
Real-time Audio-Visual Media Transport over QUIC
Colin Perkins

University of Glasgow
csp@csperkins.org

Jörg Ott
Technische Universität München | callstats.io

ott@in.tum.de

ABSTRACT
We consider the problem of how to transport low-latency, inter-
active, real-time traffic over QUIC. This is needed to support ap-
plications like WebRTC, but difficult to support due to the reliable,
unframed, nature of QUIC streams. We review the needs of low-
latency real-time applications and how they have been supported
in previous protocols, then propose a minimal set of extensions
to QUIC to provide such support. Compared to a raw datagram
service, our extensions provide meaningful support for partially
reliable and real-time flows, in a backwards compatible manner.

CCS CONCEPTS
• Information systems→Multimedia streaming; •Networks
→ Transport protocols;

KEYWORDS
QUIC, RTP, Video Streaming, Interactive Conferencing

ACM Reference Format:
Colin Perkins and Jörg Ott. 2018. Real-time Audio-Visual Media Transport
over QUIC. In Workshop on the Evolution, Performance, and Interoperability
of QUIC (EPIQ’18), December 4, 2018, Heraklion, Greece. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3284850.3284856

1 INTRODUCTION
Real-time multimedia, in its various forms, comprises the majority
(>70%) of traffic on the Internet [7]. The transport protocol used to
deliver this traffic varies depending on the application and its use
cases. Interactive applications will typically use RTP [33] running
over UDP, since they have strict latency bounds and require timeli-
ness rather than fully reliable delivery. Streaming applications, on
the other hand, have more relaxed latency bounds and so generally
make use of HTTP adaptive streaming, e.g., MPEG DASH [36],
running over TCP, trading-off latency for ease of deployment via
commodity CDNs.

As QUIC matures, interest is growing in whether it can effect-
ively deliver some, or all, of this multimedia traffic, to replace or
augment the existing transport protocols. Since QUIC is designed
as a transport for HTTP/2, there are obvious ways for it to carry
HTTP adaptive streaming traffic. The mapping of interactive traffic,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EPIQ’18, December 4, 2018, Heraklion, Greece
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6082-1/18/12. . . $15.00
https://doi.org/10.1145/3284850.3284856

and RTP, onto QUIC is less clear, however, since there are some
significant semantic mismatches between the two protocols.

We explore the issue of how best to transport real-time audio-
visual media over QUIC. We first review the semantics of RTP and
DASH, the expectations they have on behaviour of the underly-
ing transport, and the implications of their different use cases for
the transport (§2). Building on this, and our experiences with the
standardisation of RTP, we discuss how best to deliver interactive
media flows over QUIC (§3), and then, based upon a brief analysis
of media transport requirements (§4), discuss how QUIC and RTP
might co-evolve to better suit the needs of future real-time media
applications, both interactive and non-interactive (§5).

2 REAL-TIME MEDIA IN THE INTERNET
The IP layer provides a best effort packet delivery service. The
transport layers on this best effort network, and provides services
like sequencing, timing, reliability, and congestion control. Explicit
congestion notification (ECN) and enhanced QoS for multimedia
traffic are deployed in some parts of the network, but their presence
cannot be relied upon.

Real-time audio-visual applications have historically used trans-
port protocols that favour timeliness over reliability. The IETF
standard in this category is RTP [33]. This is widely deployed in
voice-over-IP and video conferencing systems, using H.323 [39],
SIP [32], or WebRTC [16] signalling. RTP typically layers on UDP,
accepting its unreliable but timely packet delivery, and adding an
additional header that provides a sequence number and timestamp,
payload type, and source identifier. Extensions provide partial re-
liability via FEC [21, 29] or retransmission [25, 31], congestion
control [17, 42], codec control, and reception quality reports. RTP
payload formats specify how codec output is packed into datagrams
[11], with special consideration made for application-level framing
[8] so each packet can be processed regardless of whether previous
packets were received. This intelligent framing comes at a cost:
senders and receivers must be updated to understand the payload
format for each new codec. In addition, since transport is unreliable,
receivers must be robust to packet loss and able to decode partial
streams.

RTPwas designed at a time, the mid-1990s, when real-timemedia
transport over the Internet was a marginal proposition, and robust-
ness to packet loss and other network vagaries was a real concern.
It is well suited to interactive applications and to environments,
such as wireless networks, where network performance may be
suboptimal. It provides the features to allow smart endpoints to
make effective use of such networks, at the cost of implementation
complexity.

Early deployments of on-demand streaming also used RTP, often
with an RTSP [34] control channel. With the growth of CDNs,
however, most transitioned to HTTP adaptive streaming protocols,
such as MPEG DASH [36]. Unlike RTP, HTTP-based transports are

https://doi.org/10.1145/3284850.3284856
https://doi.org/10.1145/3284850.3284856

EPIQ’18, December 4, 2018, Heraklion, Greece Colin Perkins and Jörg Ott

not optimised for media delivery. The server prepares the media
data for delivery as a sequence of independently decodable chunks,
each of a few seconds in duration and made available pre-encoded
at a range of bit rates. Clients retrieve a manifest that indexes
the available content, then pull chunks in sequence using HTTP
GET requests over TCP. The client chooses the bit rate to fetch for
each chunk based on the download rate it observed for previous
chunks. Since transport is over TCP, media delivery is reliable,
ordered, and congestion controlled. Receiver-side buffers must be
large enough to hide the resulting variation in download times and
allow continuous, stall-free, play-out. This makes HTTP adaptive
streaming poorly suited to low-latency play-out. It is, however,
simpler to implement than RTP-based solutions, and can re-use
existing CDN infrastructure since the server is a standard HTTP
server.

The evolution of real-time media transport has mirrored the
evolution, and commodification, of the underlying network infra-
structure. RTP includes numerous features intended to help imple-
mentations compensate for network pathologies and performance
bottlenecks that were common at the time it was designed, but are
now less so. HTTP adaptive streaming applications, downloading
on-demand media that is real-time but has comparatively relaxed
latency bounds, are generally used on high-quality networks where
such problems are rare, so the protocol doesn’t need to handle them.
The result is that RTP addresses use cases that DASH-like protocols
do not, but suffers from the complexity needed to do so. Media
delivery over QUIC should carefully define its applicability, rather
than blindly copy either approach.

3 RUNNING DASH AND RTP ON QUIC
Mapping HTTP adaptive streaming protocols onto QUIC is straight-
forward, since QUIC was designed to directly support HTTP/2
[4]. Adaptive streaming applications can therefore run unchanged,
aside from being updated to use the current version of HTTP. By
running over QUIC, such applications gain the benefit of modern
loss recovery and congestion control algorithms that may include
features that have yet to be incorporated into the operating system’s
TCP stack. In addition, QUIC natively supports sending multiple
streams within a single transport layer flow, with HTTP/2 streams
mapping directly onto QUIC streams. Traffic sent on each stream
is delivered reliably and in-order, but QUIC does not maintain
ordering between streams, removing one source of head-of-line
(HoL) blocking. Applications that send each chunk of media on
a separate HTTP/2 stream therefore have a natural breakpoint at
which they will recover from stalls, potentially improving the user
experience.

Effectively mapping RTP onto QUIC is more difficult. In the
following, we discuss how RTP can be mapped onto the current
version of QUIC. Then, in §4, we begin a more principled feature
comparison, to consider if this is the right approach, or whether
QUIC and RTP should jointly evolve to provide more a effective
transport for interactive multimedia.

3.1 Mapping RTP onto QUIC -14
QUIC [14, 15] provides a reliable, connection-oriented, byte stream
service. There is an existing mapping of RTP onto such a service

[19], designed for use with TCP, and it’s possible to reuse it to run
RTP on QUIC. This mapping has the advantage of simplicity: both
RTP data and control (RTCP) packets are sent on a single QUIC
stream, with each packet prefixed by a 16-bit unsigned integer
length field.1 Packets are demultiplexed based on their RTP payload
type. The equivalent framing over TCP is widely implemented, and
performs acceptably well if packet loss is bounded [6].

A key problem with this approach is head-of-line blocking. Since
all packets are sent on a single reliable stream, loss of any packet
will block delivery of later packets until the lost packet has been
retransmitted. This is unacceptable for interactive RTP applications
that can tolerate some packet loss, but have strict latency bounds.

Various approaches can be taken to reducing this problem, based
around use of QUIC streams to distinguish RTP flows that can be
independently delivered. A simple approach might map traffic for
each RTP synchronisation source (SSRC) to a different QUIC stream,
preventing loss of a video packet from blocking delivery of later
audio, for example.

Media generated by an SSRC might be further sub-divided across
QUIC streams. The sender could encode themedia in chunks, follow-
ing the example of HTTP adaptive streaming applications, switch-
ing to a new QUIC stream and sending an I-frame every n video
frames, where n is chosen based on the frequency of packet loss
events to limit stall duration. In the extreme,n = 1 and a new stream
is used for every frame of video, although this is likely unnecessary.
A more optimal approach might be for the receiver to report loss
events and use this feedback to trigger a switch to a new QUIC
stream.

3.2 Limitations and Discussion
Such approaches address, to varying degrees, the issues of HoL
blocking and framing. They do not, however, eliminate the problem
of media data being retransmitted once it has passed its play-out
deadline and is no longer needed, which is inherent due to the
reliable nature of QUIC and its lack of awareness of timing inform-
ation.

Unnecessary retransmissions may be addressed by adding unre-
liable, or partially reliable, transmission to QUIC. The former was
suggested by Tiesel et al. [37], who discuss marking some streams as
unreliable, subject to the usual QUIC congestion control rules, and
propose allowing data from unreliable streams to be given priority
over reliable streams upon transmission. Lubashev [22] discusses
the latter, and takes the approach of indicating, per stream, that
parts of the stream (to a certain byte offset) no longer need to be re-
transmitted. Neither proposal offers media-aware retransmissions,
and both need relatively sophisticated APIs to offer fine-grained
control of the (re-)transmission and scheduling.

Framed delivery of RTP packets over a stream transport also
doesn’t account for datagram boundaries. Unless media data units
are delineated at the QUIC layer, it is possible that loss of a single
datagram will impact multiple encapsulated RTP packets, as those
packets can be arbitrarily split across datagrams. Designers of RTP
payload formats spend considerable effort making packets inde-
pendently decodable [8, 11] to avoid this loss multiplier effect, and it

1 Such a format was suggested recently (2018-08-27) on the QUIC WG mailing list as
an extension to QUIC to carry messages and subsequently documented [26].

Real-time Audio-Visual Media Transport over QUIC EPIQ’18, December 4, 2018, Heraklion, Greece

RTP Field and Function QUIC Mapping Support?

1 Seq# for loss detection Seq# plus ACK mechanism Yes
2 ECN marking ECN marking Yes
3 Media-specific timestamps Use metadata on top of QUIC No
4 (One-sided) wall-clock sync Extension or metadata on top of QUIC No
5 Data retransmission Adapt retransmission for partial reliability (Yes)
6 Generic FEC Could be added as a generic function (was discussed) (No)
7 Media-specific redundancy Could be realized as payload N/A
8 General RX stats from RTCP RR ACK blocks for losses (abs. and rel.) to be augmented Partly
9 Congestion control Done by QUIC, may need an API (Yes)
10 Selective encryption of payloads Almost full encryption largely including headers (Yes)
11 SSRC and CNAME for media bundling Bundling implicit within a QUIC connection Implied
12 Payload type + M bit marking Use payload framing on top of QUIC N/A
13 Source identification (SSRC/CSRC) Use metadata on top of QUIC N/A
14 SDES session metadata Use metadata on top of QUIC N/A
15 External signalling channel Use an in-band QUIC stream if feasible (Yes)
16 IP Multicast support Not required No
17 Mixers and translators Implement in the application above QUIC No
18 Transmission scheduling control Done by QUIC, needs an API (Yes)
19 Header extensions and metadata Use metadata on top of QUIC No
20 Application level framing Partial, via QUIC streams Yes
21 Avoidance of HoL blocking Partial, via QUIC streams Yes

Table 1: Mapping RTP functions to QUIC

should be considered in the QUIC mapping. API changes to expose
the MTU and frame boundaries can solve this in part, but affect
packet scheduling, congestion control, and reliability.

QUIC flows are encrypted and authenticated to ensure privacy
and integrity of the headers and payload. The Secure RTP extension
[2] can be used to provide privacy and integrity protection for
RTP traffic, when combined with a keying protocol such as DTLS
[9, 23]. QUIC integrates security more tightly, and can benefit from
features such as 0-RTT session resumption that have not yet been
incorporated into DTLS-SRTP. Another key difference is that QUIC
encrypts the entire packet, including the overwhelming majority
of the transport headers, whereas Secure RTP encrypts only the
payload and leaves the RTP and transport headers in the clear. As
we discuss in Section 4, this allows Secure RTP to support header
compression and semi-trusted intermediaries, but does expose more
information to the network.

It is clear that framing interactive RTP media traffic for transport
over QUIC exposes a number of issues. As noted above, solutions
exist to some of these within the scope of QUIC as currently spe-
cified, but not all. In the following, we consider how QUIC and RTP
might co-evolve, to better address these concerns, and provide an
effective solution for latency bounded, interactive, media.

4 MEDIA TRANSPORT REQUIREMENTS
The discussion in Section 3 highlighted three significant limitations
with running interactive media over the current version of QUIC:
HoL blocking, unnecessary retransmissions, and application-level
framing. In the following, we begin a more systematic exploration
of the issues.

We outline a reasonably complete list of the features of RTP in
Table 1, with an indication of how the concepts might map onto
a future version of QUIC, and whether they need to be supported.
The table indicates the RTP functions, how those could be mapped
to an (enhanced) QUIC, and if those functions should be supported
as part of a generic, real-time enabled QUIC stack (or rather be left

to the application running on top). These features can be broken
down into the following categories:
• Transport-related features that need support from the
transport protocol for efficient and/or effective implementa-
tion, such as congestion control, avoiding HoL blocking, loss
detection, and ECN support;
• Session-related features relating to orchestration of mul-
tiple flows, participant identification, and quality of experi-
ence reporting; and
• Media-related features such as codecs and payload formats,
mixing and translation, lip-synchronisation, and media rate
adaptation.

There is necessarily close coupling across categories, and the design
does not follow a traditional layered model. This may complicate
integration of real-time media support into QUIC. For example,
effective implementation of congestion control requires close coup-
ling between the transport layer as it reports on lost and ECN
marked packets and packet arrival times, the transmission sched-
uler, and the media codec that must adapt its output to match the
required rate.

Of the features in Table 1, transport-level detection and reporting
of packet loss and ECN marks (#1, 2) are directly supported by both
RTP and QUIC. For other features, such as packet scheduling (#18),
congestion control (#9), some aspects of reliability (#5, 6, 7, 8),
application level framing (#20), and avoidance of HoL blocking
(#21) support is present in QUIC, but is not always well aligned
with the needs of real-time media.

Since RTP is inherently a group communication protocol, it
naturally supports multicast (#16). Current practice, however, is to
implement multiparty support using relays, so multicast support is
not required in QUIC (but could readily be used by real-time media
applications, if provided [18]).

Many session-level features can be implemented above the QUIC
layer. Rather than SSRCs, CNAMEs, and other signalled identifiers
for media bundling and demultiplexing (#11), existing QUIC stream
mechanism can be used. In a similar way, source identification and

EPIQ’18, December 4, 2018, Heraklion, Greece Colin Perkins and Jörg Ott

description information (#13, 14) can be carried as session-level
metadata in a signalling channel (#15) sent as an additional QUIC
stream. Themulti-streaming nature of QUIC should greatly simplify
multiplexing of media flows and signalling.

As expected, manymedia-related features have no clear analogue
in QUIC. Extensions are needed to support media timing (#3) and
inter-flow synchronisation (#4). Per-packet metadata (#12, 19) can
be sent in the payload of QUIC frames.

Finally, QUIC and RTP have different approaches to encryption
(#10). Secure RTP was designed to leave headers in the clear to
enable efficient header compression on low bandwidth and wireless
links [5, 27] and to allow for easy processing in intermediaries (#17).
Bandwidth increases have made header compression less import-
ant, although it may still matter in some wireless environments,
but there is certainly still a need for semi-trusted conferencing
middleboxes that have access to media header information, to allow
source selection, but not to the media payload. These are not well
supported by QUIC with its focus on end-to-end encryption and
some form of multi-layered security is needed.

5 A STRAWMAN PROPOSAL: QUIC-R
In the following, we outline an initial proposal for a set of extensions
to QUIC that better support real-time applications, dubbed QUIC-R.
We focus on the shortcomings identified above, and on addressing
them in a manner that we believe is consistent with both QUIC and
RTP, and adds only reusable and general purpose functionality to
QUIC.

5.1 Real-time Media Transport
The main points for adding real-time capabilities to QUIC transport
are four-fold:

(1) Controlling transmission scheduling and sender-side buf-
fering, to ensure data is sent in a timely manner, and that
outdated or otherwise stale content does not delay new trans-
missions;

(2) Obtaining fine-grained statistics about timing, losses, etc.,
at sender and receiver sides, that can be used to tune media
transmission and ensure timely play-out;

(3) Providing adjustable repair mechanisms – reactive or pro-
active – to control retransmission and/or redundant trans-
missions or discarding of packets; and

(4) Enabling content-aware congestion control for streams, em-
bedded within a larger congestion control framework for
the QUIC connection, shared across multiple streams (pos-
sibly coupling congestion control across streams, possibly
decoupled from others, while staying within an overall con-
gestion window).

A key question to be answered before looking at protocol details
is whether real-time communication should fit within the stream
concept, or should it be separate? We opt for an integration, to
ensure a more uniform API is exposed to programmers. We believe
that the core properties of QUIC will benefit from real-time support,
and that the versatility of a mechanism to support communication
with control over reliability and timing will bring value to a range
of applications, not just to interactive audio-visual traffic.

WALLCLOCK

MSW of NTP Timestamp

LSW of NTP Timestamp

ACK-Timing

ADU base sequence #

k–1 packets

reported

Receive timestamp for base

…

RT_

STREAM

ADU data

ADU sequence #

STREAM_ID

[Offset]

[Length]

F
IN

L
E

N
O

F
F

0000 00 T
S

[Lowest ADU sequence # to be retransmitted]

[Timestamp]

L
R

T
X

Receive timestamp offset 1
seq#

offset 1

Receive timestamp offset 2
seq#

offset 2

Receive timestamp offset k–1
seq#

offset k–1

Figure 1: Strawman packet format

To this end, we propose to addRT-streams to QUIC. RT-streams
share the stream ID space with regular streams, but send RT_STREAM
frames rather than standard STREAM frames. The new frame provides
record marking and, within bounds, allows controlled mapping of
data to QUIC packets; it also provides a clean abstraction for imple-
menting transmission scheduling, partial reliability, and reception
statistics. STREAM and RT_STREAM frames cannot be mixed on the
same stream (but one could, e.g., designate one bit in the stream
id space to indicate unreliable streams), and RT_STREAM frames
can only be sent after 1-RTT keys are established.2 Support for
RT-streams would be negotiated during QUIC connection establish-
ment and be cached along with other peer properties.

An RT-stream comprises a sequence of records, rather than an
octet stream, and preserves record boundaries to carry content
formatted into Application Data Units (ADUs). Each ADU consti-
tutes an independently decodable and processable piece of encoded
media content, similar to RTP payloads, such an audio sample or
frame, a video slice or frame, etc. Each ADU is crafted to fit into
a single RT_STREAM frame and, if ADUs are small, multiple ADUs
may go into the same QUIC frame (as is usually the case of audio
and other low bitrate media). Sometimes (as, e.g., in the case of
video I-frames) a media frame may need to be split across multiple
packets and then be formatted by the application into multiple
ADUs. We push this responsibility to the application because we
do not want to burden an RT-stream in QUIC with a reassembly
mechanism for large ADUs and avoid questions of atomic vs. partial
delivery of ADUs, maximum ADU size considerations, etc. Instead,
we leave this up to the application layer, as readily exercised using
the concept of payload formats in RTP.

2Sending real-time frames as 0-RTT data should, in principle, also be possible but we
leave this for further study.

Real-time Audio-Visual Media Transport over QUIC EPIQ’18, December 4, 2018, Heraklion, Greece

The header of each RT_STREAM frame (see Figure 1 for a sample,
not yet optimized, encoding) includes a record (ADU) sequence
number and timestamp, as well as optional offset and length fields
that have the same meaning as in STREAM frames. This is the min-
imal additional header information needed for real-time operation.
To support partial reliability, an additional sequence number in-
dicating the retransmit limit. Two bits indicate the presence of the
respective fields.

At the sender, data is written to an RT-stream along with its
timestamp, an expiry time, and the sequence numbers of any previ-
ous records on which it depends. The sequence number assigned
to the record is returned to the application. The timestamp, expiry
time, and dependency information is used by the sender to schedule
packets for transmission, and possible retransmission; the expiry
time and dependency information is not included in transmitted
frames. It is an error to send more data in a record than fits the path
MTU, including all QUIC headers.

At the receiver, records (= ADUs) are released to the applica-
tion as they arrive, as a sequence of independent records, along
with their offset in the stream, sequence number, timestamp, and
arrival time. The timestamp allows the application to reconstruct
the timing, while the sequence number and offset can be used for
loss detection and to reconstruct order.3 Frames are acknowledged
as normal, but are not necessarily retransmitted; the retransmit
limit header indicates the point beyond which the sender will no
longer retransmit lost packets. An additional ACK-Timing frame
is sent, indicating the arrival time of frames, e.g., using a full re-
cord sequence number and timestamp for the first (base) packet
and then relative offsets for following ones (see figure 1). Any fur-
ther processing, such as playout buffering, intra- and inter-stream
synchronization, are up to the application.

Senders and receivers can send WALLCLOCK frames (not shown in
the figure) to carry a 64-bit NTP-format timestamp that is associated
with an RT_STREAM frame, similar to how RTCP sender report (SR)
packets [33]. The WALLCLOCK frames are sent occasionally, perhaps
every few seconds, andmust be sent in the same QUIC packet as an
RT_STREAM frame. This allows the receiver to match the sender’s
wallclock time to the media-specific timestamp in the RT_STREAM
frame, hence allowing it to synchronise playout of multiple flows
(e.g., to lip-sync audio and video flows).

Knowledge of real-time behaviour is limited to the sender, which
must schedule packets for (re)transmission based on their timestamp,
expiry time, dependencies, and the dictates of congestion control.
The receiver merely passes frames and their metadata to the applic-
ation. Retransmissions follow the routine of QUIC, until a packet’s
expiry time is reached.4 Further (media-specific) error control, such
as redundancy encoding, unequal error protection, FEC, or refer-
ence picture selection, is implemented at the application layer.

Packet scheduling and congestion control must coordinate real-
time and non-real-time streams. QUIC foresees (at the API) in-
dicating stream data priorities for scheduling purposes, which an
application can use to knowingly arbitrate path capacity between
different streams. Congestion control needs to cope with the poten-
tially different rate adjustment needs for real-time media sources
3Frames are not necessarily all the same size, so while the offset can be used to infer
packet loss, a sequence number is needed to know how many frames were lost.
4The exception is an RT_STREAM frame with the FIN bit set, that is delivered reliably.

and elastic data. We expect the changes to congestion control and
packet scheduling will be the primary sources of extra complexity
in our proposal, compared to baseline QUIC.

One approach could be to define, per QUIC connection, whether
the real-time or the regular congestion control regime takes preced-
ence. For real-time precedence, a “pluggable” congestion controller
at the application layer could take over and also rule packet pacing
of real-time streams, leaving (residual) capacity to elastic streams
as defined by their priority. In this case, all congestion cues would
also be provided via the API to the pluggable congestion controller
[24, 38]. The built-in QUIC congestion control could run in parallel
and observe that the mid-term behavior is in line with that of a nat-
ive QUIC stack, possibly provide hints of excess data transmission
and, if needed, act as a circuit breaker [28, 35].

5.2 Session Management
Application- and media-specific metadata is not exposed to QUIC.
If the equivalents of the RTP SSRC and CSRC list, payload type,
marker bit, and RTCP information are needed, they must be sent
in the QUIC payload. Packets are acknowledged as normal, and
ACK-Timing frames also feedback the arrival time, but if more soph-
isticated reception quality and/or quality of experience metrics are
needed (cf. RTCP XR [10] and its extensions), they must be sent in
the QUIC payload.

Each media stream is sent as separate QUIC RT-stream. It’s ex-
pected that the first stream(s) opened will provide a signalling
channel, while later streams will carry media data. The signalling
channel is used to convey the meaning of the later streams, in an
application-specific manner. Naturally, not all (media) streams need
to be RT-streams.

Multiparty communication is commonly implemented in RTP
using middleboxes that terminate the RTP flows carrying the media
data, mix or select flows, then forward the modified media over
new RTP flows to the other participants in the communication. This
relies on such middleboxes participating in the signalling exchange
and being trusted with access to the unencrypted media traffic.
When forwarding data, such nodes preserve a one-to-one mapping
between incoming and outgoing streams, so applications can use
session-level signalling (e.g., SSRCs and CSRCs) to indicate end-to-
end semantics.

The same approach, using explicitly configured trusted middle-
boxes, can be used when sending media over QUIC. Since QUIC
does not support intermediaries or multiparty communication,
the timestamps, loss reports, etc., are only valid between the end-
points of the QUIC connection. Providing reception statistics for
controlling and optimizing end-to-end media delivery for groups,
across intermediary nodes, therefore requires additional mechan-
isms above the QUIC layer. We defer discussing design options and
implications for congestion control, scheduling, and reporting to
future work.

The IETF Privacy Enhanced RTP Conferencing (PERC) working
group is developing an alternative approach where the middleboxes
are semi-trusted. In this approach, packets are encrypted twice: one
level of encryption runs end-to-end and protects the media data,
while the other runs hop-by-hop. This allows themiddleboxes to see
enough header information to determinewhat packets to forward to

EPIQ’18, December 4, 2018, Heraklion, Greece Colin Perkins and Jörg Ott

what receivers, but prevents then from accessing or modifying the
media data. Similar approaches could be taken with media running
over QUIC, where the payload was encrypted separately to the
QUIC packets and metadata. Details are for future work.

5.3 API Considerations
The API is deliberately minimal. A QUIC receiver must be aware of
RT-streams, so it can pass frames to the application when they
arrive, but other than provided framed data and its associated
metadata, all the complexity is pushed up above the QUIC layer.

The sender API is more extensive. When an RT-stream is opened,
the clock rate used for the timestamps must be specified, so the
sender can schedule transmissions (this is passed to the receiver in
an application-specific manner). For each frame, a timestamp, expir-
ation time, and any dependencies must be provided, in addition to
priority information for the stream data. The sender can optionally
provide the application with information about what frames were
acknowledged or their receive timing. As noted above, a pluggable
congestion control interface is needed to allow the application to
take over sending rate adjustments and packet pacing, bypassing
built-in QUIC mechanisms.

This API provides a sender, if it so desires, a degree of fine-
grained control over (re)transmission scheduling, while allowing
less eager real-time application to stay clear of this complexity and
let the built-in QUIC-R scheduling and congestion control do the
work. All receivers need to care about is playout buffering and
rendering, with all other mechanisms needed for operation readily
provided by QUIC-R. This makes them easy to implement, reusing
existing real-time application code. It also preserves the option to
provide additional feedback as part of the QUIC-R (session) payloads
for more sophisticated repair and adaptation strategies.

5.4 Applications for QUIC-R
Both today’s DASH and RTP applications would benefit from QUIC-
R. Adaptive streaming applications could 1) make use of multiple
streams to avoid head-of-line blocking; and 2) use unreliable streams
for (partial) segments (e.g., those parts not containing an I-frame) to
trade off lack of stall events for video frame quality. Such decisions
may even be taken, and adjusted, dynamically as a function of the
observed path QoS. This would allow changes to the design of ad-
aptive streaming applications. For example, they could avoid the
problems caused by nested control loops that present difficulties for
proper rate adaptation in DASH [13], and that complicate straight-
forward integration with Google QUIC [3], while allowing for some
unreliability and eliminating HoL blocking. Experiments with an
adapted variant of TCP that provides similar features, appear to
yield some benefits [1], so we are confident of improvements. With
QUIC-R, future designs could even reconsider using a QUIC stream
to run a control protocol, perhaps a modern flavour of RTSP, in
parallel to provide more effective and lower-latency media control.

Conversational applications using RTP could benefit from readily
available security and stream multiplexing mechanisms, greatly
simplifying media demultiplexing, signalling, and NAT traversal;
as well as the integration of a signalling and media channels. Many
of them may be able to just use the built-in QUIC-R congestion
control as a starting point, as opposed to implementing their own

congestion control. Stream demultiplexing for RTP traffic [20, 30,
41] is inflexible and fragile, and introduces considerable signalling
complexity [12, 40]. QUIC provides a native stream abstraction that
can be used for this purpose, greatly simplifying applications and
providing amore general solution (at the cost of somemodest packet
expansion compared to RTP-based solutions). This more general
demultiplexing solution will reduce the need to send RTP flows, and
other traffic, on additional UDP ports to work around limitations of
the demultiplex, simplifying NAT traversal. Finally, while signalling
for NAT traversal will clearly still need to be involve a binding
discovery server, many aspects of media negotiation could move
in-band. This addresses frequent complaints about RTP that the
flows are not self-describing, that it’s difficult to associate signalling
with media, and that reliable data cannot be sent on the same path
as the media.

6 CONCLUSIONS
We have presented a minimal set of extensions to QUIC to support
real-time media. The essential extension is to support partially-
reliable framed data with deadlines. Application level framing is
needed to make effective use of all packets that arrive, and maintain-
ing real-time behaviour on a best effort network means accepting
some potential unreliability. The session- and media-specific details
of a protocol, such as RTP, can be implemented above QUIC if it
offers these extensions. If they are not offered, the best that can
be implemented requires the application work-around unneces-
sary retransmissions that disrupt timing while suffering from the
loss multiplier effect inherent when frame boundaries and packet
boundaries are mismatched.

We believe the extensions we propose can be added to QUIC in
a backward compatible manner, easing deployment. Nothing must
be added to the first release of IETF QUIC. This is possible, in part,
because QUIC flows are protected from ossification by end-to-end
encryption and greasing.

Our proposal is optimised for real-time traffic, providing framing,
timing, and loss detection. We believe this service is, and should be,
distinct from a simple unreliable datagram service. Applications that
have strict timing requirements require different packet scheduling
and congestion control decisions to those, e.g., VPNs, that merely
desire unreliable transport. We expect that, over time, QUIC will
evolve to support reliable streams, unreliable datagrams, and real-
time framed streams.

Numerous future issues are to be discussed: as QUIC evolves
to support multipath communication, scheduling complexity will
increase, and so will the demands on a pluggable congestion control
module. Awareness of multiple paths will also potentially add to
the API. New API designs [38] will be needed, and applications
and transport will likely become more closely coupled. The typical
user-space implementation of QUIC makes this feasible. Along
with QUIC-R, these will allow QUIC to evolve into an effective,
general purpose, transport, addressingmany of the concerns around
transport ossification.

ACKNOWLEDGEMENTS
This work was funded in part by the UK Engineering and Physical
Sciences Research Council (grant EP/R04144X/1).

Real-time Audio-Visual Media Transport over QUIC EPIQ’18, December 4, 2018, Heraklion, Greece

REFERENCES
[1] S. Ahsan, S. McQuistin, C. S. Perkins, and J. Ott. 2018. DASHing Towards Holly-

wood. In Proceedings of the Conference on Multimedia Systems (MMSys). ACM,
Amsterdam, The Netherlands, 1–12. https://doi.org/10.1145/3204949.3204959

[2] M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Norrman. 2004. The
Secure Real-time Transport Protocol (SRTP). Internet Engineering Task Force.
(March 2004).

[3] D. Bhat, A. Rizk, and M. Zink. 2017. Not so QUIC: A performance study of
DASH over QUIC. In Proceedings of the International Symposium on Network and
Operating Systems Support for Digital Audio and Video. ACM, Taipei, Taiwan,
13–18.

[4] M. (Ed.) Bishop. 2018. Hypertext Transfer Protocol (HTTP) over QUIC. Internet
Engineering Task Force. (June 2018). draft-ietf-quic-http-14.

[5] C. Bormann, C. Burmeister, M. Degermark, H. Fukushima, H. Hannu, L.-E.
Jonsson, R. Hakenberg, T. Koren, K. Le, Z. Liu, A. Martensson, A. Miyazaki, K.
Syanbro, T. Wiebke, T. Yoshimura, and H. Zheng. 2001. RObust Header Compres-
sion (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed.
Internet Engineering Task Force. (July 2001). RFC 3095.

[6] E. Brosh, S. A. Baset, D. Rubenstein, and H. Schulzrinne. 2008. The Delay-
Friendliness of TCP. In Proceedings of the SIGMETRICS conference. ACM, Anna-
polis, MD, USA, 49–60. https://doi.org/10.1145/1375457.1375464

[7] Cisco. 2017. Cisco Visual Networking Index: Forecast and Methodology,
2016–2021. Document available online. (June 2017).
https://www.cisco.com/c/en/us/solutions/service-provider/
visual-networking-index-vni/.

[8] D. D. Clark and D. L. Tennenhouse. 1990. Architectural Considerations for a
New Generation of Protocols. In Proceedings of the SIGCOMM conference. ACM,
Philadelphia, PA, USA, 200–208. https://doi.org/10.1145/99508.99553

[9] J. Fischl, H. Tschofenig, and E. Rescorla. 2010. Framework for Establishing a
Secure Real-time Transport Protocol (SRTP) Security Context Using Datagram
Transport Layer Security (DTLS). Internet Engineering Task Force. (May 2010).
RFC 5763.

[10] T. Friedman, R. Caceres, and A. Clark. 2003. RTP Control Protocol Extended
Reports (RTCP XR). Internet Engineering Task Force. (November 2003). RFC
3611.

[11] M. Handley and C. S. Perkins. 1999. Guidelines for Writers of RTP Payload
Format Specifications. Internet Engineering Task Force. (December 1999). RFC
2736.

[12] C. Holmberg, A. Alvestrand, and C. Jennings. 2018. Negotiating Media Multi-
plexing Using the Session Description Protocol (SDP). Internet Engineering Task
Force. (September 2018). draft-ietf-mmusic-sdp-bundle-negotiation-53.

[13] T.-Y. Huang, N. Handigol, B. Heller, N. McKeown, and R. Johari. 2012. Confused,
Timid, and Unstable: Picking a Video Streaming Rate is Hard. In Proceedings of
the Internet Measurement Conference. ACM, Boston, MA, USA, 225–238.

[14] J. Iyengar and I. (Eds.) Swett. 2018. QUIC Loss Detection and Congestion Control.
Internet Engineering Task Force. (August 2018). draft-ietf-quic-recovery-14.

[15] J. Iyengar and M. (Eds.) Thomson. 2018. QUIC: A UDP-Based Multiplexed and
Secure Transport. Internet Engineering Task Force. (August 2018). draft-ietf-
quic-transport-14.

[16] C. Jennings, T. Hardie, and M. Westerlund. 2013. Real-Time Communications
for the Web. IEEE Communications Magazine 51, 4 (April 2013), 20–26. https:
//doi.org/10.1109/MCOM.2013.6495756

[17] I. Johansson and Z. Sarker. 2017. Self-Clocked Rate Adaptation for Multimedia.
Internet Engineering Task Force. (December 2017). RFC 8298.

[18] L. Lardue and R. Bradbury. 2018. Hypertext Transfer Protocol (HTTP) over
multicast QUIC. Internet Engineering Task Force. (August 2018). draft-pardue-
quic-http-mcast-03.

[19] J. Lazzaro. 2006. Framing Real-time Transport Protocol (RTP) and RTP Con-
trol Protocol (RTCP) Packets over Connection-Oriented Transport. Internet
Engineering Task Force. (July 2006). RFC 4571.

[20] J. Lennox, M. Westerlund, Q. Wu, and C. S. Perkins. 2017. Sending Multiple RTP
Streams in a Single RTP Session. Internet Engineering Task Force. (March 2017).
https://doi.org/10.17487/RFC8108 RFC 8108.

[21] A. Li. 2007. RTP Payload Format for Generic Forward Error Correction. Internet
Engineering Task Force. (December 2007). RFC 5109.

[22] I. Lubashev. 2018. Partially Reliable Message Streams for QUIC. Internet Engin-
eering Task Force. (May 2018). draft-lubashev-quic-partial-reliability-03.

[23] D. McGrew and E. Rescorla. 2010. Datagram Transport Layer Security (DTLS)
Extension to Establish Keys for the Secure Real-time Transport Protocol (SRTP).
Internet Engineering Task Force. (May 2010). RFC 5764.

[24] S. McQuistin, C. S. Perkins, and M. Fayed. 2016. Implementing Real-Time
Transport Services over an Ossified Network. In Proceedings of the Applied Net-
working Research Workshop. ACM/IRTF/ISOC, Berlin, Germany, 81–87. https:
//doi.org/10.1145/2959424.2959443

[25] J. Ott, S. Wenger, N. Sato, C. Burmeister, and J. Rey. 2006. Extended RTP Profile
for Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/AVPF).
Internet Engineering Task Force. (July 2006). RFC 4585.

[26] T. Pauly, E. Kinnear, and D. Schinazi. 2018. An Unreliable Datagram Extension
to QUIC. Internet Engineering Task Force. (September 2018). draft-pauly-quic-
datagram-00.

[27] G. Pelletier and K. Sandlund. 2008. RObust Header Compression Version 2
(ROHCv2): Profiles for RTP, UDP, IP, ESP and UDP-Lite. Internet Engineering
Task Force. (April 2008). RFC 5225.

[28] C. Perkins and V. Singh. 2017. Multimedia Congestion Control: Circuit Breakers
for Unicast RTP Sessions. Internet Engineering Task Force. (March 2017). RFC
8083.

[29] C. S. Perkins, I. Kouvelas, O. Hodson, V. Hardman, M. Handley, J.-C. Bolot, A.
Vega-García, and S. Fosse-Parisis. 1997. RTP Payload for Redundant Audio Data.
Internet Engineering Task Force. (September 1997). RFC 2198.

[30] M. Petit-Huguenin and G. Salgueiro. 2016. Multiplexing Scheme Updates for
Secure Real-time Transport Protocol (SRTP) Extension for Datagram Transport
Layer Security (DTLS). Internet Engineering Task Force. (September 2016). RFC
7983.

[31] J. Rey, D. Leon, A. Miyazaki, V. Varsa, and R. Hakenberg. 2006. RTP Retrans-
mission Payload Format. Internet Engineering Task Force. (July 2006). RFC
4588.

[32] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,
M. Handley, and E. Schooler. 2002. SIP: Session Initiation Protocol. Internet
Engineering Task Force. (June 2002). RFC 3261.

[33] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. 2003. RTP: A Transport
Protocol for Real-Time Applications. Internet Engineering Task Force. (July 2003).
RFC 3550.

[34] H. Schulzrinne, A. Rao, and R. Lanphier. 1998. Real Time Streaming Protocol
(RTSP). Internet Engineering Task Force. (April 1998). RFC 2326.

[35] V. Singh, S. McQuistin, M. Ellis, and C. S. Perkins. 2013. Circuit Breakers for
Multimedia Congestion Control. In Proceedings of the International Packet Video
Workshop. IEEE, San Jose, CA, USA. https://doi.org/10.1109/PV.2013.6691439

[36] T. Stockhammer. 2011. Dynamic Adaptive Streaming Over HTTP – Standards
and Design Principles. In Proceedings of the Conference on Multimedia Systems
(MMSys). ACM, San Jose, CA, USA, 133–143. https://doi.org/10.1145/1943552.
1943572

[37] P. Tiesel, M. Palmer, B. Chandrasekaran, A. Feldman, and J. Ott. 2017. Considera-
tions for Unreliable Streams in QUIC. Internet Engineering Task Force. (October
2017). draft-tiesel-quic-unreliable-streams-01.

[38] B. Trammell, C. S. Perkins, and M. Kühlewind. 2017. Post Sockets: Towards
an Evolvable Network Transport Interface. In Proceedings of the International
Workshop on Future of Internet Transport. IFIP, Stockholm, Sweden. https://doi.
org/10.23919/IFIPNetworking.2017.8264874

[39] International Telecommunication Union. 2009. Packet-based multimedia com-
munications systems. (December 2009). ITU-T Rec. H.323.

[40] M. Westerlund, B. Burman, C. S. Perkins, A. Alvestrand, and R. Even. 2018.
Guidelines for using the Multiplexing Features of RTP to Support Multiple Me-
dia Streams. Internet Engineering Task Force. (July 2018). draft-ietf-avtcore-
multiplex-guidelines-06.

[41] M. Westerlund, C. S. Perkins, and J. Lennox. 2015. Sending Multiple Types of
Media in a Single RTP Session. Internet Engineering Task Force. (December
2015). draft-ietf-avtcore-multi-media-rtp-session-13.

[42] X. Zhu, P. Pan, S. Mena, P. Jones, J. Fu, and S. D’Aronco. 2018. NADA: A Unified
Congestion Control Scheme for Real-Time Media. Internet Engineering Task
Force. (August 2018). draft-ietf-rmcat-nada-09.

https://doi.org/10.1145/3204949.3204959
https://doi.org/10.1145/1375457.1375464
https://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/
https://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/
https://doi.org/10.1145/99508.99553
https://doi.org/10.1109/MCOM.2013.6495756
https://doi.org/10.1109/MCOM.2013.6495756
https://doi.org/10.17487/RFC8108
https://doi.org/10.1145/2959424.2959443
https://doi.org/10.1145/2959424.2959443
https://doi.org/10.1109/PV.2013.6691439
https://doi.org/10.1145/1943552.1943572
https://doi.org/10.1145/1943552.1943572
https://doi.org/10.23919/IFIPNetworking.2017.8264874
https://doi.org/10.23919/IFIPNetworking.2017.8264874

	Abstract
	1 Introduction
	2 Real-time Media in the Internet
	3 Running DASH and RTP on QUIC
	3.1 Mapping RTP onto QUIC -14
	3.2 Limitations and Discussion

	4 Media Transport Requirements
	5 A Straw Man Proposal: QUIC-R
	5.1 Real-time Media Transport
	5.2 Session Management
	5.3 API Considerations
	5.4 Applications for QUIC-R

	6 Conclusions
	References

