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Abstract—Two major factors affecting mobile network per-
formance are mobility and traffic patterns. Simulations and
analytical-based performance evaluations rely on models to
approximate factors affecting the network. Hence, the under-
standing of mobility and traffic is imperative to the effec-
tive evaluation and efficient design of future mobile networks.
Current models target either mobility or traffic, but do not
capture their interplay. Many trace-based mobility models have
largely used pre-smartphone datasets (e.g., AP-logs), or much
coarser granularity (e.g., cell-towers) traces. This raises questions
regarding the relevance of existing models, and motivates our
study to revisit this area. In this study, we conduct a multi-
dimensional analysis, to quantitatively characterize mobility and
traffic spatio-temporal patterns, for laptops and smartphones,
leading to a detailed integrated mobility-traffic analysis. Our
study is data-driven, as we collect and mine capacious datasets
(with 30TB, 300k devices) that capture all of these dimensions.
The investigation is performed using our systematic (FLAMeS)
framework. Overall, dozens of mobility and traffic features have
been analyzed. The insights and lessons learnt serve as guidelines
and a first step towards future integrated mobility-traffic models.
In addition, our work acts as a stepping-stone towards a richer,
more-realistic suite of mobile test scenarios and benchmarks.

I. INTRODUCTION

Human mobility has been studied extensively and many
models have been derived. The spectrum ranges from simple
synthetic mobility models to complex trace-based models,
capturing different properties with varying degrees of accuracy
[1], [2]. Similarly, network traffic has been studied increas-
ingly for wireless networks: for rather stationary users (as in
WLANs) (e.g., [3], [4]) and potentially mobile users as for
cellular networks (e.g., [5], [6]). Such analyses range from
metrics such as flow count, sizes, and traffic volume to service
usage (e.g., visited web sites, backend services).

Both mobility and network usage, characterize different
aspects of human behavior. In this sense, we have a mobility
plane and a (network) traffic plane. In reality, these two planes
are likely interdependent. Human mobility may be influenced
by network activity; for example, a person slowing down
to read incoming messages. Also, network activity may be
influenced by mobility and location; stationary users may
produce/consume more data than those walking, and people
may use different services in different places [7].

In earlier studies, this interdependence has not been widely
considered, and models for both mobility and network traffic
planes have been developed and evaluated largely in isolation.
For example, when evaluating mobile systems’ performance,

traffic generation generally follows regular patterns, drawn
from common simple distributions (e.g., exponential or uni-
form), while assuming neither transmission nor reception of
data impacts mobility. Simply observing people walking while
staring at (or reacting to) their smartphones suggests, however,
that such interdependencies need to be captured properly.
Understanding the mobility-traffic interplay is imperative to
the effective evaluation and efficient design of future mobile
algorithms ranging from user behavior prediction and caching,
to network load estimation and resource allocation.

In this paper, we take a stab at understanding the intercon-
nection of the mobility and traffic planes. To do this properly,
we need to consider the nature of mobile devices people use:
one class of devices is merely intended for stationary use,
typically while the user is seated—this primarily holds for
laptop computers, dubbed cellos. In contrast, another class—
’on-the-go’ smartphones, which we refer to as flutes—lend
themselves to truly mobile use1. We focus our analysis on
these two classes because they have been around long enough
to have extensive datasets to build upon. We stipulate that the
interconnection of the mobility and traffic is modulated by
the device(s) a mobile user is carrying. Therefore, we follow
two main lines of investigation: we develop a framework to
differentiate between cellos and flutes, and study both the
mobility and traffic patterns for each of those types.

Specifically, the main goal of this paper is to quantitatively
investigate the following questions in-depth: (I) How different
are mobility and traffic characteristics across device types,
time and space? (II) What are the relationships between these
characteristics? (III) Should new models be devised to capture
these differences? And, if so, how?

To answer these questions, a multi-dimensional (compara-
tive) analysis approach is adopted to investigate mobility and
traffic spatio-temporal patterns for flutes and cellos. We drive
our study with capacious datasets (30TB+) that capture all the
above dimensions in a campus society, including over 300k
devices (Sec. IV). A systematic Framework for Large-scale
Analysis of Mobile Societies (FLAMeS) is devised for this
study, that can also be used to analyze other multi-sourced
data in future studies. Our main contributions include:

1) Integrated mobility-traffic analyses (Sec. VII): This study
is the first to quantify the correlations of numerous

1Throughout, we use flutes for smartphones, and cellos for laptops.
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features of mobility and traffic simultaneously. This can
identify gaps in existing mobile networking models, and
reopen the door for future impactful work in this area.

2) Flutes vs. Cellos analysis (Sec. V–VI): The device type
classification presented here, is an important dimension
to understand. This is particularly relevant as new genera-
tions of portable devices are introduced, that are different
than laptops, traditionally considered in earlier studies.

3) Systematic multi-dimensional investigation framework
(Sec. III): FLAMeS provides the scaffolding needed to
process, in multiple dimensions, many features of large
sets of measurements from wireless networks, including
AP-logs and NetFlow traces. This systematic method can
apply to other datasets in future studies.

II. RELATED WORK

To characterize mobility and network usage, existing stud-
ies have covered various aspects, including human mobility,
device variation, and dataset analysis.

Human Mobility: Given its importance in various research
areas, human mobility has received significant attention. We
refer the reader to [1], [2] for surveys of mobility modeling
and analysis. For spatial-temporal patterns, [8] and [9] reveal
the regularity and bounds for predicting human mobility using
cellular logs. A recent study highlighted the importance of
combining different datasets to study various features simul-
taneously [10]. Our observations are similar to [8], [9], which
reaffirms the intrinsic properties of human mobility, despite
differences in granularity and population across datasets. To
advance the understanding of human mobility, we integrated
different datasets to correlate mobility and network traffic.

Device Variation: Usage and traffic patterns of different
device types have been studied from various perspectives
([11], [12], [13], [14], [15], [16]). However, those findings
are based on classifications that rely on either MAC addresses
or HTTP headers solely. The former is rather limited and
the latter may have serious privacy implications and are
often unavailable. In [17], authors use packet-level traces
from 10 phones and application-level monitoring from 33
Android devices to analyze smartphone traffic. Although this
allowed fine-grained measurements, the approach is invasive
and limited in scalability, leading to small sample sizes and
restricted conclusions. They also do not compare the traffic of
smartphones with that of “stop-to-use” wireless devices (i.e.
cellos) nor do they measure spatial metrics. The study in [18]
analyzes 32k users on campus, and focuses on multi-device
usage. It notes differences between laptops and smartphones in
packets, content, and time of usage. That work targets device
usage patterns and security, while we study mobility and
wireless traffic correlations. In our method, the combination of
MAC and NetFlow allowed us to classify majority of observed
devices while preserving users’ privacy.

Dataset Analysis: A recent work on WLAN traces [19]
revealed surprising patterns on increases of long-term mobility
entropy by age, and the impact of academic majors on stu-
dents’ long-term mobility entropy. The authors of [7] investi-

gated correlations and characteristics of web domains accessed
by users and their locations, based on NetFlow and DHCP logs
from a university campus in 2004. They propose a simulation
paradigm with data-driven parameters, producing realistic sce-
narios for simulations. However, that study uses data from
pre-smartphone era and does not distinguish between device
types. It also does not analyze the relation between mobility
and traffic. On both WiFi and cellular networks, the authors
of [20] performed an in-depth study on smartphone traffic,
highlighting the benefits and limitations of using MPTCP.
Distributions of flow inter-arrival time (IAT) and arrival rate
at APs of “static” flows were analyzed (e.g., Exp, Weibull,
Pareto, Lognormal) in [21]. Lognormal was found to best fit
the flow sizes, while at small time scales (i.e. hourly), IAT was
best described by Weibull but parameters vary from hour to
hour. We analyze flows on a much larger scale, newer dataset
including smartphones, and identify Lognormal distribution as
the best fit for flow sizes, and beta as best for IAT, regardless of
device type. The study in [22] analyzed ISP traces with 9600
cellular towers and 150K users in Shanghai, and mapped timed
traffic patterns to urban regions. It provided insight into mobile
traffic patterns across time, location and frequency. This work
is complementary to ours, as we provide a much finer scope
analyzing campus WLAN traces.

III. SYSTEMATIC MULTI-DIMENSIONAL ANALYSIS

To methodically analyze statistical characteristics and cor-
relations in multiple dimensions, we introduce the FLAMeS
framework (Fig. 1). The main components include: I. Data
collection and pre-processing, II. Flutes vs. cellos mobility and
traffic analysis, and III. Integrated mobility-traffic analysis.

I.a I.b 

I.c 

II 

III 

Integrated	  
Mobility-‐Traffic	  	  

Analysis	  

Future	  Mixture	  
Models	  and	  
Synthesis	  

Fig. 1: FLAMeS system overview.
The two main purposes of this work are to understand and

quantify the gaps between flutes and cellos, and the inter-
action between the mobility and traffic dimensions. Individual
mobility and traffic analyses for flutes and cellos are conducted
in Sections V and VI, respectively, with detailed reporting for
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spatio-temporal features showing significant gaps. In Sec. VII,
the most important mobility and traffic features are identified
and their correlation quantified.

IV. EXPERIMENTAL SETUP AND DATASETS

We drive our framework with large-scale datasets from
multiple sources, capturing the mobility and traffic features
in different dimensions. In this section, we introduce the two
data sets and their preprocessing, and present the device type
classification into flutes and cellos.

The input datasets in this study are specifically chosen to
capture: 1. location, mobility and network traffic information,
2. smartphone and laptop devices, 3. spatio-temporal features,
and 4. scale in number of devices and records. The total size
is >30TB, consisting of two main parts: WLAN Access Point
(AP) logs, and Netflow records (details in Tables I, II). 2

A. WLAN AP logs

These logs are collected from 1760 APs in 138 buildings
over 479 days on a university campus, and contain association
and authentication events from 316k devices in 2011-2012. It
contains over 555M records, with each record including the
device’s MAC and assigned IP addresses, the associated AP
and a timestamp. Locations of the APs are approximated by
the building locations where they are installed, i.e., (longitude,
latitude) of Google Maps API. To validate this, we fetched
8000 mapped APs around the campus area from a crowd-
sourced service, wigle.net. For the 130 matched APs in 42%
of buildings (i.e., 58 bldgs), all were less than 200m from their
mapped location; an error of less than 1.5% of the campus
area. This is very reasonable for our study purposes.

B. NetFlow logs

Over 76 billion records of NetFlow traces were collected
from the same network, over 25 days in April 2012. A flow
is defined as a consecutive sequence of packets with the same
transport protocol, source/destination IP and port number, as
identified by the collecting gateway router. An example of
major Netflow data fields is presented in Table II.

The NetFlow records are matched with the wireless associa-
tions (from the AP logs) using the dynamic MAC-to-IP address
mapping from the DHCP logs. We refer to the result as CORE
dataset (Table I). They are also augmented with location and
website information using reverse DNS (rDNS)3.

TABLE I: Summary of datasets. B=billion.

# Records Traffic Vol. (TB) # MAC
DHCP CORE TCP UDP WLAN CORE

Flutes 412.0 M 2.13 B 56.18 4.50 186.0 K 50.3 K
Cellos 101.0 M 4.20 B 73.85 12.90 93.2 K 27.1 K
Total 557.5 M 6.53 B 134.39 17.61 316.0 K 80.0 K

2Data collected using proper procedures. It does not contain PII.
3Dataset merging and system details in appendix I & II [23].

C. Device type classification

To classify devices into flutes and cellos, we utilize sev-
eral observations and heuristics. To start, note that a device
manufacturer (with OUI) can be identified based on the first
3 octets of the MAC address4. Most manufacturers produce
one type of device (either laptop or phone), but some produce
both (e.g., Apple). In the latter case, OUI used for one device
type is not used for another. We conducted a survey to help
classify 30 MAC prefixes accurately. Using OUI and survey
information, we identify and label 46% of the total devices
(90k cellos and 56k flutes). Then, from the NetFlow logs
of these labeled devices, we observe over 3k devices (92%
of which are flutes) contacting admob.com; an ad platform
serving mainly smartphones and tablets (i.e. flutes). This
enables further classification of the remaining MAC addresses.
Finally, we apply the following heuristic to the dataset: (1)
obtain all OUIs (MAC prefix) that contacted admob.com; (2)
if it is unlabeled, mark it as a flute. Overall, over 270k devices
were labeled (180k as flutes), covering 86% of the devices in
AP logs and 97% in NetFlow traces, a reasonable coverage
for our purposes. Out of ≈ 80k devices in the NetFlow logs,
≈ 50K are flutes and ≈ 27K cellos.

Fig. 2: Time series for 25 days of combined AP-NetFlow Core traces

Fig. 2 shows the temporal plot for the combined traces over
25 days, after device classification. Throughout, the number
of flows and total traffic volume is clearly higher for cellos,
even with an overall higher number of flutes connected. Also
note the device activities in a diurnal and weekly cycles, with
the peaks occurring during weekdays, as expected. Wed, 25th,
was the last day of classes, explaining the decline in network
activity afterwards. This plot motivates our analyses for flutes
vs cellos, over weekends vs weekdays, in this study.

V. MOBILITY ANALYSIS

This section covers the temporal and spatial mobility analy-
ses. For all metrics, unless otherwise noted, we investigate 479
days. A summary of studied metrics and their most significant
statistical values are presented in Tab. III along with mean
and median ratios for comparison. From that list, we further

4MAC address randomization does not affect our association trace.
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TABLE II: NetFlow (top) and AP logs/DHCP (bottom) sample data

Start time Finish time Duration Source IP Destination IP Protocol Source port Destination port Packet count Flow size
1334332274.912 1334332276.576 1.664 173.194.37.7 10.15.225.126 TCP 80 60482 157 217708

User IP User MAC AP name AP MAC Lease begin time Lease end time
10.130.90.3 00:11:22:33:44:55 b422r143-win-1 00:1d:e5:8f:1b:30 1333238737 1333238741

TABLE III: General results for mobility. Upper values are for week-
days and lower ones for weekends (in red color). LJM: maximum
jump [m]; DIA: diameter [m]; TJM: total trajectory length [m];
GYR: radius of gyration [m]; BLD: no. uniq. buildings; APC: access
point count; PDT: time spent at preferred building [minutes]; DLT:
total session time at each building.

Flutes (F) Cellos (C) Ratio (C/F)
µ mdn σ µ mdn σ µ mdn

LJM 435 296 813 178 1 624 0.409 0.003
350 168 683 97 1 312 0.277 0.006

DIA 549 411 874 195 1 642 0.355 0.002
425 179 739 107 1 338 0.252 0.006

TJM 1582 707 2336 378 1 1444 0.239 0.001
1036 279 1793 252 1 1766 0.243 0.004

GYR 396 290 2725 321 191 3265 1.102 1.019
330 248 1368 178 65.1 1800 1.247 1.4

BLD 5.4 3 5.6 1.8 1 2.1 0.811 0.659
2.8 2 4.1 1.5 1 1.8 0.539 0.262

APC 11.8 6 13.3 3.7 2 4.8 0.333 0.333
7.2 4 8.8 3 2 3.8 0.536 0.5

PDT 225 161 219 248 164 254 0.314 0.333
223 135 272 278 189 292 0.417 0.5

DTL 316 235 302 316 217 305 1 0.92
326 247 308 316 221 309 0.97 0.89

investigate in this section those metrics that show the most
interesting or non-trivial differences between flutes and cellos.
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Fig. 3: PDF Session start over time of the day.

A. Session start probability

A session is defined as the period between WLAN associ-
ations. The distributions of session start times across the day
for four building categories are depicted in Fig. 3. The start
times of the Sessions match the periodic beginning of classes,
but mainly in Academic buildings, where users move mostly
at the start and end of classes. In these places, activity drops
sharply for cellos at 5pm, with considerable flutes activity until
8pm. For Social and Library buildings, the probability of new

sessions remains higher for a few more hours into the evening,
and the times users tend to leave are more spread out. We
do not make similar observation during weekends, which is
expected when the day is, unlike weekdays, not governed by a
class schedule. For most visitors, the session start distributions
show a smooth shape and no significant differences between
device types (omitted for brevity).

B. Radius of gyration

This metric, GY R, captures the size of the geospatial dis-
persion of a device’s movements, denoted by rg and computed
as rg = 1

N

∑N
k=1 ( ~rk − ~rs)2, where ~r1, ..., ~rN are positional

vectors of a device and ~rs is its center of gravity.
Grouping devices by their rg after six months of obser-

vation, we look at its evolution since the first time they are
observed. Unsurprisingly (cf. [8]), after an initial transient
period of about one week, this value stabilizes even across
different semesters (not shown).

We split the traces into weekdays and weekends, presenting
the distributions in Fig. 4a. For cellos, we notice a substantial
reduction in their overall mobility whereas, for flutes, this
difference is not so pronounced. This might be due to students
having fewer activities on weekends, a tendency to study at a
single building like a library, or just not carry their cellos; we
will revisit this aspect in Sec. VII. Flutes, being “always-on”
devices, are able to capture movements at pass-by locations,
dining areas, and bus stops and thus are better suited to capture
the fine-granular mobility of their users than cellos.

Despite the 8.1km2 area of the campus (approximate radius
of 1.42km), buildings with related fields of study (e.g. Fine
Arts) are fairly clustered. Computing the distance between the
k-nearest neighboring buildings, for k = 22 and k = 9 (average
number of visited buildings for flutes and cellos) the median
distances are 295m and 172m, respectively. Due to their focus
on classes, attending students have limited area of activity on
weekdays, which explains the observed radius of gyration.

We also evaluated: (1) diameter DIA, the longest distance
between any pair of ~rk points; (2) max jump LJM , the longest
distance between a pair of consecutive ~rk points; and (3) total
trajectory length TJM , the sum of all trips made by a device.
The distributions of these metrics are similar to Radius of
Gyration and therefore not shown. Table III summarizes the
most significant statistical values for these metrics.

C. Visitation preferences and interests

We count the number of unique buildings visited by a user,
BLD, and define a preferred building as the location where a
device has spent most of its time in a given day, measured in
minutes and referred to as PDT . We approximate the latter by
the formula tb =

∑Nb
k=1 Sk, where tb is the time spent, Nb the

total number of sessions and S1...SN the time duration of each
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Fig. 4: (a) Radius of gyration (rg for the device types). (b) Visited
locations S (t). Vertical lines at 7, 120 and 240 days.

session at a building b, here referred as DLT . Interestingly,
cellos have slightly longer stays but both have medians around
2:40 hours. The similarity of the distributions, combined with
a lower number of visited locations indicate that cellos are
used mostly when users remain longer periods at places.

Fig. 4b highlights the differences between flutes and cellos
on the required time t to visit S(t) locations. After an initial
exploration period of one week the rates of new visits change
similarly for both device types, and new exploration rates show
up at 120 and 240 days. These could be explained by the
weekly schedules of the university as well as the usual length
of a lecture term (≈ 4 months).

Fig. 5: Zipf’s plot on L visited access points.

We also consider the number of unique APs a device
associates with, APC, which provides a finer spatial resolution
than the building level. Furthermore, the probability of finding
a device at its L-th most visited access point is shown in Fig. 5.
When taking buildings as aggregating points for location, the
values become L−1.36 for cellos and L−1.16 for flutes. These
approximations validate previous work on human mobility [8],
yet highlight differences between device types.

D. Sessions per building

To study AP utilization over time, we look at the session
duration distribution, or session duration dispersal kernel P(t),
depicted in Fig. 6. The smaller inner plots represent the same
metric, limited to four types of buildings.

We noted that the five-minute spikes correspond to default
idle-timeout for the used WiFi routers. On the other hand,
the knees at 1 and 2 hours could be explained by the typical
duration of classes. They are only noticeable at Academic
buildings (shown inside inner plots) and during weekdays (not

shown). This leads us to conclude that despite the differences
in distributions of device types, flutes and cellos present
certain similarities in their usage, such as during classes. To
differentiate pass-by access points, we examine all sequences
of three unique APs where all session durations are lower
than 5 minutes (typical idle-timeout). We observed these APs
clustered at buildings that also had major bus stops nearby.
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Fig. 6: Probability P (t) of session duration t.

VI. TRAFFIC ANALYSIS

In this section, we compare different traffic characteristics,
across device types, time and space. For this purpose, we start
with statistical characterization of individual flute and cello
flows. Next, we measure how these flows, put together, affect
the network patterns across APs and buildings. Finally, user
behavior is analyzed by monitoring weekly cycles, data rates,
and active durations. By quantifying temporal and spatial
variations of traffic across device types, we make a case for
new models to capture such variations based on the most
relevant attributes. Table IV summarizes the results.
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Fig. 7: Distribution plots
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A. Flow-level statistical characterization

We compare the following distributions using maximum
likelihood estimation (MLE) and maximizing goodness-of-fit
estimation: Gaussian, Exponential, Gamma, Weibull, Logistic,
Beta and Lognormal5.

1) Size: Flow size is the sum of bytes for all packets within
a single flow. On weekdays, average size of individual flute
flows is > 2x larger than cello flows (2070 vs. 822 bytes),
while median is > 4x larger (678 vs. 142 bytes). There are
no significant changes on weekends.

The average packet size within a single flow also provides
insight into packet-level behavior of services on mobile de-
vices. We notice that the average packet size of flute flows
is ≈50% larger than that of cellos (212 vs 144 bytes on
weekdays, 205 vs 142 on weekends). Comparing weekdays
and weekends, median size of flute packets drops on weekends
whereas it remains the same for cellos. In fact, comparing cello
flows on weekdays and weekends shows no significant differ-
ence in terms of average packet size (p-value> .05). Despite
smaller flows, the average cello generates 2.7 times traffic as
an average flute because the average cello is responsible for 3.7
as many flows as a flute. Analyzing distributions of flow size
and average packet size in our datasets shows that Lognormal
distribution is the best fit, with varying parameters for each
device type (More details in Sec. IV of [23] for details).

2) Packets: This metric is the count of packets within each
flow. The mean and median packet counts per flow are 7.06
and 5 in flutes and 3.64 and 2 in cellos, during weekdays.
The means drop slightly on weekends. Packet counts per
flow match the Lognormal distribution well for flows of both
device types. The average flute flow is bigger in size and
has more packets (with higher variance) but there are fewer
flows coming from these devices. This is analyzed further for
TCP/UDP flows (Sec. VI-A5).

3) Runtime: Flow runtime is the period of time the flow was
active (equal to a flow’s finishtime−starttime). Flute flows
have a mean and median of 1868ms and 128ms respectively
on weekdays, while these numbers are 1639ms and 64ms
for cellos. Both device types show increase in means during
weekends (flutes by 204 and cellos by 164), indicating that
although there are fewer devices online during weekends, they
are more active. The low medians in either group corresponds
to many short-lived flows with few packets, showing little
variation across device type, time or space.

4) Inter-arrival times (IAT): Median of the flow IAT6 at
APs is 6ms for cello flows and 4ms in case of flutes, on
weekdays (similar on weekends), which suggests that the
majority of APs handle flows from either device type at nearly
the same rate. However, average IAT is ≈ 143ms for flute
and ≈ 78ms for cello flows, as there are more cellos with
very high rate of flows. Flow IAT in our datasets matches a
beta distribution well (See appendix IV in [23]) with a very

5For distribution comparison, significance threshold p−value is set at .05.
6IAT is important in simulation and modeling of networking protocols,

traffic classification [24], congestion control and traffic performance [25]. Our
flow-level IAT analysis can also be used for measuring delay and jitter effects.

high estimated kurtosis and skewness (estimated at 58 & 6.9
respectively). The high estimated kurtosis illustrates that there
are infrequent extreme values, which explains the observed
highly elevated standard deviation of IAT. Higher average
IAT of flutes, combined with the higher standard deviation
compared to cellos (596 vs 284), shows that flutes face more
extreme periods of inactivity, which can be caused by higher
mobility and packet loss.

5) Protocols: TCP accounts for 78.5% of cello flows
(84.6% of bytes) and 98.2% of flute flows (91.6% of bytes).
The higher presence of UDP in cellos is reasonable, consid-
ering that UDP applications (e.g., multi-player games, video
conferencing and file sharing) are more likely to be used with
cellos. Comparing the number of packets in flows, in case of
TCP, the average number of packets in cello flows is almost
half that of a flute flow (4.6 vs 8.8), and the average packet size
of flutes is 22% higher than that of cellos. This supports our
earlier observation regarding the bigger flow sizes of flutes.
However, for UDP, the two device types are similar in terms
of average packet count per flow (2.5 for cellos & 2.87 for
flutes) and average packet size (119 for both). This conforms
to low latency requirements of many UDP applications.

Given these differences, traffic classification using machine
learning [26] could benefit from considering device types to
train models. We investigate this in Sec. VII-B.

After establishing the similarities and differences of flows,
the next step is to evaluate whether the individual variations
in flows lead to different aggregate traffic behaviors from
viewpoint of the network.

B. Network-centric (spatial) analysis

We examined the load of APs in all buildings on a daily
basis to provide insight into differences from the viewpoint of
the network. For each AP, we calculate flow metrics for every
weekday and weekend.We focus our analysis on the first three
weeks of NetFlow traces to avoid significant user behavior
change during exams period, as already shown in Fig. 2.

First, we measure the daily packet and flow arrival rates at
APs. The median flow rates are 42k and 20k per weekday for
cellos and flutes respectively (7.5k and 0.5k on weekends). The
average number of cello packets processed daily by APs is 1.6
times higher than flute packets (Fig. 7a). Each AP handles,
on average during weekdays, ≈ 27 cello packets per second
and ≈ 17 flute packets per second, dropping to ≈ 13.5 and
≈ 6.25 on weekends. This indicates that, during the weekends,
a high percentage of access points are not utilized, with 60%
of APs seeing no flute flows and 70% receiving no cello flows.
However, at least one AP in >80% of buildings sees traffic,
supporting observations of less mobility during weekends.

Next, we look at traffic volume. On average weekdays, 90%
of APs handle < 5GB of cello traffic (2.5GB on weekends),
whereas the same percentage handles < 3GB of flute traffic
(1GB on weekends) (Fig. 7b). Flutes are more mobile, visit a
higher number of unique APs and have bigger flow sizes but
they are still responsible for less overall network load.
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Thus, the individual differences of flute and cello flows
result in heterogeneous aggregate traffic patterns in time
(different days) and space (APs at different buildings)7. With
that established, in order to take steps towards modeling and
simulation, we also need to analyze the behavior of users.

C. User behavior (temporal) analysis

Here, we measure traffic patterns from a user-centric per-
spective. We identified gaps in diurnal and weekly cycles (Fig.
2) as well as traffic flow features of individual users including
data consumption, packet rates, and network activity duration.

1) Data consumption: Fig. 7c shows daily data consump-
tion, with 90% of cellos consuming < 700MB and 90% of
flutes using < 200M on weekdays. Surprisingly, for cellos on
campus during weekends, average data consumption is even
higher whereas data consumption of flutes drops sharply.

2) Packet rate: On weekdays, cellos on average generate
≈318K packets, while flutes only average ≈84K packets
per day. On weekends, the few on-campus cellos see greatly
increased number of packets, with an average daily packet rate
of ≈ 495K. Weekend flutes also have a modestly increased
packet count, with an average of ≈ 96K flows.

3) Active duration: Total active time of devices serves well
to demonstrate the differences between time spent online by
users of different device types. We rely on NetFlow to measure
’active’ time instead of AP association time. This allows us to
distinguish user’s idle presence in the network from its activity
periods. Cellos have 4x average active time compared to flutes
in our traces (≈ 81 vs ≈ 21 min on weekdays, ≈ 97 vs ≈ 17
min on weekends). Overall, 90% of cellos are active for <3.5h
and 90% of flutes are active for <1h (Fig. 7d). As evident in
various metrics, the cellos appearing on weekends are more
active than the average cello on weekdays.

Overall, the data consumption of flutes seems to be more
bursty in nature, with bigger flows and lower active duration.
This could be due to more intermittent usage of flutes and
also bundling of network requests to save battery on these
devices. In addition, there are fewer devices on campus during
weekends, but those remaining devices are more active and
consume more data than average.

VII. INTEGRATED MOBILITY-TRAFFIC ANALYSIS

We study the relation between mobility and network traffic
features, examine whether their fusion provides a case for the
necessity of integrated mobility-traffic models, and introduce
steps towards such models (Sec. VII-B).

A. Feature engineering

To simplify analysis and interpretation, and reduce di-
mensionality, we identify the most important features. First,
we study the relationships among variables from mobility
and traffic dimensions separately. Then, from this subset of
combined features, we investigate whether clusters of user
devices appear in the dataset. For this, we use correlation
feature selection (CFS [27]), to obtain uncorrelated features,

7A more in-depth analysis is presented in appendix IV [23].

TABLE IV: Traffic features used for integrated mobility-traffic anal-
ysis (per device, per day; see Fig. 8 for abbreviations). Upper values
are for weekdays and lower ones for weekends (in red).

Flutes (F) Cellos (C) Ratio (C/F)
µ mdn σ µ mdn σ µ mdn

TBY
[MB]

96.77 11.47 194.52 373.08 144.68 554.54 3.85 12.61
80.96 0.86 195.15 448.87 180.23 623.86 5.54 209.56

ABY 5.48 0.74 14.02 15.67 7.34 25.81 2.85 9.91
4.54 0.15 14.16 18.06 8.34 28.71 3.97 55.6

SBY 10.56 1.57 23.76 30.59 13.77 49.82 2.89 8.77
8.09 0.13 21.48 33.21 15.42 53.39 4.10 118.61

TAT 1,330 388.6 2,517 5,123 3,003 6,444 3.85 7.73
1,059 90.89 2,497 5,883 3,861 6,934 5.55 42.48

AAT 63.14 27.97 86.69 188.26 166.93 138.70 2.98 5.96
50.60 12.98 85.27 206.89 184.17 156.53 4.08 14.18

TFC
[K]

7.2 1.7 15.61 33.5 17.1 60.10 4.65 10.05
5.7 0.3 15.01 38.5 20.6 88.52 6.75 68.66

SFC 515.6 177.3 907.7 1,640 1,181 2,081 3.18 6.66
361.05 30.18 796.6 1,673 1,215 2,098 4.63 40.27

RUB 0.05 0.00 0.19 0.07 0.00 0.22 1.4 N/A
0.06 0.00 0.22 0.08 0.00 0.23 1.33 N/A

RUF 0.07 0.00 0.18 0.12 0.02 0.22 1.71 N/A
0.09 0.00 0.22 0.13 0.02 0.24 1.44 N/A

AIT 3.36 2.24 3.59 3.40 2.45 3.51 1.01 1.09
2.95 1.74 3.60 3.18 2.27 3.39 1.07 1.3

SIT 5.22 3.44 5.50 5.14 3.18 5.28 0.98 0.92
4.09 1.98 5.06 4.72 2.79 4.96 1.15 1.41

but highly correlated to the classification. Finally, we quantify
correlations between mobility and traffic metrics (See abbre-
viations in Fig. 8). Pearson correlation is shown in the figures.

1) Mobility: The CFS algorithm was run on 8 features (in
Sec. V), and kept only 5 (to be used in the cross-dimension
analysis). Fig. 8a visualizes the linear dependence between
mobility features, comparing flutes and cellos on weekdays
and weekends. Close inspection reveals temporal correlation
relationships. For example, for cellos on weekdays, there is
a strong correlation (0.96) between preferred building time
(PDT) and time of network association (DLT), but weak cor-
relation (0.1) on weekends, suggesting that most of weekend
online time is spent at preferred buildings (e.g., libraries).

2) Traffic: We extract statistical measures for traffic metrics
(Sec. VI) per device per day. The CFS algorithm was run on
19 features, reducing them to 11. A summary of these metrics
is provided in Table IV. The correlations are depicted in Fig.
8b. The analysis shows us that average number of packets
and bytes are positively correlated, but negatively correlated
with variance of bytes and uncorrelated with IAT. Average
IAT (AIT) seems to be mostly independent from other traffic
features, but as AIT increases, its standard deviation (SIT)
also greatly increases which could be due to device mobility;
bearing further investigation on traffic-mobility interactions.
Interestingly, active time is weakly correlated with number of
flows and packets, which shows that users who remain online
longer are not necessarily consuming traffic at a high rate.
Examining weekdays and weekends, correlation trends among
traffic features remain similar for either device type.

3) Cross-dimension: Studying correlations across mobility
and traffic dimensions, based on subsets of features selected
by CFS, is a solid step towards an integrated mobility-traffic
model. Results are presented in Fig. 9. We find that as the num-
bers of unique APs/buildings visited (APC, BLD) increase,
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weekend	  

weekday	  
flutes	   cellos	   Abbr. Description

TBY Total flow bytes
ABY Avg. flow bytes
SBY Std. flow bytes
TAT Total active time
AAT Avg. active time
TFC Total flow count
SFC Std. flow counts
RUB UDP bytes / total

bytes
RUF UDP flows / total

flows
AIT Avg. IAT
SIT Std. IAT

Abbr. Description
APC AP Count (unique)
PDT Preferred building

∆t
TJM Total (sum) jumps
DIA Diameter of mobility
DLT Delta time (time of

network association)
(a) Mobility (b) Traffic

Fig. 8: Correlation plots for (a) mobility and (b) traffic features. Each cell’s left half is for flutes and right half is for cellos, the upper right
triangle is for weekdays and the lower left for weekends.

Fig. 9: Correlation plots of mobility vs. traffic on weekdays (top) vs.
weekends (bottom) for flutes (left) and cellos (right).

the average active time (AAT), and total and std. of flow
counts (TFC and SFC) decrease markedly (significant negative
correlation). Surprisingly, there is no noticeable change in total
traffic consumed with change in APC, suggesting bundling
of more packets in flute flows. (Similar correlation between
mobility diameter and the above traffic features) Average IAT
(AIT) of flutes also rises slightly as mobility metrics decrease;
for cellos this correlation is almost nonexistent. This reinforces
our “stop-to-use” categorization; cellos are movable but are
not active in transit. To sum, flutes score high on mobility
metrics, have an overall lower flow count and network traffic
but produce bigger flows on average. For cellos, on weekends
the more time spent at preferred buildings the higher the total
active time (TAT) and flow counts; this effect exists to a lesser
degree for flutes. On weekdays, such correlation does not exist.

B. Steps towards modeling

Here we present our steps towards an integrated mobility-
traffic model, with various applications in simulation and pro-
tocol design. We utilize daily mobility and traffic features of
users during a week. First, we examine how different mobility
and traffic features are for flutes and cellos using machine
learning. Second, we investigate whether natural convex clus-
ters of users appear in the dataset. These steps verify that the

differences of mobility and traffic characteristics across device
types are significant. We also find that combining mobility
and traffic makes this distinction even more clear. Finally,
mixture models are used to model and synthesize simulated
data points of each device type, finding that the accuracy the
mixture model increases when trained on combined features.

1) Supervised classification: Having shown significant dif-
ferences throughout this study, we used support vector ma-
chines (SVM) on different subsets of features to examine the
feasibility of device type inference as well as the relationship
between mobility and traffic characteristics. These sets include
mobility and traffic features separately, then combined, and
then combined with weekend/weekday labels. Using solely mo-
bility features achieves ≈65% accuracy, while traffic features
alone, obtains ≈79% accuracy. Using all mobility and traffic
variables combined, the trained model achieves ≈81% accu-
racy. Then, as the combined feature set is extended to include
weekdays and weekends independently, accuracy increases to
≈86%. This suggests that users’ behavior (both flutes and
cellos) is more distinguishable when looking at combined
mobility and traffic features; especially when temporal features
such as weekdays are considered separately from weekends.
We note that such behavior gaps are not the same for both
device types and a model should to take that into account.

2) Unsupervised clustering: To investigate natural convex
clusters, we used K-means algorithm. Using mobility features
only, the best mean silhouette coefficient is achieved on k=2
and 4. However, cluster sizes are highly skewed and at k=2, ≈
60% of devices are correctly clustered. Traffic features alone,
at k=2, results in ≈ 81.2% accuracy. Combining mobility and
traffic, increases the accuracy to ≈ 81.5%. While some flutes
and cellos are similar in terms of mobility and traffic, the
clusters of the combined features clearly illustrate two distinct
modes (especially in traffic) and the high homogeneity of the
clusters hints at disjoint sets of behaviors in mobility and
traffic dimensions, governed by the device type.
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3) Mixture model: To take a step towards synthesis of traces
based on our datasets, we trained Gaussian mixture models
(GMM) on combined mobility and traffic features. From
the combined model (CM ), we acquired simulated samples.
We used Kolmogorov-Smirnov (KS) statistic to compare the
simulated samples with the real data and found that CM is
able to capture the behaviors of each device type. (Average
KS statistic of features is ≈ 0.15 for flutes and ≈ 0.14
for cellos. More details in appendix V [23].) Importantly,
the combined model produces samples whose traffic features
match the original data better, compared with training a GMM
on traffic features alone (based on KS statistic), hinting at
a key relationship between mobility and traffic. However,
comparing mobility features of CM with a GMM trained on
mobility features alone shows no improvement.

Overall, this suggests that there is significant potential for an
integrated mobility-traffic model that captures the differences
and relationships of features, across device types, time and
space. We leave detailed comparison of combined modeling
with separate modeling of mobility and traffic for future work.

VIII. CONCLUSION

In this study, we mine large-scale WLAN and NetFlow logs
from a campus to answer: (I) How different are mobility and
traffic characteristics across device types, time and space? (II)
What are the relationships between these characteristics? (III)
Should new models be devised to capture these differences?
And, if so, how? We build FLAMeS, a framework for sys-
tematic processing and analysis of the datasets. Using MAC
address survey, OUI matching and web domain analysis, we
categorized devices: flutes (“on-the-go”) and cellos (“stop-
to-use”). We then study a multitude of mobility and traffic
metrics, comparing flutes and cellos across time and space.
On average, flutes visit twice as many APs as cellos, while
cellos generate ≈2x more flows. However, flute flows are
2.5x larger in size, with ≈2x the number of packets. The
best fit distribution for location preference is Zipfian, for
flow/packet sizes is Lognormal, and for flow IAT at APs
is beta. Furthermore, flute traffic drops sharply on weekends
whereas many cellos remain active. Across mobility and traffic
dimensions, we spot a negative correlation for flutes between
mobility and flow duration but negligible correlation with
traffic size; for cellos, this effect is less pronounced. We
find a negative correlation with APs visited and active time,
particularly for flutes. However, no correlation exists between
APs visited and traffic for cellos. We quantified correlations
across both mobility and traffic. Finally, we applied machine
learning and trained a mixture model to synthesize data points
and verified that the combined mobility-traffic features capture
the differences in metrics better than either mobility or traffic
separately. Many of our findings are not captured by today’s
models, and they provide insightful guidelines for the design
of evaluation frameworks and simulations models. Hence, this
study answered the questions posed, introduced a strong case
for newer models, and provided our first step towards a future
integrated mobility-traffic model.
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