
FRACTaL: FEC-based Rate Control for RTP
Balázs Kreith

callstats.io · University of Debrecen
balazs@callstats.io

Varun Singh
callstats.io

varun@callstats.io

Jörg O�
TU München · callstats.io

o�@in.tum.de

ABSTRACT
We propose a new rate control algorithm for interactive real-time
multimedia tra�c, the FRACTaL algorithm. In our approach, the
endpoint sends Forward Error Correction (FEC) packets not only for
be�er error-resilience but also to probe for available bandwidth. �e
sender varies the amount of FEC to meet the sending rate calculated
by the congestion control without changing the media rate. We
evaluate our proposal in an emulated networking environment,
using a set of reference test scenarios and compare it to the SCReAM
congestion control algorithm. We �nd that FRACTaL performs
be�er than SCReAM when competing with TCP �ows, i.e., it is able
to obtain its “fair” share. In other (non-TCP) scenarios, it achieves
lower loss rates at comparable path utilization and queuing delay,
i.e., FRACTaL delivers be�er and consistent media quality.

1 INTRODUCTION
Web-based real-time communication (WebRTC) [16, 43] is stimu-
lating the growth of conversational multimedia communication
on the Internet, in addition to the already dominant multimedia
streaming. �is increase in real-time multimedia tra�c has resulted
in a renewed interest in congestion control for conversational mul-
timedia systems. Real-time communications imposes limits on the
end-to-end packet delivery latency to stay within the recommended
mouth-to-ear delay of 150ms to maintain a �uent real-time conver-
sation between participants [17].

�e best-e�ort nature of the Internet yields communication paths
with time-varying characteristics such as varying latency, available
capacity of bo�leneck links due to cross-tra�c, or variable link
data rates in wireless networks, among others. �is usually mani-
fest in either packets being delayed or lost, which results in poor
media quality. To cope with losses, multimedia transport protocols
may use a number of di�erent—media/codec-speci�c or generic—
mechanisms to repair packet losses or limit their impact [7, 27, 44].
Conversational real-time media can o�en not a�ord to use retrans-
missions because loss detection and retransmission may make a
media packet miss its playout point at the receiver. Even though
receivers apply techniques to conceal errors, missing packets may
result in choppy audio and frozen, blurred, or otherwise improperly
rendered video frames [13].

Alternatively, Forward Error Correction (FEC) improves the reli-
ability by adding redundant packets (carrying FEC symbols sent as
a secondary �ow) to the media stream packets (source symbols of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
MM '17, October 23–27, 2017, Mountain View, CA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4906-2/17/10…$15.00
https://doi.org/10.1145/3123266.3123373

the original, primary �ow). If some original packets are lost, sym-
bols from the primary and secondary stream can be combined to
recover those. �is comes at a cost: besides a modest added latency
in case of recovered packets, adding FEC yields an increased data
and packet rate. While a rate increase is generally not desirable
as it may increase congestion and thus cause further losses, it is
acceptable if the codec output is anyway lower than the target data
rate determined by a congestion control algorithm.

Transport protocols seek to prevent self-in�icted packet losses
due to a media sending rate exceeding the end-to-end path capacity.
�e congestion control algorithms aim at determining the available
capacity and maximize its utilization. While reducing the trans-
mission rate in case of detecting congestion is a straightforward
reaction, increasing the sending rate to �nd the current capacity
is more di�cult and comes at the risk of building up queues and
creating losses if the sender over-estimates the capacity. While a
congestion control algorithm may output a (increased) target send-
ing rate, a media source may face additional sending rate limitations
for two reasons: 1) A codec may not be able to switch the encod-
ing of the media stream (immediately) to arbitrary bit rates and
thus limit the precision of rate adaptation algorithms. 2) Adapting
the media encoding rate too o�en or in large steps degrades the
user-perceived media quality [47]. �erefore, gradual changes in
the encoding rate are generally advised.

In this paper, we present a novel way to exploit the properties
of FEC, using extra capacity for redundancy to create robustness
against packet losses, to cope with the aforementioned limitations
of media codecs when adapting the encoding rate. �e result is
a FEC-based congestion control scheme, FRACTaL, that extends
our concept of using FEC for real-time media congestion control
introduced in [20, 38] in several ways. �e main idea behind using
FEC for congestion control is to enable FEC alongside the media
stream and use the redundancy to probe the path for available
capacity. If the path conditions remain stable a�er the FEC stream is
added, in the subsequent bandwidth estimation, the media encoding
rate is increased by the amount of data (media and FEC) added
in the previous bandwidth estimation. �e main advantage of
using FEC is that the applied congestion control algorithm can be
more aggressive in probing for the available path capacity, as the
improved reliability compensates for possible errors resulting from
link overuse.

We make the following contributions: We introduce the Flexible
andAdaptive FEC for RTPCongestion Control (FRACTaL), designed
to meet the requirements of the RTP Media Congestion Avoidance
Techniques (RMCAT) Working Group (WG) [15]. FRACTaL over-
comes the two issues encountered by FEC-based Rate Adaption
(FBRA) [20]: FBRA is conservative when ramping up the send-
ing rate and is not able to compete (well) against TCP �ows. We
implement the proposed FRACTaL algorithm in Gstreamer and eval-
uate it based upon the RMCAT scenarios [31]. We �nally compare

Session: Fast Forward 5 MM’17, October 23-27, 2017, Mountain View, CA, USA

1363

the performance of our FEC-based congestion control algorithm
for WebRTC to the Self-Clocked Rate Adaptation for Multimedia
(SCReAM) [19], a congestion control algorithm implemented and
deployed in OpenWebRTC [23].

2 BACKGROUND AND RELATEDWORK
�e Real-time Transport Protocol (RTP) [32] is used to deliver media
in real-time applications. In addition to media data, RTP may carry
repair and redundant packets (such as retransmissions, FEC, com-
fort noise, etc). RTP is complemented by the Real-time Transport
Control Protocol (RTCP), which conveys statistics measured at the
sending and receiving endpoints. Sender Reports (SR) inform the
receiver about the packets and bytes sent and provide timestamps
for RTT measurements and synchronization across media streams.
Receiver Reports (RR) provide feedback about received and lost
packets, ji�er, and RTT.� e information in the basic reports are
coarse-grained but eXtention Reports (XR) allow conveying more
detailed reception and loss statistics [9].

RTP is a general purpose real-time transport that can support
arbitrary multimedia applications, but its main use is for interac-
tive multimedia communication such as video conferencing. Me-
dia streaming commonly uses TCP (usually with adaptive HTTP
streaming on top). But the aforementioned strict latency require-
ments for conversational multimedia limit TCP’s usefulness; studies
have shown that media experience over TCP deteriorates when
the one-way delay exceeds 50ms. Instead, RTP over UDP is used
to maintain interactivity [1]. While TCP is not preferred, in net-
works where UDP packets are dropped or� ltered by middleboxes,
TCP may be used as a fallback: it is more important to have media
connectivity at all and to trade-o� smooth media experience [18].

Implementing congestion control for transport protocols re-
quires frequent feedback from the receiver to the sender: per-packet,
per-frame, or per-RTT [26]. Baseline RTP [32], designed with
multicast-based group communication in mind, limits the RTCP re-
porting interval to a minimum of 5±2.5 s and to 5% of the media bit
rate. To enable repair and ultimately also congestion control, a new
RTP pro�le (AVPF) removes the lower time bound [25], enabling
RTP-based circuit breakers [28, 37] and congestion control.

Numerous congestion control algorithms have been proposed
over the years, the most prominent is TCP-Friendly Rate Control
(TFRC) [8]. It can be adapted to RTP without any changes to RTP,
except that the TFRC equation expects loss events and the RTCP
reports fractional loss.� e loss events are typically fewer compared
to loss packets, because burst losses are only counted as one loss
event [10]. Nonetheless, TFRC produces a� uctuating media rate,
observed as a short-term sawtooth. Changing media characteristics
by too much in a very short period of time results in a bad quality
of experience [47]. RAP [29], a delay based congestion control
uses additive increase multiplicative decrease (AIMD), which also
produces a saw-tooth. Inspired by the approach in [4], DFlow [22]
uses two control algorithms, one for competing against media tra�c
(delay-based) and another for competing against TCP cross-tra�c
(loss-based). Basically, it switches between the delay- and loss-based
congestion controls when the observed RTT and loss is above a
threshold. NADA [6, 46] also uses delay- and loss-based mode,
except that NADA relies on queuing delay by estimating the per-
packet inter-arrival time. NADA uses 100ms as the queuing delay

threshold, i.e., irrespective of the network delay, if the packet has
an estimated additional delay below 100ms the algorithm uses
the delay-based mode, otherwise the algorithm switches to the
loss-based mode.

Several algorithms, Self-Clocked Rate Adaptation for Multime-
dia (SCReAM) [19] and Google Congestion Control (GCC) [12, 36]
assume that the packet delay variation for an uncongested path can
be modeled as a White Gaussian Noise (WGN), i.e., the median over
a set of measurements can be used to estimate the actual network
delay between peers. GCC determines the average queuing delay
value for a group of packets by applying a Kalman Filter over all the
ji�er measurements [5]. In addition to the queuing delay estimate,
GCC uses TFRC to estimate the available bandwidth, and does not
reduce the sending rate until the estimate fractional loss is above
2%. SCReAM is a window-based and byte-oriented congestion con-
trol algorithm: it controls the sending rate based on the size of
the congestion window (cwnd) and the number of bytes in�ight.
�e congestion window is updated when an acknowledgment is
received; cwnd is only decreased once per-RTT, on observing the
�rst loss event, to not over-react and smoothen the loss over that
measurement period. Additionally, SCReAM calculates the autocor-
relation over the last 20–50 ji�er measurements and compares it a
queuing delay threshold to estimate if there is congestion.

FEC-based Rate Adaptation (FBRA) [20] was the� rst algorithm
to use redundant FEC packets to probe for additional capacity
instead of increasing the media rate when a higher sending rate
is estimated. FBRA uses a delay estimate to perform congestion
control: the delay estimates are percentiles calculated over the
entire lifetime of the session, i.e., 40% indicating a lower threshold,
and 80% indicating the higher threshold.� e intuition is that the
sending rate ramps up more quickly when the estimated one-way
delay is at the lower threshold and sending rate ramps up slowly
when the one-way delay is closer to the higher threshold.

FRACTaL builds on FBRA, also using FEC for probing for addi-
tional capacity. But FRACTaL adapts its use of FEC to the observed
packet loss pa�erns, uses an improved state machine to make FRAC-
TaL ramp up quicker, and uses di�erent windows for interpreting
congestion cues.� is makes it compete well with TCP tra�c.

3 USING FEC FOR CONGESTION CONTROL
�e normal use FEC is protecting a set of packets against losses.
It adds redundant packets to allow recovering lost parts without
the need for a retransmission. FEC is useful when extra capacity
is available and the latency is high [7, 13].� e fraction of added
redundancy can be tailored to the intended protection level, e.g.,
10% to cope with one packet lost in ten.

�e main idea of using FEC for congestion control is simple:
congestion control algorithms need to decide when to increase
the sending rate but, by doing so, they risk that the extra packets
transmi�ed exceed the available capacity, which may result in lost
media packets. Increasing the rate using FEC instead of media
packets allows the sender to probe for extra capacity without the
risk of losses: if a packet (media or FEC) is lost, it can be recovered.
If all the packets are received, the receiver will report an increase
in reception rate and the sender can replace the FEC packets with
extra media packets, thus increasing the sending rate safely.�e

Session: Fast Forward 5 MM’17, October 23-27, 2017, Mountain View, CA, USA

1364

� � � �

��
��

�
�
�
�
�

�

� � � � � � � � � �
	 �
 � 	 � � �

 � � � � � �

 � � � �
� � � � � � � � � � � � � �

� 	

� � � � � � � � �

� � � � � � 	 �
� � � � � � � �

�

� � � � � � � � � � � 	
 �

�
	
	
�
��

��
��

�
�

�
�

	
��

��
��

��

�
	
�

�
	
��

��
��

�
�

�
�

	
��

��
��

�
	
�

�

	
��

��
��

�
	
	
�
��

��
��

�
�

�
�

	
��

��
��

��

�
	
�

�
	
��

��
��

Figure 1: Using FEC for congestion control: If no congestion
is observed, FEC is added to probe for additional bandwidth.
If the combined sending rate does not cause congestion, the
media rate is increased; otherwise it is reduced. Adapted
from [20].
overall concept of using FEC for congestion control is shown in
Figure 1.

Framework: Figure 2 shows the interaction between the con-
gestion control algorithm, the RTP subsystems, and the Forward
Error Correction (FEC) module [42]. At the sending endpoint, the
congestion control module estimates the end-to-end path capacity
based on the congestion cues carried in the RTCP feedback mes-
sage [24, 26, 32]. If the estimated rate is higher than the previous
estimation, the controller enables the FEC module, which creates
redundant packets for protecting media stream and essentially in-
crease the sending rate, thus probing the link capacity. At the
receiving endpoint, the FEC module reconstructs the lost packets
in the media stream from the cumulative packets received in the
media and the FEC stream. If the packets are repaired the receiver
generates the post-repair loss report (PRLR) for the corresponding
RTP packets [14]. Consequently, the sender can use the information
in the PRLR RTCP Report to calculate the e�ectiveness of FEC.

� �
 � �

 � � � � � � � � � � � � � � 	 � � � � I

� � � � � � � � � �

 � � � � � � � � � �� � � � � � � � �

 � � � � � � � � � � � �
� � � � � �

�
��

���
��

��
��

 � �
� � � � � � � � � �
 � � � � � � � � � �

� � � � � � � � � � �

Figure 2: Interaction of Congestion Control and FEC Mod-
ule.

State Machine: �e e�ciency of the congestion control algo-
rithm using FEC depends on the decision when to and how much
FEC to add. �e high-level operation of FRACTaL is shown in Fig-
ure 3; its use of FEC is improved over FBRA [20]. FBRA also uses the
four states STAY, PROBE, UP, and DOWN, which were mapped to
KEEP, PROBE, INCREASE, and REDUCE in FRACTaL, respectively.
We apply two major changes to the state transitions: (1)We remove

� � � � � �
 � �

� � � � � � � 	 � � � � �

 � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

��
��
��
��

��
��

���
��

�

�
��
��
���

��
���
��

�

�
��
��
���

��
���
��

�

�
��
��
���

��
���
��

�

Figure 3: State machine of FRACTaL. State transitions occur
upon the indicated conditions: if the reportedmetrics do not
indicate congestion, a stable conditions exist; otherwise un-
stable conditions are recorded.
the transition from PROBE to KEEP in order to eliminate possible
oscillations between the two states; in FRACTaL, the state needs
to transition to REDUCE before going to KEEP from PROBE. (2)
We added a transition between PROBE and INCREASE in order to
ramp up the sending rate more quickly by skipping the KEEP state.
Furthermore, we do not disable FEC at the INCREASE state in order
to extend the protection against packet loss when the media bit rate
is increased. �us, we are able to perform congestion control and
error resilience simultaneously, which is not supported in FBRA.
By extending the period of FEC FRACTaL also gains a signi�cantly
be�er fair share compared to FBRA when competing with TCP.

3.1 Congestion cues
FRACTaL is a sender-driven congestion control algorithm[33]: the
receiver collects, measures, and sends the statistics to the sender.
�e sender then uses these statistics to compute the new send-
ing rate. �e FRACTaL algorithm relies on several congestion
cues: interval fractional loss [32], one-way delay [21], and bytes in
�ight [39, 41].

Receiver-side metrics: �e receiver reports the metrics at reg-
ular intervals, with the RTCP interval depending on the current data
rate. At video bit rates, it is possible to provide feedback per frame,
i.e., every 33–150ms [26]. We measure the one-way delay without
clock synchronization by using the technique de�ned in [21] and
report it in RTCP XR messages [3]. �e fractional loss per interval
is reported in the regular RTCP Receiver Report (RR) [32]; for more
precision, we use the Extended Reports (XR) for discarded and lost
packets [24, 40]. If the packets are repaired by an FEC packet, the
receiver sends the post-repair loss report (PRLR) that contains the
run-length encoding of all the repaired packets [14]. �e Packet
in Flight (PiF) is calculated by subtracting the Highest Sequence
Number (HSN) reported in the RTCP RR and the last packet sent
by the sender. With this and local packet size history, the sender
can calculate the bytes in �ight for these packets as well [39, 41].

Sender-side operation: �e sender receives RTCP reports from
the receiver at regular intervals [25]. It adds the congestion cues
to sliding windows (of two di�erent periods, see below), which it
uses to �lter and remove outliers. Received values are added if 1)
they aren’t outliers or 2) the sliding window contains too few (e.g.,
¡10) data points. �e rationale is that outliers should be �ltered out
unless there is a change in path conditions (towards congestion)
so that what were outliers before turn into regular observations.
�e sender calculates relevant aggregated statistical measures over
these slides windows and compares the aggregates to the most

Session: Fast Forward 5 MM’17, October 23-27, 2017, Mountain View, CA, USA

1365

recent values reported in the latest report to determine if the path
is congested.

Sliding window and aggregate metrics:� e sender uses a
�ve second window for bytes in� ight because bytes in� ight can
vary quite rapidly depending on the group of pictures (GoP) in the
video (structure of I-, P-, and B-frames). In contrast, the window
size for the one-way-delay (OWD) and fractional loss metric is
30 seconds to� lter out transient network conditions.� e sender
calculates the following statistical measures:
(1) �e median (ùOWDt) and standard deviation (OWD

(�)
t) of the

one-way delay. Assuming that the packet delay variation for an
uncongested path can be modelled as a white Gaussian process [12],
the median and a standard deviation over a set of one-way delay
measurements can be used to de�ne a range that a consecutive
OWD metric should operate in if the path is not congested.
(2) �e 10%-ile (FL(10th)t) and standard deviation (FL(�)t) of the
fractional loss. Assuming that an uncongested path may exhibit
a non-zero loss rate we do not want to consider a path congested
if the reported fractional loss appears in more than 90% in the
reported metrics. We use an extra boundary in addition to 10%-ile
derived from the standard deviation of the reported fractional loss.
(3) �e 80%-ile of the bytes in� ight (BiF (80th)t). Assuming that
the bytes in router queues increases over time if the path is not
congested, we choose the 80%-ile of the measured value.�is
trims peaks possibly caused by sudden tra�c spikes (I-frames) and
provides reasonable information about the bu�er capacity if the
path become congested.� is metric is used for pacing and for
reducing the bitrate in case of congestion.

Congestion� resholds:� e sender calculates thresholds from
the sliding window to determine if the path is congested.� e rele-
vant metrics are: the 10%-ile fractional loss metric and the median
of the one-way delay value along with the standard deviation of
these metrics.� e thresholds for OWD

(�)
t and FL(�)t are calculated

as follows:
OWD (thr)

t = ûOWDt +max (OWD (�)
t ⇥ 2, OWD (thr)

min) (1)

FL(thr)t =min(FL(10th)t + FL(�)t ⇥ 2, FL(thr)max) (2)

OWD
(thr)
min is the minimum and FL

(thr)
max is the maximum thresh-

old for each metric.�e OWD
(thr)
min is set as a lower-bound for the

one-way delay (e.g.: 30ms).� e algorithm does not consider the
path to be congested if the measured value is below this threshold.
�is helps at the beginning of a real-time session, when the packet
delay may vary substantially (e.g., a large I-frame may skew the
metric). FL(thr)max serves as upper-bound for the fractional loss met-
ric (e.g.: 5%) that the algorithm must not exceed for proper media
delivery.

4 THE FRACTAL ALGORITHM
FRACTaL is executed every time the sender receives an RTCP report
with the feedback for the congestion cues de�ned above. We de�ne
one algorithm per state, each of which adjusts the transmission
behavior and may cause a state transition. If a transition is invoked,
it will occur upon receipt of the next RTCP report, i.e., the algorithm
imposes a dynamic validation delay, T�alid (de�ned below), before
changing states. If no RTCP report is received formax(500ms, 3 ⇥
RTT , FRACTaL assumes congestion and enters the KEEP state.

FRACTaL maintains several further global time variables: tnow
refers to the current time. tcon� indicates when congestion was last
detected and tsettled when an uncongested state is entered. tF EC
records when FEC transmission was enabled. RTT is the round-trip
time as measured by RTCP.

In the following, we describe the algorithms for all four states.
KEEP: In the KEEP state the algorithm checks if the estimated

sending rateRsnd causes congestion asmeasured per the congestion
cues above. If two consecutive reports show hints for congestion,
the algorithm executes an undershoot procedure (see below) and
goes to the REDUCE state. If there is no congestion detected for a
period of T�alid the algorithm calculates the current FEC interval,
FECint , records the current time in tF EC , performs a transition to
the PROBE state, and starts sending FEC packets. If congestion is
detected during an uncongested period tcon� is set; otherwise, if
there is no sign of congestion, tsettled is updated.

If the algorithm is executed again within twice RTT as measured
by RTCP (i.e., tnow � 2⇥RTT < tsettled) the sender remains in the
KEEP state and updates the sending rate smoothly, increasing or de-
creasing it according toowd lo� corr = lo�10(OWD)/lo�10(ùOWDt).

PROBE: In the PROBE state, the algorithm checks if the added
FEC rate does not cause congestion. If no congestion is detected for
a certain period of time, the algorithm increases Rsnd and transi-
tions to the INCREASE state. Otherwise, it executes the undershoot
procedure and moves to the REDUCE state.

INCREASE: In this state, the algorithm checks if the newly
increased Rsnd (cf. PROBE state) together with the FEC rate would
not cause congestion. If this combined rate is approved, the FEC
rate is reset, and the algorithm returns back to the PROBE state
to continue probing with FEC on top of the new sending rate,
Rsnd . Otherwise, if congestion is detected, the algorithm performs
undershoot and goes immediately to the REDUCE state.

REDUCE: In the REDUCE state, the algorithm determines a
new capacity estimate. For calculating it, we assume that, without
congestion, the receiver receives the media� ow at the transmi�ed
rate.� e sender will gather reports and estimate the capacity using
a weighted average of the reported rate and the current sending
rate.

If congestion is encountered, we assume that the amount of
data queued in the network grows. Hence, we want to reduce the
Algorithm 1 KEEP

if OWD (thr)
t < OWDt OR FL(thr)t < FLt then

if con�ested = TRU E then
Undershoot
State REDUCE

else
tcon� tnow
con�ested TRU E

end if
else if con�ested = TRU E then

State REDUCE
con�ested FALSE
tset t led tnow

else if tnow � 2 ⇥ RTT < tset t led then
corr MAX (MIN (1.01, owd lo� corr), 0.99)
Rsnd Rsnd ⇥ corr

else
Star t F EC
State PROBE
tF EC tnow

end if

Session: Fast Forward 5 MM’17, October 23-27, 2017, Mountain View, CA, USA

1366

Algorithm 2 PROBE

if OWD (thr)
t < OWDtOR FL(thr)t < FLt then

Stop F EC, Undershoot
tcon� tnow
State REDUCE

else if tF EC < tnow �Tmin
�alid then

State I NCREASE
Rsnd Rsnd + F EC rate
tincr tnow

end if

Algorithm 3 INCREASE

if OWD (thr)
t < OWDtOR FL(thr)t < FLt then

Stop F EC, Undershoot
State REDUCE
tcon� tnow

else if tincr < tnow �T�alid then
Restar t F EC
State PROBE
FEC star ted tnow

end if

Algorithm 4 REDUCE
if r ecei�ed bitrate < Rsnd ⇥ 0.5 then

Undershoot
tcon� tnow

else if OWD (thr)
t < OWDt OR FL(thr)t < FLt then

if tcon� < tnow � 1s then
Cest r ecei�er rate

else
of f (tnow � tcon�)/1.0s
Cest r ecei�er rate ⇥ of f + Rsnd ⇥ (1 � of f)

end if
Rsnd (Cest � EQD/1.0s) ⇥ 0.9

else
tset t led tnow
State KEEP

end if

sending rate to drain this extra amount of queued data over time.
We estimate this extra amount of queued data as EQD =max(BiFt�
BiF 80t , 0), i.e., the di�erence between the instantaneous bytes in
�ight and their long-term 80%-ile. In case of mild congestion, Rsnd
is set to be lower than the estimated capacity by subtracting EQD
over a one second period. If the receiver rate is substantially lower
than the Rsnd (i.e., < 0.5⇥ Rsnd), the algorithm assumes heavy
congestion and executes the undershoot procedure.

If no congestion is observed, the algorithms transitions to the
KEEP state. tsettled used in the KEEP state is set to tnow .

Undershoot: �e undershoot procedure [20] is used if conges-
tion is detected to reduce the sending rate below the current ca-
pacity estimate Cest . To achieve this, the sender computes the
new sending rate by subtracting twice the di�erence between the
current sending rate and the current goodput (represented as EQD
per second) and taking 90% of the obtained value, i.e., Rsnd =
(Cest � 2 ⇥ EQD/1.0s) ⇥ 0.9.

Scaling factors: FRACTaL is designed to be conservative when
operating close to the capacity estimate andmore aggressivewhen it
senses that there is available network capacity.�us, Cest , tracked
by the algorithm, indicates the current (estimate of the) maximum
available capacity along the path. To decide whether we are close
to the capacity or not, the following scale factor, called o�set from
Cest , C

of f
est , is calculated as Cof fest = min(scale, 1) with scale =

⇣
Rsnd�Cest
Cest⇥�

⌘2
and � 2 (0, 1). scale decreases exponentially as Rsnd

approaches Cest ⇥ � . Based on the Cof fest value, a weighted average
is used to determineT�alid = (1�Cof fest)⇥Tmin

�alid +C
of f
est ⇥Tmax

�alid .
Tmin
�alid = max(RTT , 100ms) and Tmax

�alid = max(5 ⇥ RTT , 1.5s)
indicate the minimum and the maximum allowed values for the
T�alid , respectively.� e FEC interval, FECint , is calculated in a
similar fashion:

FECint = (1 � C
of f
est) ⇥ FECmin

int + C
of f
est ⇥ FECmax

int (3)

FEC
(min)
int and FEC

(max)
int indicate the minimum and the maximum

values permi�ed for FECint , respectivey. FECint and T�alid de-
pend on the value of Cof fest , which changes with Cest as calculated
by the algorithm. It makes the FEC interval FECint larger and
validation delay T�alid longer when operating near Cest .

Pacing: FRACTaL enforces pacing at the sender side. For pacing
we want to give a reasonable value for the congestion window
(cwnd) so the sending rate is not thro�led. For that purpose we use
the the 80%-ile of bytes in� ight and calculate cwnd depending on
that value: cwnd = BiF

(80th)
t ⇥ 1.2. BiF (80th)t grows the congestion

window when increasing the media rate, and shrinks it, if it senses
congestion. When performing undershoot, cwnd shrinks faster to
drain packets from the network, while the cwnd in�ates quickly
when the congestion disappears.

Flexible FEC: Parity codes are a form of systematic codes,
wherein a repair packet is generated from a sequence of source
packets (in this case, media packets). Parity codes generally use
the eXclusive OR (XOR) operation to generate these repair pack-
ets [35].� ere are two types of parity FEC codes: non-interleaved
and interleaved. Non-interleaved repair packets are generated from
consecutive source packets, while interleaved ones are generated
from arbitrary set of source packets in the FEC interval.� e FRAC-
TaL algorithm uses both interleaved and non-interleaved parity
FEC packets opportunistically based on the number of consecutive
packet loss. (1) �e sender selects a set of media packets to be
protected within the FEC interval and determines the requested
number of repair packets need to be generated; (2) Depending on
the number of selected media packets and the requested number of
repair packets, the FEC module (Figure 2) at the sender-side gener-
ates interleave and non-interleave FEC packets by applying XOR
operation on the set of media packets; (3) �e sender transmits the
FEC packet(s) along with the media packets to the receiver.

5 PERFORMANCE EVALUATION
FRACTaL is implemented in the Gstreamer open source library, and
can be used with applications built using OpenWebRTC [23]. We
evaluate the performance of the algorithm based on the standard-
ized testing scenarios proposed for testing RMCAT algorithms [31],
based upon which we choose our evaluation parameters.

We measure congestion control performance in a test environ-
ment (Figure 4), in which the sender and the receiver run on sev-
eral Linux machines connected via ethernet interfaces. However,
Netem [11] applies constraints to the network interfaces to emu-
late the various characteristics described in each test scenario.�e
bo�leneck is limited using tbf [11] and the queue length is always
set to 300ms.� e foreman video sequence [45] is used as the video

Session: Fast Forward 5 MM’17, October 23-27, 2017, Mountain View, CA, USA

1367

Media
Source /

Sink

Traffic
Shaper

TCP
Source/

Sink

Node
Controller

Node
Controller

on/
off

on/
off

Media
Source /

Sink

TCP
Source/

Sink

Node
Controller

on/
off

on/
off

capacity

CommandingTraffic flows Node interface

Figure 4: Performance Evaluation Setup.

FCC SCReAM

50
m
s GP [kbps] 718.32 ± 16.28 844.32 ± 75.01

LR [%] 0.39 ± 0.11 0.94 ± 0.41
OWD [ms] 60.03 ± 1.78 72.76 ± 6.01

30
0m

s GP [kbps] 717.96 ± 38.39 803.05 ± 40.71
LR [%] 1.09 ± 0.36 1.56 ± 0.33
OWD [ms] 319.8 ± 8.29 325.61 ± 5.17

Table 1: Summary of RMCAT1 measurements.� e FEC rate
used by FRACTaL for 50ms, and 300ms is 110.54 ± 3.09 kbps,
88.73 ± 9.08 kbps

source with the VP8 codec [2]. We use iperf(1) (v2.0.5) to emulate
the TCP cross tra�c. For each scenario, we calculate the following
metrics: goodput (GP), Loss Rate (LR), FEC Frame Recovery E�-
ciency FFRE [20]. When TCP is present, we calculate the TCP Fair
Share (TFS) as well. Apart from these the forward path average
queuing delays (OWD) is also measured and median is calculated
over a one second long sliding window with a sample resolution of
100ms. Each scenario has a forward path one-way delay of 50 ms
and 300 ms and each test have run 10 times. FRACTaL is compared
to SCReAM, which is also implemented in Gstreamer [30].

RMCAT1—Single RTP on a Variable Capacity: In this sce-
nario the bo�leneck link capacity varies between 600 kbps and
2800 kbps .� e aim of the test is to evaluate the reactivity and
convergence of the algorithms. Our results show that SCReAM and
FRACTaL react to the capacity changes and both the algorithms are
initially conservative when ramping up to the bo�leneck capacity
and are otherwise aggressive.� e average one-way delay in the
case of SCReAM is higher because it is slow in detecting upcoming
congestion.� erefore, we observe that SCReAM has a higher loss
rate. FRACTaL sees fewer e�ective losses because, with FEC, it is
able to recover packets lost when probing the network. SCReAM’s
average goodput is higher than the plain media rate of FRACTaL,
but its combined media and FEC yields a similar bandwidth. Fig-
ure 5 shows a sample measurement when the forward path delay
is set to 50ms. SCReAM keeps the media rate closer to the bo�le-
neck link capacity, meanwhile FRACTaL repeatedly probes the link
capacity by adding FEC and then undershooting when it senses
congestion.� e plots for queuing delay show that FRACTaL delay
spikes are lower in amplitude, due to its undershooting process.
Table 1 shows the average and the standard deviation for both
algorithms.

RMCAT2—Multiple RTPs and Variable Capacity: �is sce-
nario aims to measure the fairness of the congestion control al-
gorithm when two RTP streams are sharing the bo�leneck link,
the capacity of which is also varying over time. Both� ows start

FCC SCReAM

50
m
s Fl
ow

1 GP [kbps] 365.73 ± 28.28 524.64 ± 44.07
LR [%] 0.17 ± 0.07 1.02 ± 0.51
OWD [ms] 71.68 ± 3.14 87.93 ± 5.65

Fl
ow

2 GP [kbps] 327.97 ± 29.67 476.21 ± 40.65
LR [%] 0.24 ± 0.09 0.94 ± 0.46
OWD [ms] 70.16 ± 2.88 84.96 ± 4.78

30
0m

s

Fl
ow

1 GP [kbps] 391.44 ± 28.68 425.85 ± 45.53
LR [%] 0.82 ± 0.13 6.76 ± 14.16
OWD [ms] 341.85 ± 3.54 354.94 ± 24.64

Fl
ow

2 GP [kbps] 391.52 ± 19.48 440.38 ± 48.24
LR [%] 0.76 ± 0.13 2.81 ± 2.43
OWD [ms] 343.47 ± 2.79 352.83 ± 19.4

Table 2: Summary of RMCAT2 measurements.� e FEC rate
for 50ms, and 300ms: Flow 1) 77.03±3.99 kbps, 55.09±3.5 kbps;
Flow 2) 75.05 ± 3.8 kbps, 54.82 ± 3.26 kbps. In all the cases the
FFRE is 0.

simultaneously and have their paths have the same RTT. Figure 6
shows a sample simulation result for this scenario. Both algorithms
converge and share the link fairly with each other. SCReAM reduces
its media rate drastically when it encounters congestion. FRACTaL,
on the other hand, performs be�er because it detects congestion
quickly and responds by undershooting the media bitrate when it
observes heavy congestion. Table 2 shows the average and standard
deviation of OWD, Goodput, and loss rate for both algorithms. Sim-
ilar to the previous scenario, we observed that SCReAM produces a
higher e�ective loss rate than FRACTaL.

RMCAT3—Congested Feedback Path: In this test case, bidi-
rectional media streams are used over a bo�leneck link with time-
varying capacity.� us, RTP media and RTCP feedback share the
same link and congestion impacts also the feedback.� is allows
evaluating algorithm performance with impaired feedback. We
�nd that FRACTaL is more conservative than SCReAM with lower
media rate and lower loss rates (not shown).

RMCAT4—Self-fairness: In this test case, multiple� ows share
the same bo�leneck link whose capacity remains constant.�e
RTT is the same for each� ow, but they start at di�erent times.
Figure 7 shows a measurement for this scenario with a 50ms for-
ward path delay. Both FRACTaL and SCReAM converge to a fair
share ratio, although in case of FRACTaL the estimation causes
faster convergence and lower loss rate. Table 3 shows the average
and standard deviation of OWD, Goodput and loss rate for both
algorithm. SCReAM utilizes the bandwidth be�er than FRACTaL
especially for� ow 1.� is is due to the fact that SCReAM uses all the
bits of the estimated bandwidth for the media bitrate, meanwhile
FRACTaL probes with FEC packets before it decides to increase the
actual media bitrate. While this slows down the media rate ramp, it
improves the media quality because it is more stable over a longer
period of time compared to SCReAM.

RMCAT5—Round Trip Time Fairness: �is scenario aims to
evaluate the congestion control algorithm when the� ows share
a common bo�leneck link, but the RTTs and start times for the
�ows are di�erent. A sample measurement for each� ow is shown
in Figure 8; we observe that the performance of FRACTaL and
SCReAM di�er. FRACTaL converges be�er than SCReAM, whose
rate sees oscillations.� is is due to the feedback frequency, i.e.,
when the RTT is short, the feedback messages are sent more o�en,
which results in SCReAM increasing its cwnd and media bitrate
faster compared to the streams with longer RTTs.

Session: Fast Forward 5 MM’17, October 23-27, 2017, Mountain View, CA, USA

1368

�
� � � �
� � � �
� � � �

� � � � 	 �
 � � � �
� � � � 	 �
 � � � � � � � � � � � � � �

� � � � � � � 	 � �

�

� � � �

� � �

� �

� � � � 0 � 1 �

2
�
3S

�
�

�

�e
nd

�
ig

0
�
1

�
�e

ig

2	 � � ei g

(a) FRACTaL, OWD = 50ms

�
� � � �
� � � �
� � � �

� � � � 	 �
 � � � �
� � � � � � � 	 � �

�

� � � �

� � �

� �

� � � � � � � � � �

 	 0 � � 123

(b) SCReAM, OWD = 50ms

Figure 5: Performance of a single RTP stream in a scenario with varying link capacity (RMCAT1).

�
� � � �
� � � �
� � � �

� � � � 	 �
 � � � � � � � � 	 �
 � � � � � � � � � � � � 	 � �

�
� � � �

� � �
� � � �

�

� �

� � � � � � � � � � � � � � � � � � � � �

 	 0 � � 123

�

Se
�

�
�
�

�
1n

d
�
23

�
�
�

�
�1

23

(a) FRACTaL

�
� � � �
� � � �
� � � �

� � � � 	 �
 � � � � � � � � 	 �
 � � � � � � � � � � � � 	 � �

�
� � � �

� � �
� � � �

�

� �

� � � � � � � � � � � � � � � � � � � � �

 	 0 � � 123

(b) SCReAM

Figure 6: Performance of a two RTP streams competing in a scenario with varying link capacity (RMCAT2).

�
� � � �
� � � �
� � � � � � � � 	 �
 � � � � � � � � 	 �
 � � � � � � � � � � 	 �
 � � � � � �

�

� � � �

� � �

� �

� � � � � � � � � � � � � � � � �

� � � � � � � 0 1 � � � � � � � 0 1� � � � � � � � � 0 1� �

2	 3 � � S� e

2
n

��
�

n
d
�

�
S�

i
d
�e

�
0

1
�S

�e

(a) FRACTaL

�
� � � �
� � � �
� � � � � � � � 	 �
 � � � � � � � � 	 �
 � � � � � � � � � � 	 �
 � � � � � �

�

� � � �

� � �

� �

� � � � � � � � � � � � � � � � �

� � � � � � � 0 1 � � � � � � � 0 1� � � � � � � � � 0 1� �

2	 3 � � S� e

(b) SCReAM

Figure 7: Performance of a three RTP streams, each with a di�erent start time (RMCAT4).

�
� � � �
� � � �
� � � �

� � � � 	 �
 � � � � � � � � 	 �
 � � � � � � � � � � 	 �
 � � � � � �

�
� � � �

� � �
� � � �

�

� �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �� � �� � � � � � � � � � �� � �� � �
� 	 � � � � � �

�

01
�

2
�

�
�3

S
2
��

�
�
�

�
��

��

(a) FRACTaL

�
� � � �
� � � �
� � � �

� � � � 	 �
 � � � � � � � � 	 �
 � � � � � � � � � � 	 �
 � � � � � �

�
� � � �

� � �
� � � �

�

� �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� �� � � � � �� � �
� 	 � � � � � �

(b) SCReAM

Figure 8: Performance of a three RTP streams competing on a shared bottleneck, with di�erent RTT for each (RMCAT5).

�

� � � �

� � � �
� � � � � � 	
 � � �
 �
 � � �
 � � � � � �
 � � �

�
� � � �

� � �
� � � �

�

� �

� � � � �
 � � � �

� � 0 �
 12S

�
e

nd
�
	
e
i
�

1g

i
2S

�
�
��

1

2S

(a) FRACTaL

�

� � � �

� � � �
� � � � � � 	
 � � � � � �
 � � �

�
� � � �

� � �
� � � �

�

� �

� � � � �
 � � � � �

� � � �
 � 0

(b) SCReAM

Figure 9: Performance of an RTP stream competing with a long-term TCP �ow on a shared bottleneck (RMCAT6).

Session: Fast Forward 5 MM’17, October 23-27, 2017, Mountain View, CA, USA

1369

FCC SCReAM
50

m
s

Fl
ow

1 GP [kbps] 1086.5 ± 143.06 1470.6 ± 233.69
LR [%] 0 ± 0 0.26 ± 0.48
OWD [ms] 55.47 ± 1.27 64.93 ± 3.2

Fl
ow

2 GP [kbps] 744.48 ± 243.82 851.98 ± 125.27
LR [%] 0 ± 0 0.64 ± 0.97
OWD [ms] 55.92 ± 1.59 66.93 ± 4.89

Fl
ow

3 GP [kbps] 645.53 ± 100.8 842.77 ± 112.68
LR [%] 0 ± 0 0.09 ± 0.11
OWD [ms] 56.37 ± 1.61 66.14 ± 3.23

30
0m

s

Fl
ow

1 GP [kbps] 1483.99 ± 115.78 1608.97 ± 128.05
LR [%] 0 ± 0 0 ± 0.01
OWD [ms] 311.59 ± 1.8 315.35 ± 3.29

Fl
ow

2 GP [kbps] 658.94 ± 58.62 717.26 ± 112.41
LR [%] 0 ± 0 0.2 ± 0.23
OWD [ms] 313.44 ± 2.65 315.35 ± 3.56

Fl
ow

3 GP [kbps] 645.3 ± 120.09 743.27 ±166.9
LR [%] 0 ± 0 0.43 ± 0.86
OWD [ms] 315.47 ± 2.94 316.99 ± 2.54

Table 3: Summary of RMCAT4 measurements. FEC rate for
50ms and 300ms: Flow 1) 127.15±12.06 kbps, 129.83±8.2 kbps;
Flow 2) 101.37±16.81 kbps, 66.53±7.62 kbps; Flow 3) 92.84±9.28
kbps, 65.39 ± 10.27 kbps; In all the cases the FFRE is 0.

FCC SCReAM

Fl
ow

1 GP [kbps] 547.71 ± 153.8 1971.6 ± 80.85
LR [%] 0 ± 0 0 ± 0
OWD [ms] 103.68 ± 46.43 81.99 ± 26.81

Fl
ow

2 GP [kbps] 731.31 ± 157.39 440.09 ± 112.56
LR [%] 0.04 ± 0.06 1.54 ± 1.46
OWD [ms] 171.64 ± 56.42 142.67 ± 29.71

Fl
ow

3 GP [kbps] 1161.45 ± 191.75 189.28 ± 55.16
LR [%] 0.06 ± 0.12 4.49 ± 2.48
OWD [ms] 217.28 ± 50.12 173.64 ± 25.82

Table 4: Summary of RMCAT5 measurements. FEC rate for
the� ows is: Flow 1) 91.13 ± 8.85 kbps; Flow 2) 75.92 ± 12.52
kbps; Flow 3) 98.78 ± 19.82 kbps; In all the cases the FFRE is
0.

FRACTaL probes and increases the media bitrate in separate
time intervals, which introduces extra stability.� is alternating
mode makes FRACTaL more robust against RTT (or feedback fre-
quency) variation because the algorithm senses upcoming conges-
tion quicker. When media sources with di�erent RTT compete,
FRACTaL creates a combination of two e�ects: (1) the media� ow
with larger RTT ramps up slower due to longer T�alid . But (2) it
reacts slower to upcoming congestion and undershoots later.�e
la�er makes the larger RTT� ow less reactive and forces the media
�ow with shorter RTT to reduce its sending rate by a larger portion.
E�ect (1) favors the media� ow with shorter RTT while (2) favors
the media� ow with longer RTT, which balance overall.

RMCAT6—Competing with a Long TCP Flow: In this sce-
nario, we evaluate the performance of the congestion control algo-
rithm when it competes with one long-term TCP� ow on a shared
bo�leneck link.� e RTTs are the same but the RTP stream starts
a�er the TCP� ow. Figure 9 shows a sample measurement, in which
FRACTaL is fairly competing with TCP, while SCReAM remains
close to its minimal sending rate (the default is 64 kbps). As FRAC-
TaL uses FEC for probing, this additional redundant media tra�c
pushes against the TCP tra�c and causes TCP to reduce its sending
rate. FEC also protect the media� ow against packet loss. FFRE is
6 � 12%.� is scenario shows that FEC packets are indeed useful,
especially for competing with TCP in order to reach a fair share.

FCC SCReAM

50
m
s GP [kbps] 1045.86 ± 80.41 358.56 ± 617.13

LR [%] 0.9 ± 0.23 13.24 ± 8.06
OWD [ms] 348.64 ± 6.81 264.83 ± 95.02
TFS 66.75 ± 6.69 112.05 ± 63.25

30
0m

s GP [kbps] 886.31 ± 59.16 39.47 ± 10.2
LR [%] 1.24 ± 0.45 48.73 ± 13.16
OWD [ms] 573.05 ± 14.97 508.8 ± 118.08
TFS 79.93 ± 5.05 143.42 ± 1.41

Table 5: Summary of the measurements of RMCAT6. FEC
rate and FFRE for 50ms, and 300ms: Flow 1) 79.98.64 ± 11.43
kbps, 6.59% ± 2.29; Flow 2) 71.07 ± 16.87 kbps, 12.22% ± 10.32;
Flow 3) 77.07 ± 7.73 kbps, 12.74% ± 5.57;

FCC SCReAM

50
m
s GP [kbps] 1121.75 ± 69.34 1128.56 ± 368.76

LR [%] 0.27 ± 0.18 1.24 ± 0.9
OWD [ms] 204.72 ± 55.47 132.27 ± 40.81

30
0m

s GP [kbps] 1240.78 ± 106.16 1065.13 ± 442.44
LR [%] 0.58 ± 0.3 2.97 ± 3.41
OWD [ms] 457.27 ± 21.08 357.95 ± 38.86

Table 6: Summary of the measurements of RMCAT6. FEC
rate and FFRE for 50ms and 300ms: Flow 1) 119.64±9.41kbit/s,
13.64% ± 19.58; Flow 2) 117.26 ± 10.9kbit/s, 4.66% ± 5.29; Flow 3)
107.16 ± 6.12kbit/s, 9.75% ± 9.5;

RMCAT7—Competing with Short TCP Flows: In this sce-
nario, one RTP stream competes with several short term TCP� ows
on a shared bo�leneck.� e start times of the TCP� ows are ran-
domly selected and so is the amount of data to be fetched (typically
50–1500 KB). Our evaluation shows that the FRACTaL ramps up
and the TCP� ows ramp down to their respective fair share. In
contrast, SCReAM remains at the minimal sending bitrate while
the TCP� ow is present and ramps up only when the TCP� ows
disappear.

6 CONCLUSION
We presented FRACTaL, a congestion control algorithm that incor-
porates FEC both for error resilience and for probing for available
capacity. FRACTaL builds on top of our previous work, FBRA, and is
able to eliminate some of FBRA’s shortcomings, speci�cally its con-
servative ramp-up and not being able to compete well against TCP
�ows. FRACTaL achieves this by three measures: 1) Its FEC adapts
to observed loss pa�erns in contrast to a� xed error protection
scheme. 2) FRACTaL congestion control uses di�erent congestion
cues compared to FBRA: bytes in� ight and two sliding windows of
5s and 30s for its measurements. 3) FRACTaL modi�ed the state ma-
chine in FBRA, which as a result improved reliability (much be�er
frame recovery) and made the congestion control more stable.

We compare the performance of FRACTaL with SCReAM based
on the standard RMCAT test cases in a testbed with the complete
pipeline, i.e., with video codecs and reference videos, appropriate for
real-time interactive communication.� e performance evaluation
was carried out in a test-bed with these algorithms implemented
in OpenWebRTC framework. Our evaluation shows that FRACTaL
has comparable goodput, be�er loss rate and lower network queue
delay. Furthermore, we show that FRACTaL competes well with
short- and long- TCP �ows. Meanwhile, SCReAM when competing

Session: Fast Forward 5 MM’17, October 23-27, 2017, Mountain View, CA, USA

1370

with TCP collapses, which makes them not-ideal for deployment
on the Internet, where TCP and UDP tra�c share the same queues.

�e RCMAT test cases o�er useful reference scenarios for small
scale comparison. In our future work, we will expand our eval-
uation to cover larger scale scenarios as well as paths across the
Internet, and we will embrace measurement setups with wireless
nodes. We also plan applying the FRACTaL to multipath scenarios
in conjunction with MPRTP [34] to enhance the robustness of the
la�er, which we expect to bene�t especially mobile and wireless
scenarios.

REFERENCES
[1] H. Alvestrand. 2016. Overview: Real Time Protocols for Browser-based Applica-

tions. (2016), 22 pages. h�ps://tools.ietf.org/pdf/dra�-ietf-rtcweb-overview-18.
pdf

[2] Jim Bankoski, Paul Wilkins, and Yaowu Xu. 2011. Technical overview of VP8,
an open source video codec for the web. In Proceedings - IEEE International
Conference on Multimedia and Expo. IEEE. h�ps://doi.org/10.1109/ICME.2011.
6012227

[3] R. Brandenburg, K. Gross, W. Wu, F. Boronat, and M. Montagud. 2012. RTCP
XR Report Block for One Way Delay metric Reporting. Internet-Dra�dra�-wu-
xrblock-rtcp-xr-one-way-delay-02.

[4] Lukasz Budzisz, Rade Stanojević, Arieh Schlote, Fred Baker, and Robert Shorten.
2011. On the fair coexistence of loss-and delay-based tcp. IEEE/ACM Transac-
tions on Networking 19, 6 (2011), 1811–1824. h�ps://doi.org/10.1109/TNET.2011.
2159736

[5] Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and Saverio Mascolo. 2016.
Analysis and design of the google congestion control for web real-time com-
munication (WebRTC). In Proceedings of the 7th International Conference on
Multimedia Systems - MMSys ’16. ACM Press, New York, New York, USA, 1–12.
h�ps://doi.org/10.1145/2910017.2910605

[6] Stefano D’Aronco, Laura Toni, Sergio Mena, Xiaoqing Zhu, and Pascal Frossard.
2017. Improved Utility-Based Congestion Control for Delay-Constrained Com-
munication. IEEE/ACM Transactions on Networking 25, 1 (2017), 349–362.
h�ps://doi.org/10.1109/TNET.2016.2587579

[7] Jegadish Devadoss, Varun Singh, Jörg O�, Chenghao Liu, Ye Kui Wang, and Igor
Curcio. 2008. Evaluation of error resilience mechanisms for 3G conversational
video. In Proceedings - 10th IEEE International Symposium on Multimedia, ISM
2008. IEEE, 378–383. h�ps://doi.org/10.1109/ISM.2008.106

[8] S Floyd, M Handley, J Padhye, and J Widmer. 2000. Equation-Based Congestion
Control for Unicast Applications. Acm 30, 4 (2000), 43–56. h�ps://doi.org/10.
1145/347057.347397

[9] T. Friedman, R. Caceres, and A. Clark. 2003. RTP Control Protocol Extended
Reports (RTCP XR). RFC 3611 (Proposed Standard). (Nov. 2003), 55 pages. h�ps:
//doi.org/10.17487/RFC3611

[10] L. Gharai. 2007. RTP with TCP Friendly Rate Control. Internet-Dra�dra�-ietf-
avt-tfrc-pro�le-10.

[11] Stephen Hemminger. 2005. Network Emulation with NetEm. Proceedings of the
6th Australian National Linux Conference (LCA 2005) April (2005), 1–9.

[12] S. Holmer and H. Alvestrand. 2012. A Google Congestion Control Algorithm
for Real-Time Communication on the World Wide Web. Internet-Dra�dra�-
alvestrand-rtcweb-congestion-03.

[13] Stefan Holmer, Mikhal Shemer, and Marco Paniconi. 2013. Handling packet loss
in WebRTC. In 2013 IEEE International Conference on Image Processing, ICIP 2013
- Proceedings. IEEE, 1860–1864. h�ps://doi.org/10.1109/ICIP.2013.6738383

[14] R. Huang and V. Singh. 2015. RTP Control Protocol (RTCP) Extended Report
(XR) for Post-Repair Loss Count Metrics. RFC 7509 (Proposed Standard). (May
2015), 11 pages. h�ps://doi.org/10.17487/RFC7509

[15] IETF. 2017. RMCAT working group of the IETF. (2017). h�p://datatracker.ietf.
org/wg/rmcat

[16] IETF. Online. RTCWEB working group of the IETF. (Online). h�p://datatracker.
ietf.org/wg/rtcweb

[17] ITU-T. 2003. G.114 One-way transmission time. SERIES G: TRANSMISSION SYS-
TEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS International telephone
connections and circuits � General Recommendations on the transmission quality
for an entire international telephone connection (2003), 1–20.

[18] R. Jesup. 2013. Congestion Control Requirements For RMCAT. Internet-Dra�
dra�-jesup-rmcat-reqs-01.

[19] I. Johansson and Z. Sarker. 2015. Self-Clocked Rate Adaptation for Multimedia.
Internet-Dra�dra� -johansson-rmcat-scream-cc-05.

[20] Marcin Nagy, Varun Singh, Jörg O�, and Lars Eggert. 2014. Congestion control
using FEC for conversational multimedia communication. In Proceedings of the
5th ACM Multimedia Systems Conference on - MMSys ’14. ACM Press, New York,
New York, USA, 191–202. h�ps://doi.org/10.1145/2557642.2557649

[21] B. Ngamwongwa�ana and R.� ompson. 2010. Sync & Sense: VoIP Measurement
Methodology for Assessing One-Way Delay Without Clock Synchronization.
IEEE Transactions on Instrumentation and Measurement 59, 5 (may 2010), 1318–
1326. h�ps://doi.org/10.1109/TIM.2010.2043978

[22] P. O’Hanlon and K. Carlberg. 2013. Congestion control algorithm for lower latency
and lower loss media transport. Internet-Dra�dra�-ohanlon-rmcat-d� ow-02.

[23] Open Web RTC. 2017. Home Page of Open Web RTC. (2017). h�ps://www.
openwebrtc.org/

[24] J. O�, V. Singh, and I. Curcio. 2014. RTP Control Protocol (RTCP) Extended
Report (XR) for RLE of Discarded Packets. RFC 7097 (Proposed Standard). (Jan.
2014), 11 pages. h�ps://doi.org/10.17487/RFC7097

[25] J. O�, S. Wenger, N. Sato, C. Burmeister, and J. Rey. 2006. Extended RTP Pro�le for
Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/AVPF). RFC
4585 (Proposed Standard). (July 2006), 51 pages. h�ps://doi.org/10.17487/RFC4585
Updated by RFCs 5506, 8108.

[26] C. Perkins. 2016. RTP Control Protocol (RTCP) Feedback for Congestion Control
in Interactive Multimedia Conferences. Internet-Dra�dra�-ietf-rmcat-rtp-cc-
feedback-03.

[27] C. Perkins and O. Hodson. 1998. Options for Repair of Streaming Media. RFC
2354 (Informational). (June 1998), 12 pages. h�ps://doi.org/10.17487/RFC2354

[28] C. Perkins and V. Singh. 2017. Multimedia Congestion Control: Circuit Breakers
for Unicast RTP Sessions. RFC 8083 (Proposed Standard). (March 2017), 25 pages.
h�ps://doi.org/10.17487/RFC8083

[29] R Rejaie, M Handley, and D Estrin. 1999. RAP: An end-to-end rate-based conges-
tion control mechanism for realtime streams in the Internet. In Proc. of INFOCOM.
IEEE.

[30] Ericsson Research. 2017. OpenWebRTC-speci�c GStreamer plugins. (2017).
h�ps://github.com/EricssonResearch/openwebrtc-gst-plugins

[31] Z. Sarker, V. Singh, X. Zhu, and M. Ramalho. 2017. Test Cases for Evaluating
RMCAT Proposals. Internet-Dra�dra� -ietf-rmcat-eval-test-05.

[32] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. 2003. RTP: A Transport
Protocol for Real-Time Applications. RFC 3550 (Internet Standard). (July 2003),
104 pages. h�ps://doi.org/10.17487/RFC3550 Updated by RFCs 5506, 5761, 6051,
6222, 7022, 7160, 7164, 8083, 8108.

[33] Varun Singh. 2015. Protocols and Algorithms for Adaptive Multimedia Systems.
(2015), 134 + app. 86 pages. h�p://urn.�/URN:ISBN:978-952-60-6221-1

[34] Varun Singh, Saba Ahsan, and Jrg O�. 2013. MPRTP: Multipath Considerations
for Real-time Media. In Proc. of ACM Multimedia Systems.

[35] V. Singh, A. Begen, M. Zanaty, and G. Mandyam. 2017. RTP Payload Format for
Flexible Forward Error Correction (FEC). Internet-Dra�dra�-ietf-payload-� exible-
fec-scheme-05.

[36] Varun Singh, Albert Abello Lozano, and Jörg O�. 2013. Performance analysis of
receive-side real-time congestion control for WebRTC. In Packet Video Workshop
(PV), 2013 20th International. IEEE, 1–8.

[37] V. Singh, S. Mc�istin, M. Ellis, and C. Perkins. 2013. Circuit Breakers for
Multimedia Congestion Control. In 2013 20th International Packet VideoWorkshop.
1–8. h�ps://doi.org/10.1109/PV.2013.6691439

[38] V. Singh, M. Nagy, J. O�, and L. Eggert. 2016. Congestion Control Using FEC for
Conversational Media. Internet-Dra�dra� -singh-rmcat-adaptive-fec-03.

[39] Varun Singh, Jörg O�, and Igor Curcio. 2009. Rate adaptation for conversational
{3G} Video. In Proc. of INFOCOM Workshop on MoViD. IEEE, Brazil.

[40] V. Singh, J. O�, and I. Curcio. 2014. RTP Control Protocol (RTCP) Extended
Report (XR) Block for the Bytes Discarded Metric. RFC 7243 (Proposed Standard).
(May 2014), 12 pages. h�ps://doi.org/10.17487/RFC7243

[41] Varun Singh, Jörg O�, and Igor D. D. Curcio. 2012. Rate-control for conversational
video communication in heterogeneous networks. In 2012 IEEE International
Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM).
IEEE, 1–7. h�ps://doi.org/10.1109/WoWMoM.2012.6263800

[42] Varun Singh, Jörg O�, and Colin Perkins. 2012. Congestion control for interactive
media: control loops & APIs. In IAB/IRTF Workshop on Congestion Control for
Interactive Real-Time Communication.

[43] W3C. 2017. Web Real-Time Communications Working Group. (2017). h�p:
//www.w3.org/2015/06/webrtc-charter.html

[44] Yao Wang, S Wenger, Jiantao Wen, and a K Katsaggelos. 2000. Error resilient
video coding techniques. Signal Processing Magazine, IEEE 17, 4 (2000), 61–82.
h�ps://doi.org/10.1109/79.855913

[45] Xiph.org. 2017. Video test media collection. (2017). h�p://media.xiph.org/video/
derf/

[46] X. Zhu, R. Pan, M. Ramalho, S. Cruz, P. Jones, J. Fu, and S. D’Aronco. 2017.
NADA: A Uni�ed Congestion Control Scheme for Real-Time Media. Internet-Dra�
dra�-ietf-rmcat-nada-04.

[47] Michael Zink, Oliver Künzel, Jens Schmi�, and Ralf Steinmetz. 2003. Sub-
jective Impression of Variations in Layer Encoded Videos. In Proceedings of
the International Workshop on� ality of Service. Springer, 137–154. h�ps:
//doi.org/10.1007/3-540-44884-5 8

Session: Fast Forward 5 MM’17, October 23-27, 2017, Mountain View, CA, USA

1371

