
Composable Distributed Mobile Applications and
Services in Opportunistic Networks

Chrysa Papadaki
Technical University of Munich

papadaki.chr@gmail.com

Teemu Kärkkäinen
Technical University of Munich

kaerkkae@in.tum.de

Jörg Ott
Technical University of Munich

ott@in.tum.de

Abstract—Advances in computational devices, wireless net-
working, cyber-physical integration and novel user interfaces are
creating a world where we are continuously surrounded by a
wealth of computational resources and new ways of interacting
with them. However, we currently lack means of composing
applications and services that can take full advantage of this
environment. In this paper we present a system design that
allows application developers to treat the future environment
as a generic execution environment, which will automatically
distribute and execute the components of their applications. This
has the potential to unlock a wealth of currently unused resources
and enable new classes of more immersive and useful applications
and service that execute directly in the surrounding environment.

I. INTRODUCTION

The environment in which many future applications and
services execute will be fundamentally different from today’s
execution environments. Since the earliest computing systems,
the execution environment has taken two primary forms: 1)
personal devices of the end-users, and 2) large, typically
distributed, shared back-end systems. Applications either ex-
ecute on a personal device and serve its user, or in a back-
end and serve a large number of users. Modern networked
applications often rely on both—a front-end executing on, e.g.,
a smartphone (as a separate app or within a web browser), and
a back-end executing in datacenter connected by the Internet.

The primary technological trend of the recent years, how-
ever, has been the accumulation of more devices and com-
putational capabilities directly within the users’ immediate
environment—phones, tablets, laptops; “smart” homes, offices
and cities. Further, advances in local wireless communication
capabilities potentially allow all these devices and infrastruc-
tures to communicate directly with each other. As these trends
continue, the future execution environment looks neither like
a singular personal device, nor a centrally controlled and
managed datacenter. Rather the environment will appear as if
the user was moving inside a datacenter filled with a wealth of
different resources—all serving and interacting with the user.

While we have learned how to build applications and
services for the two classic execution environments—personal
computing devices and large datacenters—building applica-
tions that execute primarily in the users’ immediate envi-
ronment remains less well understood. Approaches taken by
system providers to solve this complexity have largely been
to build tightly integrated, closed, siloed solutions designed

around a remote cloud service as the integration point (e.g,
Apple HomeKit, Google Nest). The complexity for building
an open, extensible system arises from trying to orchestrate a
large number of heterogeneous devices with various types of
connectivity options, owned and operated by different entities,
to produce a reliable, coherent service to highly mobile users.

In this paper we tackle the above problem by designing and
implementing a framework for building mobile applications
out of composable components executing opportunistically in
the devices surrounding the user. Our inspiration comes in part
from the container management automation systems, such as
Google’s Borg, Omega and Kubernetes. These allow hetero-
geneous applications to be developed for—and their execution
dynamically managed on—a datacenter infrastructure made
up of thousands of machines with no explicit knowledge of
the details of the execution environment. This is our goal as
well, except we target the execution environment surrounding
the user instead of a datacenter back-end infrastructure—in
essence fog automation instead of cloud automation.

II. FUTURE EXECUTION ENVIRONMENT

We believe four technological trends will define the future
execution environment for applications and services: 1) in-
crease in local computational capacity in diverse devices in the
environment, 2) increase in wireless communication capacity
directly between co-located devices and from the devices to
the Internet, 3) increasing capability of computing systems
to interact with the physical world via sensors and actuators,
and 4) new and immersive ways for interfacing users with the
computing systems.

Moore’s law has brought us increasingly powerful and in-
creasingly ubiquitous computing devices starting from the 60s’
mainframes, to the 70s’ minicomputers, to the 80s’ personal
computers, to the 90s’ laptops, to the 2000s’ smartphones and
tablets, and to the 2010s’ smartwatches. The latest entrants
in this continuum are cheap embedded computers such as the
Raspberry Pi, and microcontrollers such as the ESP32, have
allowed a much wider audience of enterprising hackers and
makers to cheaply build imaginative computer driven systems.
Embedded devices have resulted in an invisible accumulation
of computational capacity in the environment around us: the
MagSafe charger of a MacBook can perform three times as978-1-5386-4725-7/18/$31.00 c©2018 IEEE

many calculations per seconds as the original Macintosh1;
a Wi-Fi enabled SD card for a camera runs a full Linux
server; and modern cars packed with embedded sensors and
processors, even in gas-pedals. Projecting this into the future,
it appears inevitable that in a few decades the environment
within an arm’s reach of us will have as much computational
power as a rack of servers in today’s data centers.

So far, the invisible accumulation of computational capacity
in the environment has been driven largely by microcontrollers
embedded in special purpose applications—either standalone
or connected into systems via special-purpose communication
buses (e.g., the CAN bus used in cars). New (and old) wireless
technologies are enabling these devices to communicate with
the world around them—e.g., via short range Bluetooth Low
Energy, medium range Wi-Fi or long range via carrier-based
and Ultra Narrow Band technologies. Advances in radio-
frequency wireless communications are being joined by new
spectrum ranges with different propagation characteristics—
e.g., Visible Light Communications in the hundreds of THz
range, mmWave technologies in the tens of GHz range, and
White Space technologies scavenging capacity from legacy
technologies in multiple spectrum ranges. Advances in these
technologies will enable cheap, power efficient, and high
capacity short and long range communications between the
computational units that will fill our environment.

The increasing processing and communication capabilities
of digital systems at lower cost and complexity thresholds are
enabling another major trend: the increase in digital services’
ability to sense and interact with the physical world. These
technologies have been developed in multiple contexts and
under many brands - Smart Cities, Smart Homes, Internet
of Things, Industry 4.0 - but fundamentally they all combine
environmental sensors and actuators connected to a centralized
service via some network (typically the Internet). So far
these systems have generally been special purpose, closed and
tightly vertically integrated, but both Apple (HomeKit) and
Google (Android) have made efforts to enable multiple third
party devices to function in a single system - under a centrally
controlled ecosystem. We foresee this trend resulting in most
physical systems around us being capable of interacting with
external computing systems and services.

Despite the great advances in the various underlying tech-
nologies, the fundamental purpose of computing systems—
serving human needs—will remain the same. Thus new human
interface technologies are often crucial in unlocking the full
potential of computational advances—e.g., the way touch
screens transformed cellular phones. It is interesting to note
that at this stage of distributed computational evolution, no
widespread innovations in human interface technologies has
accompanied the explosion in the availability of embedded de-
vices. Instead, these devices tend to feed into earlier-generation
centralized, Internet-based services. We postulate that in the
future the true capabilities of the advancing technologies will

1MagSafe has an MSP430 (16 MHz, 4.6 MIPS), the original Macintosh
has a 68000 (7.8 MHz, 1.4 MIPS).

be unlocked by advances in human interface technologies that
allow direct interactions between humans and their nearby
computational environment. In the short to medium term we
see augmented and virtual reality interfaces to be the main
technologies of interest, while in the longer term it is possible
these are supplanted, e.g., by direct brain-computer interfaces
such as Elon Musk’s Neuralink.

Combined, continued advances in the above four areas will
result in a fundamentally transformed environment in which
applications and services execute. It is unlikely that the current
approaches to designing and building networked services are
capable of taking full advantage of the new capabilities. Still,
the major initiatives of both the industry and academia to
build the foundation for the future systems are based on
projecting the current system designs and architectures into
the future, rather than projecting the evolution of the existing
enabling technologies and latent human needs into the future
and reasoning backwards what the system design should look
like. For instance, the IoT vision is to connect every-thing into
the Internet and make them accessible via centralized cloud
based services. The 5G vision is to build fundamentally the
same type of mobile networks as previously but with an order
of magnitude higher bitrates, lower latencies, more devices
and lower operational costs via virtualization techniques. The
model of services as a centralized brain with centralized
control operating in a remote data center with appendages
reaching out to the users via the Internet and mobile operators
is deeply ingrained in these designs. We seek to deviate from
this conventional vision of the future and to put the human
users at the center of the system architecture, allowing them
to reach out to and directly leverage all the capabilities of the
surrounding environment without going through the cloud or
centralized service providers.

III. CONCEPTUAL DESIGN

The basic approach that we follow consists of three parts:
1) Decomposing the service into its constituent components
of computation. 2) Dynamically instantiating a set of com-
ponents, that comprise an entire service, in the environment.
3) Wiring the I/O of the components together—i.e., setting up
the control flow. In this section we define the key concepts of
composable component, out of which the high level services
are composed, and event-based interactions between the sets
of distributed components. We show our concrete framework
design to enable these concepts in practice in the Section IV,
and show how to apply them to build a distributed application
in Section V.

A. Composable Components

The first part of our approach, as stated above, is to
decompose the complex service into smaller, self-contained
units of functionality, which can dynamically distributed over
multiple devices in the execution environment surrounding
the user. The key concept of our design is the composable
component—a simple, self-contained unit of functionality,
which can be composed with other such units at runtime. This

facilitates the componentization for the design and develop-
ment of distributed applications and services, i.e., the creation
of a suite of components that collaborate to provide the
desired functionality. This reduces the complexity of designing
services that span multiple physical devices in a continually
changing environment, since the designer does not need to
understand and design for the specific environment where the
service will execute—it is enough to design the decomposition
(components and their relationships) of the service.

Composable components must have the following character-
istics: Small: small manageable piece of work that provides a
distinct, single-purpose functionality. Modular: self-contained
with well-defined APIs to interact with other components. Op-
portunistic: interacts opportunistically with other components,
which reside in different processes on the same or a remote
device. The duration of the presence of the component in the
system at runtime is unspecified. Independently deployeable:
comes as code executable by its own runtime or by a generic
framework. Indepentently pluggable and replaceable: can
be (un)plugged to the system and operate without any manual
administration, can be replaced and upgraded without affecting
the other components. stateful or stateless: can be stateful by
encapsulating a data store or stateless, in which case it interacts
with a remote database to either transform further the stored
content and act as a service or display content to the end-user.

We define two types of components: services and widgets.
Service components can be either stateful or stateless, and
contain business logic useful for other components. A service
component might implement a particular computational task,
e.g., running an image recognition algorithm on a provided
image, or it might provide a storage service, e.g., a database
queryable via SQL-statements received as events or through
RPC calls. Widget components, in contrast, are used for inter-
acting with the (human) users. They are stateless and present a
user interface to the end-user, e.g., by displaying an interactive
interface on a large touch display (e.g., smart kiosk) to some
data from a service component. The system might define
multiple widgets for the same service, designed for different
user interface devices, ranging from LEDs and buzzers, to
smart watches and smartphones, to smart kiosks and projection
displays, to futuristic virtual and augmented reality devices. In
classical terms, the widgets would correspond to the frontend
and service components the backend of the system. We provide
a more detailed description of the components in Section IV.

B. Event-Based Component Interactions

The second part of service creation, after the decomposition
into self-contained functional units, is to facilitate the run-time
interactions between the components. Our design divides this
problem into two distinct contexts—inside and outside of a
device. This division is important, because the environment
within a device is largely static and centrally controlled, while
the environment around the device is dynamic, ever-changing
and under no central authority. Which in turn means that inside
a device we can tightly bind sets of components together,

Produc

er

F

F

Serv

er

Remote PubSub

Local RPC

query:
params replyTo qId

queryResponse:
replyTo qId

Local PubSub

publish Event
Ev
en
t

y Event

Consumer

Server

Event Bus

Event Bus

Consumer

Producer

Client

Producer

Consumer

Consumer

Server

Fig. 1. Supported interaction models for the service components.

while any interactions with components outside the devices
are necessarily opportunistic in nature.

We take an event bus based approach—popular in, e.g.,
modern backend systems—which allows interacting compo-
nents to be decoupled and freely added and removed at
runtime. Conceptually, the components attach to a shared bus
and interact by sending and receiving events. The events are
(topic, data)-tuples, and the components publish them into
the bus and subscribe to receive events for specific topics—
the topic names can be flat or have an explicitly designed
information structure. I.e., components publish events for con-
tent dissemination, database operations or other requests, and
interested components take actions based on those events. We
follow this topic-based publish-subscribe messaging paradigm
for component interactions both inside and outside the devices.

More specifically, as shown in Figure 1, we provide: 1) ex-
ternal topic-based publish-subscribe events, 2) internal remote
procedure calls (RPC) between components, and 3) internal
topic-based publish-subscribe events.

For device-internal interactions, we rely on a non-persistent
event bus that routes events from publishers to subscribers
in real-time—e.g., a message broker that routes messages
from producers to consumers as shown at the bottom of the
figure. The local RPC mechanism can be overlaid on the
publish-subscribe model by extending the event to a (remote-
procedure, reply-id, query)-tuple, where the remote-procedure
identifies the procedure to be called, reply-id is used to
associate responses to queries, and the query contains any
parameters and other details required by the procedure. The
mapping from the RPC event tuple to the ordinary event tuple
can be done transparently by the framework (see, e.g., [9]).

Device-external interactions require a different abstraction
because the surrounding environment is dynamic and uncon-
trolled. We take the approach of opportunistic networking [22],
which we abstract as a persistent remote event queue. Local
components will publish and subscribe to the remote event
queue similarly to the local event bus, but the delivery seman-
tics are different. In particular, the devices will opportunisti-

cally synchronize their remote event queues when they form
communication contacts between each other, meaning that
there are no guarantees about delivery, delays, or ordering of
the remote events. Multiple opportunistic networking systems
and implementations exist that fit this abstraction[24], [15],
[8], so we do not define a new one.

C. Runtime Service Composition

The final part of the service creation, after decomposition
into a set of components and their interaction relationships,
is to arrange for them to be executed in the environment.
For this we rely on the same opportunistic networking mech-
anisms as for the remote interactions between components
described above. Each component of a service is compiled
into executable form and combined with a set of metadata
describing it to the composition system. In particular, the
metadata describes the resource requirements and dependen-
cies of the component, and any security parameters (e.g.,
the publisher’s signature). Then each bundle of a component,
data and metadata is published into the remote event queue
(i.e., the underlying opportunistic networking platform) and
disseminated into various devices in the environment. The
execution system in these devices loads and executes the
components, subject to the restrictions in the metadata. We
describe the full framework that manages the runtime service
composition next in Section IV.

D. Security

Given that the system is designed to execute arbitrary
computations received from the environment, and to dissem-
inate the input and output data opportunistically between
devices, security mechanisms are needed to guard against
attacks and improper use of the resources. While detailed
security mechanism design is outside the scope of this paper,
we describe the main security issues arising from both the
opportunistic computation execution and communications, and
propose approaches to address them.

The first set of security issues arise from the execution of
arbitrary computations received from the network. An attacker
could craft computation that quickly consumes unlimited
amounts of memory and processor time, denying service to
other computations—and this can be amplified exponentially
if the computations are allowed to create new computations
(similar to a “fork bomb”). To prevent this, the system needs
a runtime that limits the amount of resources any component
can consume both instantaneously and over time. Beyond
just consuming excess resources, attack code may attempt
access unauthorized resources via exploits or due to a lack of
access control mechanism. This could include, for example,
accessing private services of the underlying operating system
or interfering with the execution of other components in the
system. The runtime can employ isolation and sandboxing
mechanism (e.g., the secure computing mode of the Linux
kernel) to limit the calls that the code can make. The compo-
nents could be digitally signed by the developers or deployers,
and the runtime can choose to execute code only from trusted

Fig. 2. Composable System Architecture

sources—or at least have the ability to trace misbehaving
code back to its origin. Beyond the infrastructure protecting
against malicious code, the user may also wish to ensure
that the environment is executing the provided code without
modifications, so that the resulting service can be trusted. For
this, trusted computing hardware support mechanisms could
be employed as a basis for a solution.

The second set of security issues arises from the movement
of data between the computations. As the data can transit mul-
tiple devices, as with all opportunistic networking, the content
will be visible to third parties. To maintain privacy the content
of the messages should be encrypted. This, however, poses a
problem since the components must be able to decrypt the
data in order to operate on it, but the components themselves
are transmitted opportunistically—also exposing any included
key material third parties. This means that a general solution
for data privacy would need to be based on homomorphic en-
cryption mechanisms. Similarly to computational resource use
attacks, an attacker could seek to disrupt the communications
by flooding the network messages. To combat this, the amount
of messages generated by computations could be limited and
filtering mechanisms employed to message exchanges.

IV. FRAMEWORK DESIGN

This section presents the design of a framework for enabling
the composable design concepts described in the previous
section. We detail the elements of the framework and their
interactions, and the design rationale behind them. We do not
describe the implementation here due to space constraints, but
the details can be found in [20] and the source code in [1].

Figure 2 shows how the high level concepts of service
and widget components, and local and remove event buses
are structured within the framework. The left part of the
figure shows a single node instance with the high level
elements. At the bottom is the remote event queue, which will
loosely synchronize events with other framework instances
over opportunistic communication opportunities. Connected
to the remote event queue is the set of service components.

Fig. 3. UML component diagram of the opportunistic application framework.

These will communicate with remote component instances via
the remote event queue, but also provide services to local
components via the local event bus. The user-interface for the
local user is provided via the widget components at the top of
the figure, that exclusively use the service provided by the local
service components—widgets interacting with remote service
components would lead to poor user experience due to the
unpredictable communication characteristics of the underlying
opportunistic networking. A full service instantiation will
require a number of components running on a (dynamic) set
of devices, as shown on the right of Figure 2. The figure
shows an example of a composable application built out of
four service components and five widgets (marked with a black
circle) executing on three different node instances. We give a
concrete example of such an application decomposition and
instantiation in Section V.

More detailed view of the framework architecture is given
by Figure 3, which shows the internal subsystems of a
framework instance. Beyond the buses and components de-
scribed earlier, the framework needs elements for managing
the components—the component registry and the component
controller. The component registry maintains information on
the components installed within a node instance while the
component controller uses the it to check the state of the
running components, manage their lifecycles and install new
components. We describe the details of each element in the
following sections.

A. Service Component

Service components are the units of composition used for
business logic and (persistent) state. As described earlier, the
framework provides the service components interfaces for
internal and external interactions via the eventing system,
which the components use to both consume and provide
services to other components. In addition, they may have
arbitrary interfaces towards the platform capabilities, such
as the filesystem or a locally running database instance—
these are implementation specific details not covered here.
Each service component is packaged independently as self-
contained binaries—along with its dependencies and metadata,

«Framework Subsystem»
Service Component Stateful

«Service Component Subsystem»
Domain Model

l Delete

I

Insert lReceive
Message

«Service Component Subsystem» {]
Storage

Pub/Sub

«Framework Subsystem»
Remote Bus

«Framework Subsystem»
Service Component

Stateless

Pub/Sub

Fig. 4. UML component diagram of stateful and stateless service components

Fig. 5. UML component diagram of widget components.

as described earlier—and distributed inside remote events
between component controllers described later in this section.

Figure 4 show an example design of a stateful and state-
less service components connected via a remote event bus.
The stateful variant shown is divided into a (persistent or
in-memory) storage layer that contains the state, and the
domain model layer that contains the business logic. In this
configuration, the storage layer acts as a cache to the business
logic, storing and passing on incoming events as they are
received from remote components. As shown on the right
of the figure, the service components can also be stateless,
simply mapping incoming events to outgoing ones without
maintaining any state. A typical pattern is to have both
stateful and stateless components interacting, for example, by
installing stateful data aggregation components in stationary
nodes in the environment and running a stateless component on
a mobile device that picks up remote events from the stateful
components and passes them onto interface widgets.

B. Widget Component

Widget components represents a platform-dependent user
application that contains all the views and view controllers
to display the content to the user and handle the user
interactions. The only framework dependency they have is
the local event bus interface, through which they read and

write user-generated content. The widgets are not aware of
the underlying networking infrastructure and only consume
and produce local events (publish-subscribe and RPC). They
can be full standard (mobile) user applications with platform
dependent interfaces, or individual components displayed as a
part of, e.g., a dashboard-style combined interface, or even just
provide minimal user interaction via, e.g., LEDs and buttons.

Figure 5 shows an example with the framework local bus,
a sensor and a view widget component. Both view and sensor
widgets consume the event interface provided by the local bus
in order to publish and subscribe to local events. The view
widget is composed of the View subsystem which contains
all the application view elements and the ViewController
subsystem which is responsible for receiving the local events
published by the local bus and handle them properly in order
to pass the required information to the views. In addition, it
receives the user input and publishes it to the local bus. In
the case of the sensor widget, it is composed of the Sensor
subsystem which is a platform sensor module that provides an
interface for getting notified when a new sensor value has been
recorded, and the SensorController subsystem which gets the
sensor value and publishes it to the local bus so that the service
components can also get the value—the interaction could also
work the other way, with a service component reading the
sensor value and publishing the value as an event to widgets.

C. Remote Bus

The remote bus abstraction is the fundamental architectural
element that enables components distributed in the environ-
ment to directly interact with each other by agreeing on a com-
mon set of remote events. It provides remote publish-subscribe
messaging as described in section III-B by encapsulating an
opportunistic networking system.

While our prototype implementation is based on the Liber-
outer neighborhood networking system[14], any system that
provides the following features can be used (e.g, [24], [8]):
Peer discovery: Detecting peers that can be reached via
various communication technologies either directly (Wi-Fi
Direct, Bluetooth, LTE D2D) or via an infrastructure network
(Wi-Fi, LTE), and opening communication contacts to them.
Routing and dissemination: Deciding which messages should
be passed to which peers. Could be, e.g., Delay-Tolerant
Networking routing algorithms or opportunistic data dissemi-
nation algorithms. Storage: The remote bus is not a real-time
abstraction, instead the remote events are assumed to have a
significant lifetime, during which they are replicated between
framework instances—and to enable this, the events must be
stored for an extended period of time. This matches the store-
carry-forward paradigm typically employed by opportunistic
networking. Publish-subscribe messaging: The abstraction
used is a topic-based publish-subscribe, rather than end-point
centric send-receive messaging.

D. Local Bus

The local bus is an abstraction of real-time, non-persistent
event distribution between local components—typically imple-

mented in-memory, possibly within the same address space
as the components (in a monolithic framework implemen-
tation). It is used to decouple the widgets layer from the
services layer—the presentation from the business logic—and
to realize the local publish-subscribe and RPC interactions
between components. The widgets layer is only connected
to the local bus since they are used for user interaction,
which requires immediate interactions and tight control loops
between components, which is not possible over the remote
bus described in the previous section. If we want a widget that
listens to a remote service component, we need to deploy a
local service component that interacts with the remote service
component via the remote bus and publishes events to the
widget via the local bus.

The local bus approach enforces separation of concerns
and the single responsibility principle, which leads to a more
modular design that implies increase of composability. Further,
since the components are not tightly coupled, they can be
individually added and removed at runtime without affecting
others. This enables upgrading, expanding, load balancing and
scaling of the application or service at runtime simply by
deploying new components.

E. Component Registry

The Component Registry is responsible for keeping track
of the components, and persisting the component binaries and
metadata. It runs on every node and exposes an interface via
the remote bus to access information about the components
such as name, state (active, running, disabled), type and
version. This enables the discovery of components in the
network and can be used in complex scenarios where, e.g.,
an application is composed out of specific components and
there are multiple in the network with similar functionality.
An event message of type registry query can be published
to the topic component-registry, requesting of the list of
running components, and based on this information the proper
service binding can be decided. A concrete example is a
user-composable application where the users can choose what
service and widget components to bind together, e.g., the user
decides to use the university-party-photos service component
and bind it to the awesome-gallery-view widget instead of
the simple-gallery-view widget. In addition, it provides a local
interface via the local bus to allow the component controller
to register and manage the components, as described next.

F. Component Controller

The component controller manages the components on a
node. It runs independently and handles the lifecycle of a
component—it is able to install, uninstall, stop, start and
replace components. It provides an interface for other com-
ponents in the network to publish their services and widgets,
including their metadata. Then it decides whether the received
component should be installed on the node or not—applying
security, resource management and other policies. It queries
the component registry through the local bus to look up,
register and unregister components.

t1

t2

t3

Fig. 6. Opportunistic classroom polling application scenario.

V. DESIGNING COMPOSABLE APPLICATIONS

This section presents an example design of an opportunistic
classroom polling application to demonstrate the application
of the framework in practice, and to be used for the evaluation
in Section VI. Due to space constraints we do not present the
details of the implementation here, but they can be found in
[20]—along with two further application examples—and the
source code can be found in [1].

Figure 6 shows the high level application scenario of a
lecture in a classroom attended by a teacher and a number of
students, all of whom we assume to be carrying smartphones
running our framework. Further, the classroom is assumed
to hold fixed infrastructure, in particular a large projection
screen driven by a computer also running our framework.
We want to create a polling application that allows the
teacher to create a poll question, which will be displayed
on the projection screen, and allow the students to answer
the poll from their smartphones. The app should calculate
the results and display them on the projection screen and the
teacher’s device. Importantly, we do not want anything to be
pre-installed in the classroom or student devices, but rather
dynamically instantiate the service in the various devices for
the duration of the class, and have it disappear after the class is
over. This process is shown in the figure, where at time t1 the
teacher enters the classroom carrying all the components of the
polling service. At time t2 the framework will disseminate the
components to the classroom infrastructure (computer attached
to the projection screen) and from there to the students’
devices at time t3 as they enter the classroom. Once the
components have been deployed, they provide the different
user interfaces and business logic in the various devices to
carry out the polling process—and get removed from the
devices as the students and the teacher leave the classroom.

Figure 7 presents the system decomposition using a com-
ponent UML diagram. We define three different roles for the
devices: 1) PollCreator, which allows the user to create and
publish new polls. It is also the service creator and publishes
the components to the other nodes. 2) PollManager, stores and
manages the polls and aggregates the poll answers to generate
the results. 3) PollParticipant, which offers a UI to the users
to respond to the polls and display the results.

PollCreator comprises two components, the Poll Creator
Widget (PCW) and the New Poll Service (NPS). PCW pro-

Fig. 7. UML component diagram of the polling application

vides a user interface to the users for creating and publishing
polls. It also stores the binaries for all the other components,
which it will disseminate into other devices in the surrounding
environment. PCW publishes both the binaries and the new
polls as local events to the local bus. The business logic for
the creator is contained in the NPS. It receives local events
NewPollLocal for receiving a new poll and InstantiateCCLocal
for receiving a component binary and metadata from the
PCW. As soon as it receives the local events, it stores the
NewPollLocal in its local database and prepares the remote
events, NewPollRemote and InstantiateCCRemote, containing
the user content and component binaries respectively, and
publishes them to the remote bus.

The PollManager node is designed to run in a static in-
frastructure node, serving the same role as backend server
would in a classical design. It is loaded by the framework
from a remote InstantiateCCRemote event published by the
PollCreator. It is comprised of widget components, the Pub-
lished Polls Widget (PPW) and the Poll Results Widget (PRW),
and a service component, Poll Management Service (PMS).
The PMS is maintains the published polls and calculates the
poll results. As soon as it receives a NewPollRemote event, it
publishes a remote PollPublishedRemote event to notify the
interested remote components about the published poll.

The PollParticipant node provides a user application for
responding to the published polls. It is composed of a Poll
Participant Service (PPS), the Poll Answer Widget (PAW) and
the Poll Results Widget (PRW). The PPS receives new polls
via the PollPublishedRemote events and publish them locally
to the PAW, which displays the poll to the user. When the
user responds to a poll, the PAW creates a PollAnswerLocal
event and publishes it to the local bus. The PPS receives the
user answer, stores it and publishes a PollAnswerRemote to
the remote bus.

The PMS component on the PollManager node receives
the user answer and updates the poll results based on the
new value. Subsequently, it publishes the PollResultRemote
and PollResultLocal events so that the interested local and
remote PRW compoennts receive the new poll result. The
PPW and PRW display the published polls and the poll results
respectively on the projection screen so that everyone can view
the content. Additionally, the users’ mobile devices which act

as PollParticipant nodes get the content on their screens, as
does the teacher’s PollCreator node.

VI. EVALUATION

We evaluate a prototype implementation2 of the framework
and the polling application in a small testbed with mobile
and stationary devices. The evaluation focuses on two cases:
1) static, minimal topology to show the characteristics of the
service instantiation and operation, and 2) dynamic scenario
that shows how a service can be composed in a dynamically
changing environment.

A. Static Scenario

The static evaluation scenario is comprised of two mobile
devices (Android 4.4.2, 1.4/1.6 GHz A7/A9, 2/1.5 GB RAM),
which act as the PollCreator and PollParticipant, and a laptop
(Windows 8.1, 1.7 GHz i5, 8 GB RAM) which acts as a
PollManager (see Section V)—we call these Client A, Client
B and Liberouter respectively. The devices are connected to
the same Wi-Fi access point for the entire duration of the
test. Each device starts each experiment with the framework
software installed, while Client A carries all the components of
the poll application. We first analyze the instantiation phase
where the components are distributed and initialized in the
devices, and then the functional phase where the poll service
is operational. In the functional phase we automatically create
polls every 30 seconds via the PCW from Client A and the
Client B automatically responds to the received polls. We
collect logs generated by the framework, components and the
Scampi middleware, and compose a timeline and delays of
events in the system from them.

1) Service Instantiation Phase: Figure 8 shows the ob-
served flow of remote event messages that lead to the in-
stantiation and configuration of the poll service. Specifically,
at time t0, Client A (PollCreator) publishes the event Con-
figMessage which includes the PollManagementService.jar
and configuration metadata for instantiation by the receiving
node. The configuration information includes the node role—
SERVICE_INFRASTRUCTURE—and thus it is handled and
instantiated by the Liberouter node (1.1 Instantiate PMS.jar).
In the meantime, at time t1, Client A (PollCreator) publishes
another ConfigMessage with the PollParticipantService.jar
with the role SERVICE_MOBILE, which is handled by Client
B (2.1 Instantiate PPS.jar) acting as the PollParticipant node.
Finally at time t3, Client A publishes the last ConfigMessage
for the PollParticipantWidget component. The role of this com-
ponent is WIDGET_MOBILE and is handled and instantiated
by nodes of type PollParticipant. Each of the timestamps t2,
t4 and t5 denote the completion of the component instantiation
on the corresponding nodes.

We measured the mean latencies and 95% confidence inter-
vals (CI) for the three instantiation steps (tPMS = t2 − t0,
tPPS = t4 − t1, tPPW = t5 − t3). For the tPMS , that
represents the instantiation of the PMS component of size

2Implementation description is omitted here due to space constraints—it
can be found in [20]. The source code is available in [1]

Fig. 8. UML sequence diagram of instantiation phase.

Client A Cient BLiberouter

1: publi h

1.2: publish P

h PollA
nswer

1.6: publi h

1.1: process NewPoll

1.3: create
PollAnswer

t0

t1

t2

t3

Fig. 9. UML sequence diagram of functional phase.

24 KB in the Liberouter node, the mean delay 14.6 s with
95% CI [8.0 s, 21.2 s]. The delays for instantiating the PPS,
tPPS are similar, with a mean of 11.2 s and 95% CI [6.2 s,
16.2 s]. The delay to instantiate PPW, tPPW , is even longer—
average of 54.1 s and 95% CI [37.5 s, 70.6 s]—as this involved
manual user interaction to gain the permission to install the
widget component that arrives as an Android APK file. Since
the transmission times in our setup are low, the relatively
long delays reflect the overheads of dynamic code loading
and execution from JARs—we believe a production quality
implementation would reduce these by an order of magnitude.

2) Functional Phase: The flow of events between the
devices recorded during the operation of the application—
creating, answering, aggregating and displaying poll results—
is shown in Figure 9. The interactions consists of local and
remote events, but here we present only the remote interactions
due to space restrictions—further analysis of local interactions
are reported in [20].

More specifically, Client A publishes the remote event New-
Poll at time t0, which contains the question and answer options
for a new poll. After the event arrives on the Liberouter, the
PollManager extracts the new poll information, checks if the
poll already exists in the database and if not, stores it locally
and publishes an external event PollPublished. At time t1 the
PollPublished arrives at Client B, which processes the event
and automatically selects the first poll answer option—the
delay from the poll creation at t0 to the participant receiving
it at t1 was on average 1.50 s with 95% CI [1.49 s, 1.51
s]. At time t2, the participant publishes the PollAnswer event

0

20000

40000

60000

80000

100000

120000

140000

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440

P
O

LL
P

U
B

LI
SH

ED
 D

EL
IV

ER
Y

TI
M

E
{M

S}

NEWPOLL CREATION TIME {S}

Client B

Fig. 10. PollPublished remote event delivery delay in ms to Client B.

to the remote bus. The full delay from the poll event being
received from the network, displayed by the user widget, to
the answer being published into the network was on average
0.78 s with 95% CI [0.75 s, 0.81 s]—this represents all
the interactions between the components in the local system
When the PollAnswer arrives at Liberouter, the PollService
component updates the poll results and publishes a new
PollResult event to the remote bus. At time t3, on average 0.61
s (95% CI [0.60 s, 0.62 s]) after publishing the answer, Client
B receives the PollResult. This shows that once the system has
been fully initialized, the interactions between the participating
nodes are fast enough that the user perceives instantaneous
operation even though the service is composed of components
running on three separate devices.

B. Dynamic Scenario

Since we target a highly dynamic execution environment,
we also need to study the behavior of the composed poll
application in the face of changes in the environment. We do
this by looking at two different changes: 1) Temporary node
absence, where a node temporarily leaves the area where the
poll application is deployed and then returns. 2) Infrastructure
failure, where the static node running the PollManager service
fails and another instance takes its place. In both cases the sys-
tem should automatically recover and rebuild the application
state. We use the same testbed and scenario setup as in the
static functional phase test described in the previous section,
but we introduce scheduled failures to the Client B Wi-Fi
connectivity and the Liberouter framework instance.

1) Temporary Node Absence: In this experiment, we
demonstrate the capability of the PollParticipant node to
reconstruct the current and previously published polls state
after a disconnection from the network. The Wi-Fi on Client
B is being switched on and off every 120 seconds, resulting in
equally long connected and disconnected periods, while Client
A publishes new polls every 30 seconds.

Figure 10 illustrates the end-to-end delays for the NewPoll
and PollPublished local and remote event messages from the
perspective of Client B as a function of the creation time of
the local event NewPoll by the PCW component on Client A.
A sawtooth pattern with a period of 240 seconds (twice the

0

20000

40000

60000

80000

100000

120000

140000

160000

0 120 240 360 480 600 720 840 960

P
O

LL
P

U
B

LI
SH

ED
 D

EL
IV

ER
 D

EL
A

Y
{M

S}

NEWPOLL CREATION TIME {S}

F F'

Fig. 11. NewPoll remote event delivery delay in milliseconds on Liberouter
in function of NewPoll local event creation time in seconds on Client A

switching period) is formed due to the remote events being
buffered in the remote queue while Client B is disconnected.
The delay reaches its peak just after the end of the of each
connected period and approaches its minimum values during
the connected period—just as expected for a delay-tolerant
message delivery. The maximum delay shown in Figure 10
for the first part of the functional phase is approximately 122
seconds, which corresponds to the disconnected periods due to
Wi-Fi switching off. During the connected periods the delays
are close to zero which leads to real-time experience that
resembles centralized infrastructure network behavior. These
results show that the participants—in this case students—can
enter and leave the area of application deployment freely and
the system will automatically synchronize the application state.

2) Switching Framework Instance: With this experiment,
we demonstrate the capability of the system to recover from
failures of the central PollManager node. In this case we run
two framework instances, F and F’, in the central (Liberouter)
node. Every 120 seconds we stop one of the instances and start
the other one, which simulates the failure of one device and
appearance of another. We seek to prove that when one device
in the environment fails, another one can automatically take
over its duties. Similarly to the previous test cases, Client A
and Client B act as PollCreator and PollParticipant respectively
and Liberouter as PollManager.

Figure 11 shows the delays of the remote events, due to
the polls created every 30 seconds by Client A, delivered to
the Liberouter. We observe the same sawtooth pattern with
240 second period as in the previous case, again caused by
buffering of events by the remote event bus while the node
is not reachable (in this case due to being switched off)—
although here we observe two of these patterns corresponding
to the two different framework instances F and F’. We can
further observe that despite the framework instances going on
and off, there is always an active one being able to process
the event at close to zero delay—in other words, the system
is seamlessly handing over the tasks from the failed node
to the new active one. These results show that the central
PollManager role can be dynamically moved between devices
in a dynamic environment.

VII. RELATED WORK

Our work relates to multiple different areas of research
within the space of pervasive computing[23], opportunis-
tic networking[22], opportunistic computing[6] and cyber-
physical systems[5]. The idea of allowing mobile clients to
exploit the resource in the environment traces back to the
late 90s, with seminal work on location-aware services[12],
[2]. We aim to carry this vision to the future environments,
where the clients are not seeking and using services already
existing in the environment, but rather using the environment
to execute their own custom applications. The idea of com-
posing services by exploiting resource of nearby devices via
opportunistic contacts is also not new—a theoretical model
and analysis given by Passarella et.al[21], special purpose
designs have been done for specific use cases such as sensor
inference[11] and middlewares[4], [19] have been proposed to
help developers with various aspects of mobile computing. Our
design goes beyond this state of the art, providing a simple,
practical platform for service composition and execution, that
meets the demands of the future computational environment.

Under the umbrella term mobile edge computing[18], [25],
significant work has been done on systems that execute
parts of mobile users’ applications on generic computational
component in the near environment or further in the network.
A rough division can be made between computational/code
offloading[17], [10] where a primarily user device resident
application pushes a resource heavy computation to the cloud
or a nearby device, and operator driven mechanisms, such
as fog computing[3] and 5G edge computing[13], where a
primarily network resident service pushes latency sensitive
computation to the edge of the network near the user. In mobile
code offloading, the focus of research has been on improving
performance[16] and saving energy[7] by making offloading
decisions—our focus is using the environment to dynamically
compose entire services from many interacting computations
that could not be run on the users’ device alone.

VIII. CONCLUSION

In this work we presented our vision of what the future com-
putational environment will look like and what opportunities
it provides for application and service developers. We believe
our framework for decomposing services into components
and opportunistically distributing then in the environment will
enable future developers to take full advantage of all these op-
portunities. In this paper we laid the groundwork by presenting
the system design, showing how it can be used to create a non-
trivial service that executes on multiple devices, and proved
the feasibility of it through a prototype evaluation. There
does, however, still remain a large number of open issues
that will need to be tackled—security, resource management,
intelligent component orchestration, and supporting very low
power platform, to name a few. We are planning to study all
these issues in future work, as well as build larger testbeds and
more applications to evaluate the practicality of the system.

ACKNOWLEDGMENTS

This work was supported by the European Commission
Horizon 2020 Programme RIFE Project Grant No. 644663.

REFERENCES

[1] Microframe source code. https://goo.gl/7HXB23.
[2] P. Bahl and V. N. Padmanabhan. Radar: An in-building rf-based user

location and tracking system. In IEEE INFOCOM, 2000.
[3] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog computing and its

role in the internet of things. In Proceedings of the first edition of the
MCC workshop on Mobile cloud computing, pages 13–16. ACM, 2012.

[4] L. Capra, W. Emmerich, and C. Mascolo. Carisma: Context-aware
reflective middleware system for mobile applications. IEEE Transactions
on software engineering, 2003.

[5] M. Conti, S. K. Das, C. Bisdikian, M. Kumar, L. M. Ni, A. Passarella,
G. Roussos, G. Tröster, G. Tsudik, and F. Zambonelli. Looking ahead in
pervasive computing: Challenges and opportunities in the era of cyber–
physical convergence. Pervasive and Mobile Computing, 2012.

[6] M. Conti, S. Giordano, M. May, and A. Passarella. From opportunistic
networks to opportunistic computing. IEEE COMMAG, 2010.

[7] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl. Maui: making smartphones last longer with
code offload. In Proceedings of the 8th international conference on
Mobile systems, applications, and services, pages 49–62. ACM, 2010.

[8] C. Dannewitz. Netinf: An information-centric design for the future
internet. In GI/ITG KuVS Workshop on The Future Internet, 2009.

[9] M. J. Demmer, K. R. Fall, T. Koponen, and S. Shenker. Towards a
modern communications api. In HotNets. Citeseer, 2007.

[10] H. Flores, P. Hui, S. Tarkoma, Y. Li, S. Srirama, and R. Buyya.
Mobile code offloading: from concept to practice and beyond. IEEE
Communications Magazine, 53(3):80–88, 2015.

[11] P. Georgiev, N. D. Lane, K. K. Rachuri, and C. Mascolo. Leo:
Scheduling sensor inference algorithms across heterogeneous mobile
processors and network resources. In ACM MobiCom, 2016.

[12] T. D. Hodes, R. H. Katz, E. Servan-Schreiber, and L. Rowe. Composable
ad-hoc mobile services for universal interaction. In ACM MobiCom,
1997.

[13] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young. Mobile
edge computingâĂŤa key technology towards 5g. ETSI white paper,
11(11):1–16, 2015.

[14] T. Kärkkäinen and J. Ott. Towards autonomous neighborhood network-
ing. IEEE WONS, 2014.

[15] T. Kärkkäinen, M. Pitkänen, P. Houghton, and J. Ott. Scampi application
platform. In ACM MobiCom CHANTS, 2012.

[16] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang. Thinkair:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading. In Infocom, 2012 Proceedings IEEE, pages
945–953. IEEE, 2012.

[17] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava. A survey of computation
offloading for mobile systems. Mobile Networks and Applications,
18(1):129–140, 2013.

[18] P. Mach and Z. Becvar. Mobile edge computing: A survey on archi-
tecture and computation offloading. IEEE Communications Surveys &
Tutorials, 19(3):1628–1656, 2017.

[19] C. Mascolo, L. Capra, and W. Emmerich. Mobile computing middle-
ware. In NETWORKING. Springer, 2002.

[20] C. Papadaki. Master Thesis: An Architecture for Composable Dis-
tributed Applications and Services in Disconnected Information-centric
Networks. https://goo.gl/VpcJgp, 2016.

[21] A. Passarella, M. Kumar, M. Conti, and E. Borgia. Minimum-delay
service provisioning in opportunistic networks. IEEE Transactions on
Parallel and Distributed Systems, 2011.

[22] L. Pelusi, A. Passarella, and M. Conti. Opportunistic networking: data
forwarding in disconnected mobile ad hoc networks. IEEE COMMAG,
2006.

[23] D. Saha and A. Mukherjee. Pervasive computing: a paradigm for the
21st century. Computer, 2003.

[24] S. Schildt, J. Morgenroth, W.-B. Pöttner, and L. Wolf. Ibr-dtn: A
lightweight, modular and highly portable bundle protocol implemen-
tation. Electronic Communications of the EASST, 37, 2011.

[25] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang. A
survey on mobile edge networks: Convergence of computing, caching
and communications. IEEE Access, 5:6757–6779, 2017.

