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ABSTRACT

There is a growing interest in video performance measurements
with emphasis on user experience and several initiatives have been
taken to conduct active testing of real video services. A deeper un-
derstanding of the variations in media bit rate and its influence on
the performance of video playback is needed in order to design bet-
ter measurements. In this paper, we analyze a dataset of YouTube
videos from various genres. We show statistically that most You-
Tube videos can be represented sufficiently well by the first 1 to 3
minutes of the video. This eliminates the need for running longer
tests when network conditions are stable as in the case of fixed net-
works. We test our observation in an active testing environment that
measures video metrics, and recommend based on the results that
such tests should run at least for one minute, however, a duration
of 3 minutes will help achieve better and more stable results.

CCS Concepts

*Information systems — Multimedia streaming; *Networks —
Network measurement;
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1. INTRODUCTION

Video has been the dominant traffic on the Internet for some time
and is expected to rise even further in coming years. It has been es-
timated that IP video traffic will increase to 80% by 2019 in com-
parison to the 67% in 2014 [8]. Many users, collectively referred to
as “cord cutters”, are actively switching to Internet video streaming
as their primary form of entertainment. Furthermore, high bit rate
content such as Ultra HD (4K) greatly increases the impact and
requirements of media traffic on the Internet. Given such trends,
there is a need for improved methods of delivery for video, and ad-
ditionally for performance testing and monitoring to ensure a good
user experience. This would require designing measurements that
focus specifically on video user experience.
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ISPs and application service providers have a strong interest in
assessing and understanding network and application performance
to make sure that their customers are satisfied. Hence, performing
active measurements at the endpoints is becoming an important tool
for observing long-term network behavior, as well as for investig-
ating and diagnosing network failures. Measurement endpoints in-
clude infrastructure nodes such as access routers and set-top boxes
as well as user devices such as, personal computers, smartphones,
and tablets. Typical metrics, e.g., as defined by the IP Perform-
ance Metrics (IPPM) Working Group' are round trip delay, one way
delay, IP packet delay variation, average TCP/UDP throughput, av-
erage fractional loss, DNS latency, among others. Aggregating per-
formance metrics from many measurement points by an Internet
Service Provider (ISP), or a measurement service (e.g., RIPE At-
lasz, SamKnows3, Netradar® [22], Speedtest5 , etc.) allows charac-
terizing the network performance geo-spatially and over time, dia-
gnose outages and observe the impact of the outage, and lastly, the
collected information helps regulators develop better public policy
for the Internet.

In this paper, we explore the characteristics of Internet video to
facilitate the design and execution of active measurements. Such
active measurements are used for measuring performance at the
end point, suitable for large scale measurements (as defined by
the IETF LMAP® Working Group). They are also applicable for
testing new video applications or adaptation algorithms for HTTP
Adaptive Streaming (HAS). Given the variety in types of content,
encoding algorithms and parameters, video streams have high vari-
ability. This variability can have an impact on video performance
especially when the network resources are limited. Recent pop-
ularity of HTTP Adaptive Streaming(HAS), have further increased
demands by requiring each video to be encoded in a number of bit
rates resulting in multiple representations for a single video. It is
important to clarify here that the term bit rate in this paper is used in
reference to the video bit rate and not throughput levels observed on
the network. The purpose of this study is to find a balance between
the time limitations of active testing and more meaningful video
performance statistics. To this end, we analyze a dataset of popu-
lar YouTube videos based on charts from 58 different locations and
make the following contributions:

1. We show that the magnitude and variation of bit rates for
YouTube videos can be represented by a short clip from the

'https://datatracker.ietf.org/wg/ippm/
*https://atlas.ripe.net/
3http://www.samknows.com/broadband/
“https://www.netradar.org/
Shttp://www.speedtest.com/
®https://datatracker.ietf.org/wg/lmap/
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Figure 1: The distribution of video duration in seconds of the
videos collected for this study. The extremes of the upper whiskers
are not shown; DASH datasets include videos over an hour long
while non-adaptive videos include length of 11 hours.

beginning of the video, typically 1 to 3 minutes long.

2. We provide results from experiments that monitor user exper-
ience metrics during active video testing over HTTP, which
show that cutting off tests prematurely produce reliable res-
ults when the cut-off duration is at least 1 minute. Results
are further improved, however, for a cut-off of 3 minutes.

We chose YouTube for our analysis for two reasons: ease of ac-
cess without logging in and its popularity. According to Sandvine
Global Internet Phenomena Report, YouTube was the largest single
source of real-time entertainment traffic for both mobile and fixed
access networks and the largest contributor of Internet traffic in the
world in 2013 [21]. SamKnows Whitebox that measures broadband
performance through active testing includes a YouTube test in the
testing suite. The white boxes are being used in different coun-
tries for large scale active measurements on behalf of regulators.
The same test is used in our active testing experiments with slight
modifications to make it suitable for our experimental setup.

The rest of this paper is organized as follows. We describe re-
lated work in section 2. Section 3 describes our datasets and the
methodology used for data collection. Statistical analysis of our
datasets for selecting a suitable length of clip that can represent the
video is given in section 4. A validation of our finding from the
analysis using an experimental setup for video testing is described
in section 5. Finally, we present our conclusions in section 6.

2. RELATED WORK

Several studies have been conducted to characterize YouTube
videos using datasets collected in 2007-08 [1,7,13] and in 2013 [3].
Initially in 2007, YouTube had a size limit on videos of 100MB [13],
which has since been increased to 20GB [23]. Our datasets were
collected between 2013 to 2015 and contain Full HD (1080p) and
Dynamic Adaptive Streaming over HTTP (DASH) streams.

In [5], the authors use over 20 million randomly selected You-
Tube videos to show that the popularity of videos is constrained by
geographical locations. Our methodology is in line with this obser-
vation, and our dataset contains all available location-based charts
from YouTube, giving our dataset a regional representation.

A crowdsourcing study in [14] shows that the QoE for TCP video
streaming is directly related to the number and duration of stalls
during a video playout, while other factors like age, level of Inter-
net usage or content type have no significant impact. In [6], the
authors build a QoE model based on stalling events for YouTube.
Research has also shown that actively measuring stall events (with
the Pytomo tool [15]) in different Internet Service Providers (ISP)
helps predicting the user experience [19]. The authors of [18] have

ITAG Resolution Format Video Audio Sample
Codec  Codec

22 720p MP4 H264  AAC 32133
18 360p MP4 H264 AAC 62387
137 1080p MP4 DASH  H264 - 8167
136 720p MP4 DASH  H264 - 19618
135 480p MP4 DASH  H264 - 13(films)
134 360p MP4 DASH  H264 - 15(films)

Table 1: ITAG values of YouTube videos discussed in this paper
and the size of the sample (number of videos) for each type used in
the analysis presented in Section 4. Itags 134 and 135 were used
only for feature-length film analysis.

developed a web-browser plugin that reports YouTube performance
based on occurence of stall events.

Another study analyzed a dataset from of an adult video stream-
ing website and it was observed that popularity of content had a
dependency on the content metadata and the ease of access of the
video [24]. In [4], the researchers study how YouTube’s progress-
ive download leads to TCP packet losses. The impact of location,
devices and access technologies on user behavior and experience
is discussed in [12]. Distribution of YouTube’s cache servers and
their selection process was studied in [2]. A comparison of You-
Tube datasets collected using different sampling methods showed
that some sampling methods introduce bias and subsequently affect
the results [16].

Our work aims at active measurements and is thus relevant to the
LMAP [11] and IPPM WGs.

3. DATASET

We developed a YouTube client designed to mimic playout of
YouTube videos and read video containers. The client downloads
videos from YouTube and collects frame level information from
the streams: the timestamp at which the frame is to be played and
its size in bytes. YouTube uses numeric identifiers called itags for
identifying the formats and resolutions of the video, and the itags
used by this study are listed in Table 1. DASH videos are available
in different representations, each with its own encoding bit rate and
resolution to provide a range of video qualities to the client. The
resolution in the table indicates the vertical resolution and the “p” is
for progressive scan. The horizontal resolution will depend on the
aspect ratio of the video and YouTube players add black bars on the
sides if needed to display them correctly. Each representation is di-
vided into chunks of a fixed duration, which in the case of YouTube
is 5 seconds. A DASH client can typically adapt to network con-
ditions by switching between representations at the boundaries of
these chunks to ensure smooth playback. Hence, the final played
stream depends on the network conditions and the adaptation al-
gorithm. Since we wanted to study the streams without network
and algorithm dependencies, we did not use any rate-adaptation al-
gorithm in the client when downloading DASH and instead down-
loaded entire streams in a single resolution.

We collected frame-logs, constituting frame sizes and timestamps,
for YouTube MP4 files in four different resolutions and for both
DASH and non-adaptive streams. The resolutions gathered for
DASH were 360p, 480p, 720p, and 1080p, while those for non-
adaptive were 360p and 720p. YouTube did not offer non-adaptive
streams for 480p and 1080p resolutions in MP4 at the time that this
study was conducted. All videos used were from the charts of July
5 and September 11, 2013 7. These charts are auto-generated by

"www.youtube.com/charts. YouTube has changed their service
since the collection of the data and now redirects chart requests
to "Popular on YouTube" channel.
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Figure 2: The distribution of p-values of KS test for different cut-
off lengths and formats. For a 3 minute clip (cut-off = 180s) over
90% DASH videos and at least 80% of Non-Adaptive videos pass
the test.

YouTube for a set of locations based on daily, weekly, monthly or
all time number of views. Apart from the overall top videos, we
collected data from category based charts for all available locations
to give us a wide range of video types. Note that the frame-logs
were collected only for a subset of the videos from the charts, how-
ever, the videos were not selected based on any specific content
characteristics, but instead the reduced number was due to avail-
ability in required formats or failure to retrieve video due to e.g.
restricted access to the video at the time of the test. Details of the
dataset can be found in [3].

4. VIDEO TESTING DURATION

Video streams compressed using Variable Bit Rate (VBR) en-
coding schemes are bursty by nature with high motion scenes pro-
ducing higher bit rate values in comparison to low motion scenes.
The extent of burstiness depends on the content of the video and the
encoding. This characteristic of video streams can affect the per-
formance of video especially when the network requirements of the
video are close to the available network resources. This makes it
beneficial to run video tests for longer periods. On the other hand,
active video measurements over live networks need to be kept short
to minimise interference with actual traffic. Furthermore, creating
and maintaining test streams of long durations is difficult. Perform-
ance measurements for video, therefore, call for a balance between
tests that are neither too long, nor too short. In this section, we look
at the characteristics of video streams from YouTube to determine
whether or not cutting off a video before it ends yields a video clip
that represents the characteristics of the entire video sufficiently
well. We use two statistical measures to guide our choice of a cut-
off value for the clip: 1) the two sample Kolmogorov-Smirnov (KS)
test acceptance rate 2) the Autocorrelation Function (ACF)-based
dissimilarity values. The clip is always taken from the beginning
of the video and consists of all frames with timestamp t < cut-off
value. When the selected cut-off value is longer than the duration of
the video, the clip will be identical to the video. The size and type
of datasets used for the analysis are shown in Table 1 and the distri-
bution of the video lengths of different formats within the dataset is
shown in Figure 1. The statistical analysis is done using R software
environment and libraries [20] [17].

4.1 KS Test

The two-sample KS test [9] is a goodness of fit test that takes
two mutually independent, random samples, X and Y with values

X1,X2,X3,...,Xnand Yy, Ys, Y3, ..., Y}, respectively and unknown

distribution functions. The null hypothesis is that both samples
have the same distribution function and it is tested based on the

DASH 1080p 4 DASH 720p = Non-adapt 360p + Non-adapt 720p
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Figure 3: The dissimilarity based on ACF for the segment and the
full video for different formats. The points on the graph represent
the 90th percentile of the dissimilarity value for a particular cut-off
length. The x-intercept is drawn at 180 seconds.

distance between the Empircal Cumulative Distribution Function
(CDF) of X and Y.

In our analysis, the KS test is used for comparing a video with
a clip from the same video; X is the instantaneous bit rates of the
entire video and Y is the instantaneous bit rates of the clip. The
instantaneous bit rates are calculated per second using the frame
sizes in the stream. For instance, the first value will be the sum of
the frame sizes in kbits of all the frames with a playout timestamp
less than 1 second (s), the second value will be the sum of the frame
sizes in kbits of all the frames with a playout timestamp greater than
or equal to 1s but less than 2s and so on.

We did the analysis for 4 types of videos: 360p non-adaptive
MP4 (itag 18), 720p non-adaptive MP4 (itag 22), 720p DASH MP4
(itag 136) and 1080p DASH MP4 (itag 137). We also use different
cut-off lengths ranging for 10 seconds to 10 minutes. The output
of the KS-test is a p-value, which is the probability that the null
hypothesis is true. A higher p-value is desirable in this case. Fig-
ure 2 shows the distribution of p-values for some of the cut-off
lengths, subset by the kind of video. Note that the CDF shown in
the graph is a depiction of the distribution of the p-values for the
entire dataset and not for any individual video. If we use a signi-
ficance level of 0.05, accepting the null hypothesis if p-value>0.05,
we see an acceptance rate close to 90% for both DASH formats at
a cut-off of 180s. In the figure, the intersection of the CDFs with
the dashed 0.05 intercept marks the percentage of videos for which
the hypothesis fails. The value is lower for the non-adaptive rates,
however, the difference is most likely because of the difference in
the lengths of the videos in our datasets for each video type rather
than the encoding. Figure 1 shows the distribution of video lengths
for each format, and the non-adaptive itags have a wider range of
video lengths.

We observed that for lower cut-off, there is a larger impact on
the acceptance rate of the hypothesis than for higher cut-off values.
So in Figure 2, the CDFs of cut-off lengths 10s, 60s and 120s are
more widely spaced whereas the cut-offs for 180s, 240s and 300s
are closely spaced. We infer from this that after a certain length,
increasing the cut-off value further does not add a lot of information
in terms of the required bit rate values and variations of a video
stream.

The KS test has an obvious disadvantage in the context of video
streams because it treats the frame sizes as an unordered distribu-
tion and, thus, fails to account for the timing element. Although,
using bit rate values instead of raw frame sizes preserves some level
of order, to reinforce our finding we look at dissimilarity based on
ACEF of the video streams to account for the temporal structure of
the stream.



4.2 ACF based dissimilarity Test

To measure the dissimilarity between the clip and the entire video
while maintaining the order of the time series, we use a dissimilar-
ity measure based on its ACF. This method allows comparison of
two video streams of different lengths. P.D'Urso et. al. define auto-
correlation as "a measure of how well a signal matches a time shif-
ted version of itself, as a function of the amount of time shift which
is also referred to as a lag" [10]. Formally, ifx = x, : t = 1,...,T
is a time series then the autocorrelation atlag r(r = 1,..., T —1 =
R) is defined as

T - _
b= Dimria (T — T) (T1—r — T)
23:1 (z¢ — 7)

The ACF of a time series is the series of autocorrelation at differ-
ent lags. To formally define the ACF-based dissimilarity, suppose
two time series are Xt and Y7 respectively and p;, x, pi, v, 1S the
estimated autocorrelation value at lag i for X1 and Yr respectively,
then the dissimilarity d acru is defined as follows [17]

L

Z(FAMXT - [)i,YT)Q

=1

dacru(Xr,Yr) =

where L is the maximum lag in the ACF.

In our analysis, we use the clip and the entire video as the two
time series; both consist of an ordered series of frame sizes in bytes.
The maximum lag used is 100. Figure 3 shows the computed ACF-
based dissimilarity of the cut-off clip and the original video for
different cut-off values. We use the 90" percentile of the observed
values to eliminate the effect of the large amount of videos shorter
than the cut-off lengths, which will have O dissimilarity and will
heavily reduce the average dissimilarity (see Figure 1). While the
actual dissimilarity values depend on the chosen lag and is insuf-
ficient to draw a conclusion from, the shape of the graph shows a
clear decreasing behavior that levels out for higher cut-off lengths
and further increasing the cut-off length has a minimal impact on
the dissimilarity. We experimented with different lag values, and
observed similar shaped graphs.

4.3 Feature-length films

YouTube primarily serves short videos and our datasets for all
formats have a large number of videos that are no longer than 3
minutes. Furthermore, many longer YouTube videos have repititive
content or at least similar content. Feature films, on the other hand,
run for over an hour and often have different types of content, low
motion and high motion scenes, throughout the film. In order to
compare the validity of the results with feature-length films, we
used YouTube’s Films channel and studied DASH, MP4 bit rates
for 15 videos from the free films category ® that had unrestricted
access. The complete list of studied films along with title, genre
and durations is available online’. Due to limited availability of
higher resolution videos, we only performed the tests for itag 134
and 135, which are DASH 320p and 480p respectively. Figure 4
shows the results of the ACF-based dissimilarity computations for
different cut-off lengths. The graph has a similar shape to what
we observed before, showing that after a certain cut-off, further
increasing the cut-off length decreases the dissimilarity measure
by a small amount. However, the KS test results shown in Figure 5
show that the p-value is sometimes higher for shorter cut-offs than

8https://www.youtube.com/user/movies/videos ?view=26
*http://www.netlab.tkk.fi/tutkimus/rtc/Listof TestVideos
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Figure 4: The dissimilarity based on ACF for the segment and
the full video for different formats of feature length movies. The
points on the graph represent the 90th percentile of the dissimilarity
value for a particular cut-off length. The x-intercept is drawn at 180
seconds.

Cutoff (s) -+ 10~ 60~ 120~ 180 — 240 —300 — 600

DASH 360p
1.0 ! 1] -
0.8+
= 0.6
O 044
0.2+
0.0

0.4 U‘.S .
KS Test p—value

Figure 5: The p-values for KS test of feature length films are less
stable. The behavior is most likely because the type of content in
films, unlike most YouTube user-generated videos, is not consistent
throughout the stream. Since our dataset has less than 15 videos in
each format, it is not possible to draw a behavior pattern, however,
it is sufficient to see that the clips are not suitable in many cases.

longer ones. We expect such results for videos that have different
types of content, since KS test considers CDFs, which do not take
ordering into account. A clip of a low motion scene might yield
far too many low bit rate values, while that of a high motion scene
would yield too many high bit rate values in comparison to the
distribution of bit rates within the entire video.

S. VALIDATION

Our statistical analysis shows that a clip of 1 to 3 minutes can be
used while conducting YouTube video testing, because the clip can
represent the bit rate variations within the entire stream relatively
well. We validate this result using a series of tests in a test environ-
ment with varying network statistics, showing that after 1 minute,
the video metrics begin to stabilize.

5.1 Test Setup

Our test setup consists of an HTTP server that serves video con-
tent and a video client that streams it. We connected the two over
LAN and emulated link speeds using Netem'?. The queue size limit
was set to produce a maximum latency of 70ms for all cases. All
tests are terminated after 30 minutes.

The server runs an HTTP server based on libmicrohttpd ''. It
handles the range keyword within the requested URL to serve byte
ranges (chunks) within the video files to facilitate progressive down-
load or DASH chunk downloads. The video client is a C/C++ pro-

Yhttp://www.linuxfoundation.org/workgroups/networking/netem
http://www.gnu.org/software/libmicrohttpd/
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Figure 6: The average stall ratio (number of stalls/duration of
video) for YouTube’s popular videos of different lengths (range:
15s -95m) showing that results stabilize after 60s. The y axis uses
alog10 scale to magnify the axis for the 4Mbps network.

gram based on libcurl and is designed to read frame boundaries and
playout timestamps to determine the quality of video playback.

The measurements are all done within our video client. The cli-
ent performs 3 basic functions to mimic a real video player 1) pre-
buffering, 2) throughput throttling 3) rebuffering. The client oper-
ates in prebuffering mode until it downloads at least 2 seconds of
video. It then starts the playout timer, and continues to download
videos until its buffer is full. We use a buffer of 50 seconds dur-
ing our trials, which is in compliance with what Safari and Chrome
players used for YouTube videos at the time of writing this paper.
While the buffer is still filling up, the client requests the video in
chunks of 2.5MB. Once the buffer is full, the client slows down the
rate of download by requesting 500kB chunks only when the buf-
fer has space. This behavior results in throughput throttling and is
used in clients to avoid unnecessary downloading. The requested
chunk sizes are calculated assuming an average bit rate of 4Mbps
of the video, hence downloading 5 second chunks while the buf-
fer is empty and then throttling down to 1 second chunks. The third
function, rebuffering, comes into play when the buffer is empty dur-
ing playout causing the video playout to stall. If this happens, the
client stops the playout timer and resumes only once it has down-
loaded/rebuffered 1 second of video. Actual rendering of the video
is not done.

5.2 Metrics

To measure video experience, we use stall/rebuffering events.
Since it is difficult to compare the number or duration of stall events
across different test durations directly, we instead use the metric
stall ratio. We define stall ratio as the ratio between the total dur-
ation that the video was stalled to the total duration of the video
that was played. The duration of the video played is equal to the
cut-off length, unless the network throughput was so low that the
video playout could not be completed within the 30 minutes of the
test. However, this happens very rarely.

5.3 Results

We conduct the testing for two sets of videos 1) 10 YouTube pop-
ular videos of different durations 2) 10 YouTube popular videos all
of durations greater than 10 minutes. All videos were downloaded
from YouTube in the format 1080p DASH MP4 (itag 137).

5.3.1 YouTube Popular Videos

For the first set we used the YouTube channel “Popular on You-
Tube”'? with the country chosen as “Worldwide”. We picked 10
videos; selecting the first video from each of the categories on the

Phttps://www.youtube.com/channel/UCFOpVplsI8R 5kcAqgtoRqoA
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Figure 7: The average stall ratio (number of stalls/duration of
video) for YouTube’s popular videos where duration is over 10
minutes. Note that for 17Mbps network, the stall ratio is O for
cut-off under 50 seconds.

channel that was available in 1080p resolution and that had unres-
tricted access. The list contains one feature length film as well.

We used maximum sustained throughput values of 2, 3 and 4
Mbps with peak-rates of 3, 4 and 5 Mbps which were selected
based on the average bit rates of the videos (4Mbps). Each video is
tested ten times for a particular network configuration. We take the
trimmed mean of total stall duration for every video, ignoring the
highest and lowest values. The final stall ratio is then calculated as
the average of the stall ratio for the all the videos. We again see that
as the cut-off increases, the stall ratio stabilizes and running the test
longer adds little information to the results. When conditions are
particularly constrained, as in the case of networks with 2Mbps and
3Mbps, the ratio stabilizes fairly quickly with the curves straight-
ening out already at 30 seconds. However, at 4Mbps, which is very
close to the actual required rate for the videos, it takes at least 60
seconds for the results to start stabilizing and up to 120 seconds for
it to straighten out.

This scenario better captures the expected results from YouTube
active testing since it includes videos of different lengths, including
some that are shorter than the cut-off durations.

5.3.2 Videos over 10 minutes

In order to observe the behavior of longer videos, we took a ran-
dom sample of 10 videos from our itag 137 (DASH 1080p) dataset
used in section 4, with the pre-condition that the duration of the
video is greater than 10 minutes. These videos have much higher
bit rate requirements and so the maximum sustained throughput
values used are 14, 15, 16 and 17 Mbps with peak-rates of 15, 16,
17 and 18 Mbps respectively. The videos were again tested multiple
times and the final stall ratio is calculated from a trimmed mean as
explained previously.

The results are shown in Figure 7, which are similar to our pre-
vious observations. Note that when the cut-off is less than 50
seconds, the stall ratio is O for the 17Mbps network. Such a res-
ult can be misleading when testing network health for YouTube or
similar video streaming websites. The y-axis on the two Figures
6 and 7 are different, and this must be taken into account when
comparing the curves.

5.4 Discussion

VBR encoded streams can have high bit rate variations depend-
ing on the content; one segment of a stream can be very different
from another, with very high peaks at some points. We show in this
paper that despite this, user-generated Internet video such as You-
Tube’s can be represented by a clip of 1 to 3 minutes sufficiently
well. The result is important for active testing in two ways. Firstly,
when testing with live services such as YouTube, it is possible to



gather reliable performance statistics even when tests are cut off
prematurely before the video ends. Secondly, when running longer
tests the same clip can be joined to form a longer test stream, elim-
inating the need for maintaining large test files. Since our original
dataset is based on charts from 2013, we collected a smaller data-
set of about 70 DASH videos (1080p, 720p and 480p) based on
YouTube charts of Feb 2015 and observed the same results.

User experience for Internet video is usually measured in terms
of start-up delay and the number or duration of rebuffering/stall
events. Start-up delay is the amount of time it takes a video to begin
playing from the time the user clicks Play. DASH videos have more
metrics based on how often the client switches quality of the stream
and the highest sustained quality. Using a clip from the beginning
ensures that the measured start-up delay is unaffected. However, if
the test duration is too short, not only stall-related metrics will be
misleading, as we showed with our experiment, but DASH related
metrics will not be reliable either.

The results can not be extended directly to feature-length films.
However, our analysis for feature length films is based on a very
small sample and is insufficient. As future work, we propose testing
the hypothesis for a larger sample of videos and testing for not only
clips from the beginning but also from the middle, as the beginning
in case of most films may consist of mostly credits and an opening
sequence.

Finally, it is important to note here that our work focuses on the
variability of bit rates within a video stream and not the variabil-
ity of network performance. For instance, conducting longer tests
in mobile networks would add more value because it would better
capture the variability introduced by the network conditions. This,
however, is true regardless of the variations in the media.

6. CONCLUSION

We explored the bit rate variations within an Internet video stream
from a measurement perspective. We show statistically that a clip
from the beginning of a YouTube video can represent the entire
stream and that cutting off video tests prematurely before the video
ends, can still provide acceptable user experience metrics. We re-
commend that the cut-off length should be at least one minute long,
although 3 minutes is a more optimal duration. These results are
useful in active testing of HTTP streams, which strive to gather
reliable performance metrics in short amounts of time in order to
minimize overhead traffic and interference with live traffic. Ana-
lysis of a small sample of feature-length films indicates the results
can not be directly applied to such videos and more detailed ana-
lysis is required.
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