollywood), 23 network pro!les, and 10
repetitions, the Make!le provided will perform, by default, 460
experiments.

Each run produces a set of !les: logs from both the client and
server, describing the application-layer activity (e.g., what is sent
or received); a tcpdump taken at the server; and QoE logs (SSIM
and PSNR analysis) that result from comparing the streamed video
to the reference copy.

Inputs.

¥ TCP Hollywood Vagrant box
¥ Big Buck Bunny (as MPEG-DASH chunks)
¥ Big Buck Bunny reference (1080p); ~40GB !le
¥ Network pro!les

Outputs.Each experiment run produces:

¥ Client log!le
¥ Server log!le
¥ Server tcpdump
¥ SSIM log!le
¥ PSNR log!le

Stage 4 (5 minutes)
The previous stage produces output !les for each experiment, giving
application-layer activity, and QoE data. In this stage, these output
!les are aggregated, allowing for analysis and graphing in the next
stage.

Broadly, the experiments fall into two groups: those with static
network conditions, that do not change throughout the stream, and
those with variable network conditions, where parameters, such as
bandwidth and delay, are changed every 30 seconds. The results of
experiments within each group, and for each network pro!le, are
aggregated together.

Inputs.

¥ Stage 3 output !les
¥ Stage 4 Python and R scripts

Outputs.Each group (static or variable) produces (aggregated
by network pro!le):

¥ Aggregated PSNR data
¥ Aggregated SSIM data
¥ Aggregated QoS data (e.g., rebu#ering events)
¥ Aggregated bitrate data

Stage 5 (5 minutes)
In this stage, the processed results !les generated by the previous
stage are graphed.

¥ Stage 4 output !les
¥ Stage 5 R scripts

Outputs.

¥ Figures 3 to 16 inclusive

Stage 6 (1 minute)
With the results of the experiments graphed, the !nal stage is to
build the paper.

¥ Paper TeX and BibTeX !les
¥ Figures (static and those generated in stage 5)

Outputs.

¥ Paper

Discussion
The source code that we have made available, alongside this ap-
pendix, should be su"cient for repeating the experiments conduc-
ted in this paper. However, making the paper reproducible intro-
duces a number of challenges, and encounters various limitations.
We discuss and re$ect on those in this section.

Each evaluation run makes use of a simulated network, run
within a virtual machine. As part of this simulation, random packet
loss is introduced. As this is non-deterministic, the results gener-
ated by building the paper will be di#erent between di#erent builds,
including the published work. Typical approaches to managing
randomness for repeatability are made di"cult by our use of virtual
machines: where ordinarily a pseudo-random number generator
could be used, with a speci!ed seed, our evaluations make use of
the systemÕsrandom number generator. By repeating our measure-
ments a su"cient number of times (the paper, and the code we
provide, speci!es 10 runs), we aim not only to bolster the statistical
signi!cance of our results, but ensure that the trends we discuss
hold true when the measurements are repeated. However, where
we discuss a particular run (e.g., in Section 5.5), it is inevitable that
the text will not match results generated in other builds. It is not
clear how non-determinism should be handled when considering
reproducibility, where pseudo-random number generators cannot
be used.

Our particular testing requirements (i.e., a modi!ed Linux ker-
nel) lend themselves to using virtual machines, and orchestrating
those machines programmatically (e.g., by using Vagrant). This
minimises the dependencies that need to be installed on the host
machine: for example, each run uses Mininet, but this runs within
the virtual machine, rather than on the host machine. However,
this methodology also introduces limitations: our evaluations es-
sentially depend on a particular Linux environment, and packaging
this for reproducibility is non-trivial. While including the TCP Hol-
lywood kernel and API code goes some way towards preventing
decay in the reproducibility of the paper, some dependencies on
external sources remain. For example, several software packages
are installed using package managers; this relies upon the availabil-
ity of the underlying repositories. There exists a trade-o# between
how long the paper can be usefully reproduced using the assets we
provide, and the tractability of identifying and includingall of the
dependencies that exist. Understanding this trade-o# and making
appropriate choices is important if reproducibility is to be improved
more generally.

11

MMSysÕ18, June 12Ð15, 2018, Amsterdam, Netherlands S. Ahsan, S. Mc!istin, C. Perkins, and J. O"

REFERENCES
[1] Andrzej Beben, P Wi%niewski, J Mongay Batalla, and Piotr Krawiec. 2016. ABMA+:

lightweight and e"cient algorithm for HTTP adaptive streaming. InProceedings
of the 7th International Conference on Multimedia Systems. ACM, 2.

[2] D. Bhat, A. Rizk, and M. Zink. 2017. Not so QUIC: A Performance Study of DASH
over QUIC. InProceedings of the International Workshop on Network and Operating
Systems Support for Digital Audio and Video (NOSSDAV). ACM, Taipei, Taiwan,
13Ð18. https://doi.org/10.1145/3083165.3083175

[3] Divyashri Bhat, Amr Rizk, Michael Zink, and Ralf Steinmetz. 2017. Network As-
sisted Content Distribution for Adaptive Bitrate Video Streaming. InProceedings
of the 8th ACM on Multimedia Systems Conference. ACM, 62Ð75.

[4] Nassima Bouzakaria, Cyril Concolato, and Jean Le Feuvre. 2014. Overhead and
performance of low latency live streaming using MPEG-DASH. InInformation,
Intelligence, Systems and Applications, IISA 2014, The 5th International Conference
on. IEEE, 92Ð97.

[5] Alexander Fršmmgen, Amr Rizk, Tobias ErbshŠu§er, Max Weller, Boris Kolde-
hofe, Alejandro Buchmann, and Ralf Steinmetz. 2017. A programming model
for application-de!ned multipath TCP scheduling. InProceedings of the 18th
ACM/IFIP/USENIX Middleware Conference. ACM, 134Ð146.

[6] Tobias Ho§feld, Michael Seufert, Matthias Hirth, Thomas Zinner, Phuoc Tran-Gia,
and Raimund Schatz. 2011. Quanti!cation of YouTube QoE via crowdsourcing.
In Multimedia (ISM), 2011 IEEE International Symposium on. IEEE, 494Ð499.

[7] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark
Watson. 2015. A bu#er-based approach to rate adaptation: Evidence from a large
video streaming service.ACM SIGCOMM Computer Communication Review44, 4
(2015), 187Ð198.

[8] J. Iyengar and M. Thomson. 2017. QUIC: A UDP-Based Multiplexed and Secure
Transport. Work in progress. (Dec. 2017).

[9] Theodoros Karagkioules, Cyril Concolato, Dimitrios Tsilimantos, and Stefan
Valentin. 2017. A comparative case study of HTTP adaptive streaming algorithms
in mobile networks. InProceedings of the 27th Workshop on Network and Operating
Systems Support for Digital Audio and Video. ACM, 1Ð6.

[10] Zhi Li, Xiaoqing Zhu, Joshua Gahm, Rong Pan, Hao Hu, Ali C Begen, and David
Oran. 2014. Probe and adapt: Rate adaptation for HTTP video streaming at scale.
IEEE Journal on Selected Areas in Communications32, 4 (2014), 719Ð733.

[11] Stephen McQuistin, Colin Perkins, and Marwan Fayed. 2016. TCP goes to Holly-
wood. InProceedings of the 26th International Workshop on Network and Operating
Systems Support for Digital Audio and Video. ACM, 5.

[12] Stephen McQuistin, Colin Perkins, and Marwan Fayed. 2016. TCP Hollywood:
An unordered, time-lined, TCP for networked multimedia applications. InIFIP
Networking Conference (IFIP Networking) and Workshops, 2016. IEEE, 422Ð430.

[13] Christopher MŸller, Stefan Lederer, and Christian Timmerer. 2012. An evalu-
ation of dynamic adaptive streaming over HTTP in vehicular environments. In
Proceedings of the 4th Workshop on Mobile Video. ACM, 37Ð42.

[14] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K Sitaraman. 2016. BOLA: near-
optimal bitrate adaptation for online videos. InComputer Communications, IEEE
INFOCOM 2016-The 35th Annual IEEE International Conference on. IEEE, 1Ð9.

[15] Emmanuel Thomas, MO van Deventer, Thomas Stockhammer, Ali C Begen, and
Jeroen Famaey. 2015. Enhancing MPEG DASH performance via server and
network assistance. (2015).

[16] Sheng Wei and Viswanathan Swaminathan. 2014. Low latency live video stream-
ing over HTTP 2.0. InProceedings of Network and Operating System Support on
Digital Audio and Video Workshop. ACM, 37.

[17] Mengbai Xiao, Viswanathan Swaminathan, Sheng Wei, and Songqing Chen. 2016.
Dash2m: Exploring http/2 for internet streaming to mobile devices. InProceedings
of the 2016 ACM on Multimedia Conference. ACM, 22Ð31.

12

