
FADES: Fine-Grained Edge Offloading with Unikernels
Vittorio Cozzolino

Technical University of Munich
cozzolin@in.tum.de

Aaron Yi Ding
Technical University of Munich

ding@in.tum.de

Jörg Ott
Technical University of Munich

ott@in.tum.de

ABSTRACT
FADES is an edge offloading architecture that empowers us to run
compact, single purpose tasks at the edge of the network to support
a variety of IoT and cloud services. The design principle behind
FADES is to efficiently exploit the resources of constrained edge
devices through fine-grained computation offloading. FADES takes
advantage of MirageOS unikernels to isolate and embed application
logic in concise Xen-bootable images. We have implemented FADES
and evaluated the system performance under various hardware and
network conditions. Our results show that FADES can effectively
strike a balance between running complex applications in the cloud
and simple operations at the edge. As a solid step to enable fine-
grained edge offloading, our experiments also reveal the limitation
of existing IoT hardware and virtualization platforms, which shed
light on future research to bring unikernel into IoT domain.

KEYWORDS
Edge Computing, Virtualization, IoT

1 INTRODUCTION
Edge computing and Internet of Things (IoT) have become closely
coupled in recent developments. IoT was initially conceived as
extending the Internet with a new class of devices and use cases
(e.g., personal devices, constrained networks). Early architectures
and frameworks introduced the notion of cloud-dependent IoT
deployments, with the assumption that most/all IoT edge networks
need to be connected to the cloud. However, there are some cases
in which this tight coupling between cloud and IoT is not desirable.
For example, when: a) data needs to be processed at the edge, b)
delay sensible applications require real-time responses, or c) the
amount of data is too large to upload to the cloud (in real-time)
without congesting the backhaul. Based on this observation, we
advocate a divide and conquer approach where IoT and edge devices
actively participate in the completion of a task instead of being
passively polled by cloud services.

In this context, a key domain that will benefit from the interplay
of edge and IoT is Smart Cities: complex environment with manifold
IoT devices deployed by different providers and serving many pur-
poses. Moreover, each device would posses different computational
and sensory capabilities with varying geographic locations adding
to the system convolution. Edge devices will have the responsibility
to handle adequately the IoT resources and execute tasks follow-
ing the back-end instructions. Meanwhile, not everything can be
offloaded. A classification based upon application complexity, prior-
ity, criticality, power consumption and required physical resources
can help in assessing which task to offload. The combination of
hardware capabilities and software requirements will ultimately
guide the choice.

We define this approach as edge offloading. Edge 1 offloading re-
visits the conventional cloud-based computation offloading, where
mobile devices resort to resourceful servers to handle heavy compu-
tation [6]. To cater for the demands of IoT services, our approach is
reversed: we promote a paradigm where computation is dispatched
by the servers to constrained devices deployed at the network edge,
close to users and data generators.

To enable edge offloading, recent technological breakthrough
in virtualization has provided us new opportunities. For instance,
Docker completely revisited the concept of VM by introducing con-
tainers. Containers focus on virtualizing at the operating system
level, whereas other hypervisor-based solutions focus on abstract-
ing the hardware layer. In the process of creating smaller and more
specialized VM, unikernels have emerged as a promising techno-
logy. In essence, unikernels are single-purpose appliances that are
compile-time specialized into standalone kernels [7]. Unikernels
contain exclusively the application code guaranteeing a reduced
image size, improved security and greater manageability.

Our main contribution is FADES (Function virtulizAtion basED
System), a modular system architecture designed for IoT edge of-
floading. To achieve reliability, scalability and flexibility, FADES
takes advantage of MirageOS unikernels to isolate and embed ap-
plication logic fragments in small, Xen-bootable images.We decided
to adopt the unikernel technology for our implementation because
it fits exactly our requirement to run single-purpose tasks without
offloading complete application logic. Security is a core benefit but
not the main motif behind our choice. Besides system design, the
lessons learned from our experiments across different IoT hard-
ware and platforms also shed light on future research to integrate
unikernel into the IoT domain.

The rest of the paper is structured as follows: motivation and
background (§ 2), related work (§ 3), system architecture descrip-
tion (§ 4), system implementation (§ 5), system evaluation (§ 6),
discussion (§ 7) and finally future work and conclusions (§ 8).

2 MOTIVATION AND BACKGROUND
Simplicity is key to the IoT. Regardless of the back-end services,
edge devices have to execute simple operations on data locally avail-
able. Therefore, by splitting a complex application into manifold
simple and single-purpose tasks we can ship them in the shape
of lightweight containers (specifically, unikernels). Task fragment-
ation grants also the possibility to hide the complete application
logic for security concern.

IoT diversity and cardinality are like double-edged blades. On
one hand we face the problem of heterogeneity and lack of stand-
ards. On the other hand, the massive scale of envisioned devices is
a powerful source to harness. The core motive behind our system is

1Currently, there is no accepted definition of the difference between Edge and Fog. In
this paper, we will use the term Edge to refer to groups of constrained devices deployed
at the edge of network and able to process local data.



exactly to leverage this power in the right way. The combination of
locally available resources, computational power and capabilities
are key elements to properly offload tasks and, therefore, exploit IoT
resources. Moreover, heterogeneity is less troublesome when we
have intermediate nodes supervising and managing clusters of IoT
devices instead of entrusting all this knowledge and responsibility
to the cloud. This multi-level (cloud, edge and IoT) information
pipeline is also motivated by the necessity of reducing the uplink
access parallelism. By offloading computation we progressively
aggregate data along the pipeline reducing massively the data to
be uploaded and easing the burden on the cloud. Latency is also
affected when we move computation closer to the data to be ma-
nipulated. However, not everything can be offloaded. Parameters
as application complexity, priority, criticality, power consumption
and required physical resources have to be taken into account.

Last but not least, security and privacy in IoT are increasingly
important [12]. Small IoT devices are not powerful enough to guar-
antee the required degree of security. Therefore, we advocate the
presence of intermediate control units across the communication
pipeline between IoT and Cloud in a way to introduce additional
resiliency and control. Privacy enabling modules can be deployed
directly next to the source of the data, combined with security con-
trols. Still, these features wouldn’t be possible without a hardened
execution environment. Our design principles offer functionality
isolation and reduced attack surface. Moreover, deployed tasks run
inside a virtualization platform (hypervisor) adding an additional
layer of isolation and protection (subverting the system requires to
find vulnerabilities in the hypervisor rather than the OS, which is
more difficult).

3 RELATEDWORK
Our work follows the trend of exploiting computational resources
outside cloud deployment combinedwith use of unikernels [2, 7, 14].
Computation and data offloading has been explored in different
flavors in [4, 5, 13] for aspects as energy efficiency and offloading
decision policies. Instead, [15] is a pioneer in the field of compu-
tation offloading supported by VMs migration. Their approach is
based on leveraging infrastructure resources based on mobile nodes
proximity with the support of cloudlets: a trusted, resource-rich
computer or cluster of computers. To this end, they adopt dynamic
VM synthesis: a process of merging a static part of a VM with a
dynamic component provided by a mobile device.

Unikernels have been explored in multiple research fields. Some
research directions that make use of unikernels to improve existing
services or propose new system architectures are [1], [10], [11], and
[17].

More recently, Madhavapeddy et al. [8] proposed on-demand
specialized VM instantiation. We leverage the idea of the embedded
cloud presented in this paper and bring it further into the IoT do-
main. Compared with Jitsu, our work is geared towards IoT services
and focuses on the system architecture. Additionally, our evaluation
revealed the limits of unikernels by studying the performance with
bigger payloads and in different network settings.

Airbox [3] presents a software platform based on onloading
and backend-driven cyberforaging. It shares the general direction
presented in our paper in terms of offloading the Edge Functions

FADES

Cloud

Application Logic

Edge 
O�oading

IoT ResourcesEdge Device

Data 
Acquisition

Figure 1: Edge Offloading

(EF). Compared with their solution, FADES achieves fine-grained
offloading by using unikernels instead of Docker technology.

Databox [9] proposes a hybrid physical and cloud-hosted system
for personal data management. The prototype of Databox is based
on Docker. The authors have indicated MirageOS as a possible
candidate to implement future extensions. To this end, FADES is a
unikernel-based system dedicated for IoT edge offloading. Inspired
by one of the use-cases of Databox, we further share our insights
of processing sensors data at the edge through unikernels.

4 SYSTEM DESIGN
Data locality is the key property that drives our system design
principles. We see into this physical distance between cloud and
IoT a gap to be exploited. Therefore, our design introduces an
intermediate unit to enrich and augment the interaction between
IoT resources and External Services (ES), as depicted in Figure 2.

The IoT resources offer physical capabilities to interact with
the environment and carry out basic tasks. The ES are back-end
applications interacting with our system by offloading parts of
their operation logic. In our design, we consider ES as a repository
of deployment-ready tasks designed for different scenarios and
purposes.

Recalling the Smart City example, pollution control is achieved
by querying pollution sensors in the IoT, aggregating the informa-
tion at the edge, and sending the final result to the cloud. In this
regard, FADES resembles a middlebox and oversees groups of IoT
devices based on spatial proximity, as Figure 1 shows. Therefore,
each FADES unit supervises a subset of IoT devices (e.g. pollution
sensors) scattered across the Smart City. Moreover, it has the re-
sponsibility to map and monitor the available IoT resources and
retrieve data from them following the offloaded task requirements.

Based on the definition of edge offloading, our system is designed
to support only pull workflows (from the cloud to the IoT). Push
workflows, where edge devices offload tasks to the cloud, are not
yet supported mostly because covered already in mobile offloading
research.

The main components of FADES include Orchestrator (ORC),
Data Resource Broker (DRB) and Data Manipulation Functions
(DMF). As shown in Figure 2, FADES is an event-based system
that responds to external commands referred to as Metadata Task
Wrapper (MTW), which are issued on-demand by services and
applications. The MTW can be divided into 3 types:

MTW Credentials: This type contains passport-like informa-
tion (e.g., task ID, associated user or service, priority). It’s mainly
used to keep track of the received MTW and schedule its execution.

2



OS

Data Manipulation Function (DMF)

Shared Memory

Data Resource Broker (DRB)

IoT Resources External Services

Hardware Layer

Orchestrator (ORC)Virtualization Platform

Datatask Cell

#1 Result Cell

#2 Result Cell

#3 Result Cell

#N Result Cell

1

2

Data Fetch Module

Resource Discovery

Schedule

Extract and Validate

Service Logic

Data Validation

DRB Health 
Control

General Task 
Validation

Resources
Management

Executors
Monitoring

Cleanup
Procedures

Weather Stations

Pollution Sensors

Surveillance Cameras

Cloud Services

FADES

IoT Command
and Control

Virtual Network

Augmented Reality

Lifecycle Termination

External
Services
Interface

3

4

5

6

7

8

Figure 2: System Design

DRB Metadata: This type contains a list of data retrieval oper-
ations (DTO), which conveys details about what data to retrieve.
DRB Metadata also specifies the source and destination of the data.

DMF Metadata: This type contains application specific details
about the DMF. For instance, the MTW issuer can specify addi-
tional information about extra runtime configuration parameters
or minimal required hardware resources.

4.1 FADES
The core of FADES consists of three components:

Orchestrator (ORC). The Orchestrator is the interface between
the system and the outsideworld. Being a "supervisor" thatmonitors
and controls the system, ORC frequently checks that both DRB and
DMF are running correctly. ORC also takes care of dispatching the
required information to the DRB the moment a new MTW arrives.
It ensures the overall system integrity by monitoring the DRB,
following the life-cycle of each DMF, validating uploaded tasks and
decommissioning terminated DMFs.

Data Resource Broker (DRB). The DRB module localizes and
extracts resources from a groups of IoT devices. Hence, it possesses
the required knowledge regarding which IoT devices to query. The
DRB is completely computation agnostic, whose execution cycle is
event-based and driven by DRB Metadata contained into the MTW
and received by the orchestrator.

Data Manipulation Functions (DMF). A DMF embeds exclus-
ively the relative service logic and stays in a dormant state until
it receives the correct data from the DRB. DMFs can be persistent
or ephemeral, depending on the embedded application logic. Long
running or recurrent tasks might exhibit a persistent behavior while
single-execution tasks have to be deallocated after completion.

Recalling the pollution control example, we can map each FADES
component onto the following roles: 1) the ORC receives from

cloud the tasks to be executed and additional metadata, 2) the DRB
will locate the correct pollution sensors (or weather stations) to
be queried and retrieve the data, 3) the DMF will manipulate the
pollution data received from the DRB, produce the final results and
send them to the ORC.

5 IMPLEMENTATION
FADES is a virtualized, unikernel-based system hosted by the Xen
hypervisor (except for ORC). Our tool of choice is the MirageOS
library operating system, which is specifically designed to build
modular systems and runs natively on Xen. MirageOS offers static
type-safety combined with single-address space layout. Moreover,
being compile-time defined and sealed, any code not presented
inside a MirageOS unikernel during compiling time will never be
executed, and hence preventing any sort of code injection attack
[7].

In FADES, both the DRB and DMFs are MirageOS unikernels
running on Xen as Para-Virtualized Machines (PVM). The former
exclusively retrieves information and the latter process the received
data. We enforce component isolation and independent develop-
ment by confining functionality overlapping.

The DRB is implemented as a daemon unikernel. For internal
communications, it uses two modules offered by Xen: the virtual
network and the XenStore. The virtual network is used to internally
transfer data to the DMFs. On the other hand, XenStore is exclus-
ively used to exchange synchronization messages with the ORC.
The DRB validates and schedules each MTW received from the
ORC. In our implementation, we implemented different scheduling
policies (e.g. sorting by task priority, execution deadline, task ID)
but in the current stage we used a simple FIFO. Currently, the DRB
is able to process in parallel multiple data retrieval operations but is
only able to prosecute a single MTW at a time.

3



The DMFs used in our implementation execute simple aggrega-
tion operations over streams of sensors data (Section 6 will cover
more details about this choice). The result of the computation is
sent to the ORC through Xenstore. DMFs are hooked on the same
virtual network of the DRB and do not have external network ac-
cess. One limitation of using the virtual network is that we need to
manage carefully the IP addresses to avoid collisions. In our current
implementation, we didn’t implement any automated deployment
functionality covering this matter. The system currently supports
parallel execution of multiple DMFs even thought it has not been
fully tested on that regard.

The ORC is developed in Python and it’s the only non-virtualized
module in FADES. We choose Python because it has the right com-
bination of performance and features that make prototyping fast
and flexible. Moreover, the ORC is the only module that handles
reads and writes towards the persistent storage. Our design choice
focused on establishing a loose coupling between the host system
and the unikernels managed by FADES, with the latter being ex-
clusively dependent on virtual resources: CPU, RAM and network.
In order to be independent from the hosting edge device, the DRB
and DMF should be as flexible as possible and ephemeral.

6 EVALUATION
The goal of our evaluation is answering the following questions:

Q1. How different architectures (x86, ARM) affect the perform-
ance of MirageOS? What are the Unikernel PVM memory sizing
requirements in relation to the amount of data to be manipulated?

Q2. How does our system perform under different workloads
and what is the overhead introduced by using multiple modules?

Q3. How much edge deployed services can benefit from data
locality? What is the trade-off?

For our tests, we selected three different devices: a Cubietruck
(Allwinner A20 ARM Cortex-A7 dual-core @ 1GHz, 1GB RAM,
100Mb Ethernet), an Intel NUC (Intel(R) Core(TM) i5-6260U CPU@
1.80GHz, 16GB RAM, 1000Mb Ethernet) and a Dell PowerEdge R520
(Intel(R) Xeon(R) CPU E5-2640 v3@ 2.60GHz, 140GB RAM, 1000Mb
Ethernet) running Xen 4.4, InfluxDB v1.0 and an Ubuntu 14.04 dom0.
Additionally, we used MirageOS 2.9.1 (the latest stable version at
the time of writing), OCaml 4.02.3, OPAM 1.2.2 and Python 2.7.6.

We gleaned the data for the tests from our Intel Edison IoT test-
bed. The testbed is composed by 5 Intel Edison boards deployed in
different office rooms on the campus. Each board continuously col-
lects environmental data through a set of sensors (humidity, temper-
ature, light intensity, audio, proximity). At the time of writing, the
testbed collected roughly 300 millions of data points equally divided
among the 5 sensor classes. Each data point is a row in our database
containing: timestamp, sensor value, sensor type, measurement
unit and location. The deployment has been running constantly
since June 2016.

The testbed is to carry out user-context modeling and correl-
ate sensors readings with human behaviors/actions in each room.
Some of the aggregation operations carried out on the testbed have
inspired the algorithm embedded in our unikernels. Therefore, the
DMFs used for our test execute simple manipulation and aggrega-
tion functions (e.g., calculate minimum, maximum, average) over
sensors data streams.

Max RAM Memory (MB)
32 64 128 256 512

Av
ail

ab
le 

He
ap

 M
em

or
y

0.4

0.5

0.6

0.7

0.8

0.9

1

Effective Heap Memory (ARM)
Starting Heap Memory (ARM)
Effective Heap Memory (x86)
Starting Heap Memory (x86)

Figure 3: Memory Analysis

Memory Analysis. When offloading to resource constrained
devices, it’s important not to abuse the already limited available
hardware resources. In this section we analyze how the available
RAM memory affects DMFs performance. This study serves as a
guideline to the process of correctly dimensioning a MirageOS
PVM. Therefore, we aim at avoiding the over/under dimensioning
issues that could lead to, respectively, waste of resources and out
of memory exceptions.

Figure 3 shows the ratio between available heap memory and
pre-allocated RAM with different architectures (x86 and ARM). On
both architectures the effective available memory is lesser than the
amount allocated at the beginning but the behavior varies between
x86 and ARM. In the first case, the gap is muchmore prominent, and
this directly affects the amount of data processable by the Unikernel
especially in the case of PVM with low allocated RAM memory.

Two main factors influence the available memory for an unik-
ernel PVM: underlying architecture and imported libraries. We
cannot economize on the latter, given that it depend on the specific
application logic. On the other hand, different system architectures
constantly generate different unikernel images. While on ARM
the building output is a Linux kernel ARM boot executable zImage
(.xen) plus a ELF 32-bit LSB executable (.elf), on x86 we have a single
.elf file. The ultimate difference in size of the generated Xen image
on the two architectures affects directly the available memory at
runtime.

Figure 4 shows the correlation between pre-allocated RAM and
maximum amount of processable data. These data has been obtained
by studying in details the performance of a single DMF completely
isolated from the system. We monitored its limits by feeding an
increasing amount of data to process. From our tests, we noticed
that the device resources doesn’t influence at all the maximum
amount of processable data. Hence, the graph shows a generic
comparison between ARM and x86.

The gap between these two architecture is muchmore prominent
in the case of PVM equipped with low RAM memory, whereas it
tends to disappear with 512MB. In some cases, we are only able to
process half of the data on x86 architecture. The red error bar is
the standard deviation.

System Analysis: Overhead and Offloading. The purpose of
this section is to show a performance comparison when executing
task at edge instead of in the cloud.

4



Max RAM Memory (Mb)
32 64 128 256 512

Ma
x p

ro
ce

ss
ab

le 
da

ta 
(K

b)

0

5000

10000

15000 ARM
x86_64

Figure 4: Data processing limits (memory)

Figure 5 shows an answer to Q2 by highlighting the system
performance with different data payload sizes and providing a
detailed breakdown of the execution time of a task in FADES. Four
main factors affect the overall execution time: 1) required time to
boot-up the DMF unikernels, 2) time required to transfer the data
between the DRB and the DMF, 3) computation time of the DMF
and 4) the time required to retrieve the data to manipulate.

In particular, factor 1) is an aggregated value representing the
overhead introduced by the ORC module. For now, the ORC is a
thin layer that handles requests from the external services and
doesn’t process data or applies any changes to the tasks executed
by the DMFs. It checks that everything works correctly but doesn’t
take part in any computation phases. Factor 4) only affects the
scenario where the Dell PowerEdge server has to retrieve data from
a remote network. The bars are grouped by amount of data to be
processed. For example, the first group shows the performance for
each devices given a payload of 1.5Mb.

The results show that the presence of a sufficiently powerful
device at the edge of the network combined with data locality
makes edge offloading the best decision. Particularly, the Intel NUC
outperforms the Dell PowerEdge while the Cubietruck is highly
hindered by the intra-unikernel transmission time overhead.

Figure 6 shows an answer toQ3 by presenting in details how data
locality strongly affects performance regardless of the hardware
capabilities. Therefore, we focused on observing how data locality
affects computation time. The Cubietruck and the Intel NUC had
a local copy of the sensors data while the Dell PowerEdge (the
cloud) was forced to retrieve the data from a remote location. To
this avail, we deployed our Intel NUC and the Cubietruck into
another building and used them as a data source. In the graph we
can clearly see that having data locally can improve performance
even on resource constrained devices.

The remote data location is accessed by the Dell PowerEdge
through a standard broadband connection with the following spe-
cifications: 45.38 Mbps downlink and 0.574 Mbps uplink (effective).

Connection speed is a critical factor in our evaluation; we are
aware that faster/slower connections will lead to different result.
Still, we want to point out that even by reducing to zero the data
acquisition overhead factor, the Intel NUC performance are surely
vying with the Dell PowerEdge.

Cubi
etru

ck

Inte
l N

UC

Dell 
Pow

erE
dge

Cubi
etru

ck

Inte
l N

UC

Dell 
Pow

erE
dge

Cubi
etru

ck

Inte
l N

UC

Dell 
Pow

erE
dge

Cubi
etru

ck

Inte
l N

UC

Dell 
Pow

erE
dge

Tim
e (

s)

10-1

100

101

102
Launch Unikernel
Effective Computation
DRB-to-DMF Transmission Overhead
Data Acquisition Overhead

~1.5 Mb

~3.0 Mb

~6.0 Mb

~12.0 Mb

Figure 5: System Performance

Processed Data (Mb)
0 2 4 6 8 10 12

Tim
e (

s)

0

5

10

15

20

25

30

35
Cubietruck
Intel NUC
Dell PowerEdge

Data not available locally

Data locally available 

Figure 6: Effect of Data Locality on Computation Time

The cost of uploading the unikernel has been removed from
our evaluation. This factor it’s directly bound to the nature of the
application logic. In a real scenario, it is very well possible that a
DMF could actually be reused multiple times (and by multiple users)
before it’s updated. In other words, the frequency at which the data
changes is greater than the one of the deployed task. On the other
hand, the task might need to be updated constantly rendering it
obsolete at every new compute cycle. The chances for the latter to
happen are dim, yet possible.

Last but not least, we are aware of the asymmetric nature of
common broadband subscriptions with a ratio of 1:10 between
upload/download speed. Hence, the cost of uploading data from
the Cloud to the edge will generally be marginal compared to the
opposite.

7 DISCUSSION
We have learned several practical lessons from system development
and experiments, which can be summarized as hardware limitations,
platform support, and security concern. First of all, it’s demanding to
find suitable embedded boards that can support Xen and MirageOS,
regardless of x86 and ARM architectures. In most cases, the main
culprits are hardware incompatibilities and poor documentation (if

5



there is any). Our experiments on Cubietruck have benefited from
the MirageOS discussion group, where we found detailed setup
guidelines. On the other hand, the deployment on mini-PC (e.g.
Intel NUC) is much easier, since those devices essentially resemble
the standard PC.

Secondly, our system performance is affected by the limitation
of MirageOS. In particular, we struggled with the network API
when transferring data between two unikernels. The main issue
comes from a bug in the TCP/IP MirageOS stack that doesn’t handle
properly writing packets larger than the MTU. In consequence, we
had to introduce an extra chunking function at the application
layer to split, and later reconstruct the data. This negative effect is
reflected in Figure 5 where the overhead of this operation prolongs
the completion time, especially on constrained devices like the
Cubietruck.

Finally, it takes extra steps to enhance system security. FADES
enables an execution paradigm where single-purpose functional-
ities are offloaded from the service provider (e.g., cloud) to edge
devices. We hence need to guarantee the authenticity and validity
of the offloaded tasks. Without a signing and validation infrastruc-
ture to discriminate legit from tampered unikernels, we might risk
executing malicious code and infringe the security requirements.
Furthermore, if a FADES module is compromised or hijacked, re-
gardless of the offloaded code, the attacker is able to manipulate
the results of trustworthy DMFs. Therefore, a strict control over
the system execution pipeline and constant monitoring of FADES
is mandatory, as suggested in [16].

8 CONCLUSION AND FUTUREWORK
FADES is a modular offloading architecture that leverages light-
weight virtualization to enable fine-grained edge offloading for
IoT. The underlying idea is to bridge the gap between complex
applications running in the Cloud and simple operations running
at the edge. It’s in this gap that we spot the opportunity to util-
ize unikernels as an ideal vessel to ship single-purpose tasks for
achieving modularity, flexibility and multi-tenancy. As a first step
to explore the potential of lightweight virtualization in IoT and
edge computing, our experimental insights shed light on the hard-
ware deployment and performance optimization for both system
engineers and researchers.

Our future work will focus on three aspects. Firstly, we plan
to investigate the system scalability by running multiple function
instances in parallel. Secondly, we will evaluate FADES against
real-world applications. Lastly, we will harden the system security
design to meet the security requirements of IoT. In addition, we
will also compare our system with other existing solutions.

ACKNOWLEDGEMENT
This research was partially supported by Google Internet of Things
(IoT) Technology Research Award Pilot. Moreover, it is part of the
TUM Living Lab Connected Mobility (TUM LLCM) project and
has been funded by the Bavarian Ministry of Economic Affairs
and Media, Energy and Technology (StMWi) through the Center
Digitization Bavaria, an initiative of the Bavarian State Government.

We thank our shepherd, Ryan Huang for the valuable feedback
and support. Moreover, we thank also our colleagues from UCI who
provided insight and expertise that greatly assisted the research.

REFERENCES
[1] Bob Duncan, Andreas Happe, and Alfred Bratterud. 2016. Enterprise IoT Security

and Scalability: How Unikernels Can Improve the Status Quo. In Proceedings of
ACM UCC ’16.

[2] Bratterud et al. 2015. IncludeOS: A minimal, resource efficient unikernel for
cloud services. In Proceedings of IEEE CloudCom ’15. IEEE.

[3] Bhardwaj et al. 2016. Fast, scalable and secure onloading of edge functions using
AirBox. In IEEE/ACM Symposium on Edge Computing (SEC). IEEE.

[4] Ding et al. 2013. Enabling energy-aware collaborative mobile data offloading for
smartphones. In Proceedings of IEEE SECON ’13.

[5] Kosta et al. 2012. Thinkair: Dynamic resource allocation and parallel execution
in the cloud for mobile code offloading. In Proceedings IEEE INFOCOM ’12.

[6] Kumar et al. 2013. A survey of computation offloading for mobile systems. Mobile
Networks and Applications 18, 1 (2013), 129–140.

[7] Madhavapeddy et al. 2013. Unikernels: Library operating systems for the cloud.
In ACM SIGPLAN Notices, Vol. 48. ACM.

[8] Madhavapeddy et al. 2015. Jitsu: Just-In-Time Summoning of Unikernels.. In
Proceedings of NSDI ’15.

[9] Mortier et al. 2016. Personal Data Management with the Databox: What’s Inside
the Box?. In Proceedings of the 2016 ACMWorkshop on Cloud-Assisted Networking.

[10] Sathiaseelan et al. 2015. SCANDEX: Service Centric Networking for Challenged
Decentralised Networks. In Proceedings of ACM DIYNetworking ’15.

[11] Siracusano et al. 2016. On the Fly TCPAccelerationwithMiniproxy. In Proceedings
of ACM HotMiddlebox ’16.

[12] Jorge Granjal, Edmundo Monteiro, and Jorge Sá Silva. 2015. Security for the
Internet of Things: a survey of existing protocols and open research issues. IEEE
Communications Surveys & Tutorials 17, 3 (2015), 1294–1312.

[13] Esa Hyytiä, Thrasyvoulos Spyropoulos, and Jörg Ott. 2015. Offload (only) the
right jobs: Robust offloading using the markov decision processes. In Proceedings
of IEEE WoWMoM ’15.

[14] Avi Kivity, Dor Laor Glauber Costa, and Pekka Enberg. 2014. OS v—Optimizing
the Operating System for Virtual Machines. In Proceedings of USENIX ATC’14.

[15] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and Nigel Davies.
2009. The case for vm-based cloudlets in mobile computing. IEEE Pervasive
Computing 8, 4 (2009).

[16] Rolf H Weber. 2010. Internet of Things–New security and privacy challenges.
Computer Law & Security Review 26, 1 (2010), 23–30.

[17] Dan Williams and Ricardo Koller. 2016. Unikernel monitors: extending minimal-
ism outside of the box. In 8th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 16).

6


	Abstract
	1 Introduction
	2 Motivation and Background
	3 Related Work
	4 System Design
	4.1 FADES

	5 Implementation
	6 Evaluation
	7 Discussion
	8 Conclusion and Future Work
	References

