
Opportunistic Content Dissemination Performance in
Dense Network Segments

Teemu Kärkkäinen
Technical University of Munich

kaerkkae@in.tum.de

Mika Välimaa, Esa Hyytiä
Aalto University

fistname.lastname@aalto.fi

Jörg Ott
Technical University of Munich

ott@in.tum.de

ABSTRACT
Many of the existing opportunistic networking systems have been
designed assuming a small number links per node and have trou-
ble scaling to large numbers of potential concurrent communica-
tion partners. In the real world we often find wireless local area
networks with large numbers of connected users – in particular in
open Wi-Fi networks provided by cities, airports, conferences and
other venues. In this paper we build a 50 client opportunistic net-
work in a single Wi-Fi access point and use it to uncover scaling
problems and to suggest mechanisms to improve the performance.
The ability to scale to high density network segments creates new,
realistic use cases for opportunistic networking applications.

CCS Concepts
•Networks→Wireless access points, base stations and infras-
tructure; Network performance analysis; Network protocol de-
sign; Peer-to-peer protocols;

Keywords
Dense wireless networks, opportunistic networking, performance
analysis, wireless testbed

1. INTRODUCTION
Trace analysis has shown that human mobility is characterized

by large periods of time spent in a dense cluster and infrequent
flights between the clusters [3, 13, 9]. This is intuitive since humans
tend to aggregate and spend their time in places such as cafeterias,
shopping malls, office buildings, and class rooms. These aggrega-
tion points are often covered with Wi-Fi networks since ubiquitous
Internet access is expected by users of smartphones and laptops.
The resulting wireless local area networks can have hundreds of
connected mobile devices – we call these dense network segments.

We have previously shown that Wi-Fi networks can be used to
create direct contacts between mobile devices to compose an op-
portunistic network [7, 8]. Much of the existing opportunistic net-
working research and most system implementations [2, 4, 6] as-
sume that, at any given time, each node only has a small number of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CHANTS’16, October 03-07 2016, New York City, NY, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4256-8/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2979683.2979692

neighbors to which it can connect. This assumption does not hold
in dense network segments with hundreds of potential communica-
tion partners.

In this paper we show that the basic opportunistic networking
mechanisms do not scale to dense segments and suggest mecha-
nisms for improving the resulting performance problems. We con-
struct a 50 node testbed from embedded Linux devices, connected
to the same Wi-Fi access point, running an opportunistic network-
ing middleware, which is used to run experiments to evaluate mes-
sage dissemination performance. We make three main contribu-
tions: 1) We design and deploy a testbed made from real devices
suitable for evaluating dense segment scenarios. 2) We analyze
content distribution performance in a dense network segment us-
ing a commercially available implementation of basic opportunis-
tic networking mechanisms. 3) We propose and evaluate topology
control and request randomization mechanisms for improving the
performance.

2. EXPERIMENTAL SETUP
The goal for our experimental setup is to replicate the real world

dense wireless network segment scenario as closely as possible,
while maintaining the control and repeatability necessary for pro-
ducing statistically significant results. To this end, we built a testbed
of 50 embedded Linux devices connected to a single Wi-Fi access
point, along with a test suite software for automatically executing
the experiments and collecting the results. This creates a realis-
tic environment that includes all the layers from the physical radio
communication to the application layer, running on standard off-
the-shelf hardware and software.

2.1 System Model

Figure 1: Experiment system model.

Our system model – shown in Figure 1 – replicates a single ac-
cess point wireless local area network. The main components are
the wireless access point, the local service node, the client grid,
and the experiment controller. The dense wireless segment is cre-
ated by connecting the client devices in the grid to the access point.

The local services needed to support the segment, e.g., DHCP and
NTP servers, are run on the local service node connected to the ac-
cess point. The experiment controller runs the experiments by, e.g.,
flashing the client devices with the correct operating system im-
ages, running the test cases, and collecting the results. Due to the
limitation of our chosen client hardware, the experiment control
signaling is done over the same wireless network as the experiment
itself. This has the potential to interfere with the measurements, so
our test suite is specifically designed to generate minimal control
traffic while the experiment is in progress.

2.2 Communication Model
We assume a simple model for the communicating nodes, which

matches the basic behavior of various opportunistic communica-
tion platforms. For our tests we use the Scampi [6] opportunistic
networking middleware implementation which gives us control of
the basic opportunistic mechanisms that we need. We focus on the
relative scaling properties, not the absolute performance of Scampi.

The basic functions that each node implements are: 1) peer dis-
covery, 2) link creation between peers, 3) control messaging, and
4) content exchange. These are all done on the local network seg-
ment through the access point. As a first step after connecting to a
network segment, each node first discovers directly reachable peers
using, e.g., local broadcast messaging. Next, the node will choose
some set of discovered peers to which it opens links, resulting in
a logical network topology. We consider the full mesh topology
where every node opens a link to every discovered node, and lim-
ited mesh where every node randomly opens n links – “n-link lim-
ited mesh”. Both sides of a new link will send their content vectors,
containing the identifiers of the cached messages, to the other side.
The nodes then request a list of all the messages that they wish to
receive from the peer, which the peer will start transmitting in or-
der, one at a time, over the link. The peers will continue to send
content vectors whenever their cache contents change. In this pa-
per we assume that nodes will request all messages from the peers
that they do not already have, resulting in epidemic spreading of the
content. More intelligent routing and content dissemination strate-
gies exist, but we focus on the baseline case against which other
algorithms can be compared later.

2.3 Hardware and Software Setup

Figure 2: Experiment hardware setup.

The physical configuration of the hardware is shown in Figure 2.
The white circular device the middle of the figure is the D-Link
DWL-6600AP chosen as the access point. We evaluated a num-
ber of access point devices, including Cisco WAP610N and Zyxel
NWA1121-NI, and found them incapable of supporting 50 clients.
We further found that the choice of the access point has a major im-

pact on the overall system performance, and provide a brief anal-
ysis and performance comparison of two hardware models in Sec-
tion 3.5.

For the client hardware, glowing green in the figure, we selected
embedded Linux devices. In reality the clients are likely to be
smartphones, but building a testbed with them presents multiple
challenges: 1) Most are closed platforms, which makes it hard to
control the software to the degree necessary; 2) they include much
unneeded functionality, such as the screen and cellular connec-
tivity; 3) they are physically larger and not designed to be easily
mounted in a fixed setup; and 4) the cost is 2-10 times higher than
embedded devices.

The specific platform we selected is the Intel Edison system-on-
chip with Intel’s mini breakout board, which is similar in hardware
performance to typical smartphones. It is a dual core 500 MHz x86
Intel Atom based system with 1 GB of RAM and 4 GB of on-board
flash memory, and an integrated 802.11n Wi-Fi chipset operating
in the 2.4 GHz and 5 GHz bands. The devices are powered by two
power supply units via the breakout board’s 12 V input pins with
ferrite beads added to filter out high frequency noise.

For the set of experiments documented in this paper, the client
devices run a custom operating system image based on the Intel
Yocto distribution (ww05-15, Linux 3.10.7). The image is stripped
down from various components not needed for our tests, and with
Oracle Java 8 runtime and Scampi router added – otherwise the
image is close to standard.

To run the experiments, we built extensible test suite software in
Python, which is run in the experiment controller. The test suite
first sets up the initial state in the clients, including clearing the
previous test state, synchronizing the clocks and copying over the
correct configuration files. Then the test case is invoked, which
implements the test specific logic. Finally the results are gathered
from the clients, and the previous steps are repeated until the re-
quired number of iterations have been run. For the set of experi-
ments reported in this paper – a node entering and disseminating
content into a dense segment – the test logic is quite simple: First
the required number of clients is randomly picked from the client
grid and initialized with empty Scampi instances. Next a random
client is picked as the entering node, firewalled off from the other
clients and its Scampi instance seeded with content. Finally the
firewall is lifted and Scampi instances in the clients are allowed to
start synchronizing their state. During the synchronization process
no control signaling is done by the test suite so as not to interfere
with the experiment and the end of the test is detected from the
power usage (i.e., when all radios have gone idle).

3. DENSE SEGMENT DISSEMINATION
We focus on evaluating a static scenario, where a single node

connects to a dense network segment already containing a number
of other nodes. We are interested in determining the efficiency with
which the content carried by the arriving node can be disseminated
to the other nodes. This matches a real world scenario of a user
entering a cafeteria, library, or another busy location with a WLAN
network, while carrying content received from a previous hotspot.

In this section we analyze the following aspects of message dis-
semination: 1) Dissemination performance of a single message car-
ried into a dense segment by a node. 2) The impact of the logical
topology – the TCP links opened between the nodes in the seg-
ment – on the dissemination performance. 3) The spreading speed
for the message within the segment. 4) Whether the single mes-
sage dissemination performance generalizes to a case with multiple
messages. 5) The performance impact of the network hardware.

5 10 15 20 25
Nodes

0

50

100

150

200

250

300

350

400

T
im

e
(s

)
Synchronization time, single 10 MB bundle

Limited mesh, 1 link
Limited mesh, 2 links
Limited mesh, 3 links
Full mesh

(a) Synchronization time.

5 10 15 20 25
Nodes

0

20

40

60

80

100

120

T
ra

ns
m

is
si

on
s

of transmissions, single 10 MB bundle

Limited mesh, 1 link
Limited mesh, 2 links
Limited mesh, 3 links
Full mesh

(b) Transmission count.

Figure 3: Static scenario dissemination performance.

3.1 Single Message Dissemination
To evaluate the basic message dissemination performance we set

up a test with N nodes, N − 1 of which were connected to the
access point with empty caches (5 ≤ N ≤ 25) and a full mesh
of interconnecting links between them. We then connected a node
with a 10 MB message in its buffer to the access point and measured
the synchronization time, i.e., the time taken until all N nodes have
a copy of the message. Further, we recorded the number of Scampi
message transmissions that took place during the synchronization.

The results show that both the synchronization time and the num-
ber of message transmissions to reach the synchronized state in-
crease as a function of N (circles in Figure 3a and 3b). We also
confirmed that when the number of nodes is kept constant, the syn-
chronization time only depends on the message size and the total
network capacity.

In a simple model we would expect that the node entering the
segment will open links to all the other nodes and then send its mes-
sage over the links in parallel. Although the transmissions over the
links are logically parallel, the underlying shared wireless medium
serializes and interleaves the packets, leading to a synchronized
network roughly in time T = (N − 1) × S/C, where S is the
size of the message and C the total capacity of the wireless seg-
ment. However, in the results we observe the synchronization time
growing at a faster rate, implying that there is another phenomena
hurting the performance. This can be clearly seen in the number of
transmissions, which in a simple model should equal the number of
nodes but in our results grows at almost six times that rate – going
from 10 to 15 nodes results in almost 30 more transmissions, when
it should result in only 5 more according to the simple model.

We have identified the cause of this growth to be what we call
request-stacking behavior. The main cause of this behavior is that
while the node entering the segment will start sending the message
to all the peers simultaneously, due to packet drops and other lower
level behavior the transmissions will not finish at the same time.
Instead, one of the transmissions will finish first, at which point the
node will advertise the received message to all its peers. The peers
that have not yet received the full message from the original source
will then request a copy, which takes up capacity in the wireless
segment and thus slows down the ongoing original message trans-
fers. This process will continue as the second node finishes re-
ceiving the message, and so on, resulting in slower than expected
synchronization time and – given the lack of transfer cancellation –
more transmissions.

The aggressive request mechanism that causes request-stacking
is a valid approach in the face of unpredictable and highly dynamic
contacts. In general it makes sense to aggressively try every oppor-
tunity to get a copy of the message even if a transmission is already

ongoing, since the new contact could have much higher capacity or
the existing transmission might get cut before finishing. However,
in dense, largely stable network segments this approach leads to
severely degraded message dissemination performance.

3.2 Impact of Logical Topology
The request-stacking phenomena observed in the previous sec-

tion gets worse the more direct neighbors each node has, with the
worst case being the full mesh topology where every node is di-
rectly connected to all other nodes. We therefore continue by look-
ing at the message dissemination performance when the logical
topology is limited, i.e., where each node opens links only to a
subset of the potential peers.

Random topologies: In the full mesh topology, after receiving
a message, each node will start a transmission to every other node
that has not yet received the message. This means that the worst
case number of transmissions will be

C =

(
N

2

)
=

1

2
(N2 −N), (1)

out of these the number of duplicates is

Ce ≡ C − (N − 1) =
1

2
(N2 − 3N + 2). (2)

Therefore the number of duplicate transmissions is limited by O(N2),
which makes the full mesh, with the naïve dissemination strategy,
poorly scalable in dense segments.

The natural way to reduce duplicate transmissions is to reduce
the number of direct neighbor links that each node maintains. With
fewer direct neighbors, each node will advertise its newly received
messages to fewer other nodes, and thus fewer duplicate retrans-
missions will occur. We evaluate 1, 2 and 3 link limited mesh
topologies (see 2.2), the results of which are given in Figure 3 (tri-
angles and crosses).

From the results it is clear that the duplicate transmission count is
roughly proportional to the number of links in the logical topology.
And a smaller number of links in the logical topology in turn results
in shorter overall synchronization time, all the way down to 1-link
limited mesh. The impact of the limited topology on performance
is substantial already in relatively small segments of 10 nodes, and
increases as the density increases; in the densest analyzed segment
the 1-link limited mesh synchronizes 4.5 times faster than a full
mesh.

We can derive an estimate for the transmission counts in limited
mesh topologies, shown as dashed lines in Figure 3b. First, since
we assume that the topology limitation is done by limiting the num-
ber of peer links each node opens, a node will have on average 2M
open links. In a network with N nodes, the topology will approach
full mesh when M ≥ (N − 1)/2. Next, from the Figure 3b we
can see that there is a linear relationship between the link count M
and the number of nodes N . From this, we can use the full mesh
threshold as a base value to which a linear increment of M times
the number of new nodes is added to form the basic equation for
estimating limited mesh performance:

C =

{
1
2
(N2 −N), 0 < N ≤ 2M

(N − 1) ·M, N > 2M
(3)

for all N > 0 and M > 0 describes the behavior of an M -link
limited mesh topology in a network with N nodes.

Star topology: Another approach to reach a more efficient log-
ical topology is to build it explicitly. Two obvious topologies that
cannot have duplicate messages transfers are a spanning tree and

5 10 15 20 25
Total bundle size (MB)

0

50

100

150

200

250

300

350

400

T
ra

ns
m

is
si

on
s

Synchronization time, 25 nodes, 1 MB bundles

Limited mesh, 1 link
Limited mesh, 2 links
Limited mesh, 3 links
Star

(a) Synchronization time.

5 10 15 20 25
Total bundle size (MB)

0

500

1000

1500

2000

2500

3000

T
ra

ns
m

is
si

on
s

of transmissions, 25 nodes, 1 MB bundles

Limited mesh, 1 link
Limited mesh, 2 links
Limited mesh, 3 links
Full mesh
Full mesh (RRO)

(b) Transmission count.

Figure 4: Multiple message dissemination performance.

0 100 200 300 400 500 600 700
Time (s)

0

10

20

30

40

50

60

70

80

90

100

S
pr

ea
d

(%
)

Spread time, 25 nodes, single 20 MB bundle

Limited mesh, 1 link
Limited mesh, 2 links
Limited mesh, 3 links
Full mesh

(a) Single message.

0 100 200 300 400 500 600 700
Time (s)

0

10

20

30

40

50

60

70

80

90

100

S
pr

ea
d

(%
)

Spread time, 25 nodes, 20 bundles of 1 MB each
Limited mesh, 1 link
Limited mesh, 2 links
Limited mesh, 3 links
Full mesh
Full mesh (RRO)
Star

(b) 20 messages.

Figure 5: Spreading speed of the messages.

a star topology with one central “hub” to which the rest of the
nodes connect. Out of these, the former would require running a
distributed algorithm to create and maintain the spanning tree as
nodes enter and exit the segment, while the latter can be organized
simply by, e.g., having every node open a link to the node with the
lowest address. The network operator could even provide a fixed
node in the segment to act as the hub. Therefore the star topology
is likely the more practical topology.

We evaluated the performance of the star topology in the same
static scenario as the random topologies, and found that its per-
formance was consistently between the performance of 1-link and
2-link limited mesh topologies. An example of this is given in
Figure 4a for different amounts of data to be synchronized. All
topologies show linear growth as a function of the amount of data
to be transferred, with the star topology performing slightly worse
than 1-link limited mesh. This performance difference occurs even
though in both cases the number of transmissions is almost the
same – with star topology having no duplicate transmissions. We
attribute this to the different pattern of parallel transfers in the topolo-
gies causing different congestion characteristics on the lower lay-
ers. The star topology will start all the transfers in parallel after
the hub has received the message, while the limited mesh will have
fewer parallel transfers. More parallel transfers means more nodes
competing for their share of the shared medium, leading to, for ex-
ample, less efficient allocation of the resources by the CSMA-CA
MAC mechanism.

3.3 Message Spreading Speed
In the previous sections we focused on the time and transmis-

sions taken to reach a synchronized state, but did not consider the
details of how the state was reached. To fill this gap, we measured
the fraction of nodes reached over time as the content was dissem-
inating in the network.

The results – depicted in Figure 5a – show that the previously
observed performance behavior is consistent throughout the mes-
sage distribution process. The full mesh topology performs worst
while limiting the logical topology improves performance all the
way down to the case of 1-link limited mesh, which is the optimal
topology. The star topology overall seems to fall between the 1-
link and 2-link limited mesh topologies, but has a linear behavior
over time. This is as expected, since the limited mesh will have
few concurrent transfers in the beginning that will finish quickly,
while the star topology starts all the transfers concurrently. There
is a discontinuity for the star topology at around 200 seconds due to
a hardware effect, which we examine in more detail in Section 3.5.
We also confirmed that the spread speed is linear w.r.t. the file size

regardless of the topology. This supports the hypothesis that the
limiting performance factor is the network node count and not the
message size or count.

Importantly, the dissemination starts slower in random topolo-
gies with a higher number of links, as can be seen when compar-
ing the spread speed between 1-link limited mesh and full mesh
for the first data points (crosses and circles in Figure 5a). This is
significant in scenarios where a node visits a dense segment for a
short period of time, for example when walking by a cafe and con-
necting briefly to its Wi-Fi access point. In such scenarios using a
full mesh topology could mean that the node does not have time to
fully transfer the message before exiting the segment. Therefore,
new nodes entering a dense segment should have a small number
of links to maximize the number of messages they can disseminate
to the segment before exiting.

3.4 Multiple Message Dissemination
The analysis thus far has mainly considered a single message

being carried into the network segment. To analyze the behavior
of disseminating multiple messages, which is the realistic case, we
ran a set of experiments with 25 nodes and 5 to 25 messages being
disseminated instead of a single message. We found that the num-
ber of transmissions grows linearly in every topology as a function
of the number of messages. We found no other behavior than the
increased capacity taken to transfer the increased amount of data.

We did, however, find the same request-stacking behavior de-
scribed previously. Each node will request all k messages the same
way as it would for a single bundle, resulting in duplicate transmis-
sions. The number of transmissions for k messages, N nodes and
a full mesh topology is at worst

C = k + 2k + 3k + · · ·+ (N − 1)k =
k

2
(N2 −N), (4)

which is exactly k times the single bundle case given in eq. 1.
When looking at the spread speed – shown in Figure 5b – the pre-

viously described slow start phenomena is even more severe. This
is because in the single message case the message will be requested
concurrently by at worst N − 1 nodes, after which the number of
concurrent transfers will decrease, freeing up capacity. In the mul-
tiple message case, however, the number of concurrent transfers
stays at N − 1 until the first node in the network has received all
the messages, only after which capacity is gradually freed. In the
example shown in the figure, it takes over six minutes for the first
node in the network to receive all the content when there are 20 MB
of data to be disseminated.

Random Request Order (RRO): A simple strategy to alleviate
both the request-stacking and slow start phenomena – particularly

5 10 15 20 25
Nodes

0

100

200

300

400

500

600

T
im

e
(s

)
Synchronization time, single 10 MB bundle

Limited mesh, 1 link
Limited mesh, 2 links
Full mesh

(a) Synchronization time.

5 10 15 20 25
Nodes

0

20

40

60

80

100

120

140

160

T
ra

ns
m

is
si

on
s

of transmissions, single 10 MB bundle

Limited mesh, 1 link
Limited mesh, 2 links
Full mesh

(b) Transmission count.

Figure 6: Synchronization performance of the DWL and NWA de-
vices. NWA results are connected by dashed lines.

in the full mesh topology – is to randomize the order in which nodes
transfer messages. When nodes are transferring different messages
between different pairs, the number of duplicate transfers due to
request-stacking should decrease, and thus the spread speed should
increase.

To analyze the impact of RRO, we apply a simple Fisher-Yates
shuffle to the content request lists exchanged by the nodes in the
full mesh topology, where the impact is most visible. The result
is a significant decrease in the number of transmissions required to
synchronize the network – as shown in Figure 4b – with the full
mesh RRO approaching the limited mesh performance. We can
further see from Figure 5 (diamonds) that the spread speed behav-
ior of the full mesh is radically changed by the RRO. While the
total time taken to synchronize the full mesh topology is almost
the same in both cases, applying RRO spreads the set of messages
in the network more evenly over time. This reduces the slow start
phenomena; the first node to receives all the messages in almost the
same as in a 2-link limited mesh.

While we have considered basic epidemic spreading of content,
the results have implications for more advanced algorithms – for
example utility or interest based dissemination. In particular, such
algorithms should be wary of mechanisms that might lead to iden-
tical request rankings in a large number of co-located peers, and if
necessary, add randomization techniques to prevent it.

3.5 Hardware Performance
During the testing we noted that hardware performance has a

significant impact on the message dissemination performance. The
impact is significant already in small – 15 node – scenarios, which
makes the hardware choices critical for the system performance in
real world deployments. Therefore we document these observa-
tions here even though detailed hardware performance analysis is
outside the scope.

We found the client hardware – dual core 500 MHz x86 with
1 GB RAM – is capable of running the Scampi software without
significant bottlenecks, and saturating the 802.11n 5 GHz Wi-Fi
adapter. The performance will, however, be limited by the speed at
which incoming messages can be written to the persistent memory
– which is a requirement for store-carry-forward networking. We
benchmarked the Edison clients, which have integrated persistent
flash memory, and found them to be capable of writing 7±1 MB/s.
This is the upper limit at which each device can receive content
regardless of the network performance if persisting each message is
required. Overall we do not foresee deployment issues arising from
the raw hardware performance of the client devices; the limitation
with real mobile devices is likely to be the energy use and limited

0 50 100 150 200 250 300 350 400 450
Time (s)

0

10

20

30

40

50

60

70

80

90

100

S
pr

ea
d

(%
)

Spread speed, 25 nodes, varying bundle count

Star, Edison
Star, RPi

Figure 7: Spread speed of different hub hardware with varying mes-
sage count.

battery capacity [14].
In contrast, the choice of the Wi-Fi access point hardware does

have a significant impact on the system performance. We eval-
uated two access points – DWL-6600AP and NWA1121-NI – the
former being advertised as a “professional” and the latter as a “con-
sumer” grade device. The results show a significant difference both
in stability and in performance, to the benefit of the DWL device.
Figure 6a shows the difference in content synchronization time of
a 10 MB message between the two devices. With all other things
being equal, using the more capable DWL device cuts the content
dissemination time in half already with only 15 devices in the seg-
ment. Further, the NWA device collapses with 25 clients, while the
DWL device continues to function even with the full 50 client de-
vices active. The difference is due to the packet/frame forwarding
performance of the device, as Figure 6b shows that the number of
Scampi message transfers remains the same while the transmission
time differs (for limited mesh). This also implies that if the number
of concurrent message transfers is small, even a less robust device
can handle the load.

In the analysis of the star topology earlier, we noted a disconti-
nuity in the spread speed (Figure 5b) when an Edison is used as the
hub device. The discontinuity means that at a time the dissemina-
tion process comes to a halt, but then after about a minute suddenly
continues as normal. We do not have a full explanation for this, but
we can narrow it down to a hardware issue by comparing the Edi-
son against a Raspberry Pi 1 B as the hub node – shown in Figure 7.
From the figure it can be clearly seen that the Edison consistently
has a discontinuity while the RPi does not. It can also be noted that
the more powerful Edison is also consistently more performant as
the hub node than the RPi (single core 700 MHz ARM with 512
MB RAM). However, overall we found the Edison and Raspberry
Pi devices to be capable of serving as hub nodes even for a large
number of clients and messages.

4. RELATED WORK
Various studies of opportunistic networking implementation per-

formance have been done, particularly in the field of Delay-Tolerant
Networking (DTN) – an established field with multiple mature im-
plementations to evaluate. Pöttner et al. compared the performance
of three DTN implementations [12] – the same protocols used in
this paper – focusing on the achieved throughput as a function of
the message size. The experiments were done with two or three
nodes running on computers, while our testbed has up to 50 clients
running on embedded devices. Similar performance analysis has
also been done on embedded devices similar to ones used by us [5]

and on Android devices [11]; again with a small number of de-
vices, which does not show the dense segment scaling properties.
Performance analysis on DTN implementations on a scale similar
to ours was done by Beuran et al. [1], with a QOMB testbed built
on a wired network of computers with links generated based on a
mobility model. A similar emulated testbed – TUNIE – has also
been proposed by Li et al. [10]. In contrast, our testbed has real
embedded devices connected to a real Wi-Fi access point, and we
focus on the realistic dense segment content dissemination scenario
rather than pinging in mobile scenarios.

5. CONCLUSION
In this paper we have analyzed the scaling properties of oppor-

tunistic content dissemination in dense network segments via a re-
alistic testbed of 50 nodes. The results show that the basic op-
portunistic networking mechanisms have severe scaling problems
already with 10 devices sharing the same wireless medium – which
establishes a baseline comparison case for developing more intel-
ligent mechanism in the future. Although we focused on infras-
tructure Wi-Fi, the same structure – and hence the same problems
– will also arise with Wi-Fi Direct, where one of the devices acts
as a soft AP to which the other devices connect. The performance
problems stem from the large number of duplicate transmissions
caused by the combination of redundant links in the logical topol-
ogy and the aggressive replication by the message flooding. Finally,
we discovered that the access point hardware selection is critical to
the performance of even small deployments of over ten clients in
a segment, while the client hardware performance does not cause
bottlenecks.

We also proposed and evaluated improvements to alleviate both
sources of the scaling issues. First, we showed that randomly limit-
ing the number links in the logical topology significantly improves
the scaling performance compared to a full mesh topology. We
found the optimal topology in our scenarios to be the random 1-
link limited mesh, while a star topology with a lightweight cen-
tral hub device is also viable. Second, we alleviated the exces-
sive duplication caused by the message flooding by randomizing
the order in which nodes exchange their messages. The simple
randomization mechanism significantly improves the content dis-
semination performance even in a full mesh topology. This implies
that even the more intelligent content dissemination algorithm de-
signs should consider adding randomness to the decisions in order
to avoid parallel transfers of the same content in environment with
large numbers of co-located peers.

At least three areas of future work follow from the results in this
paper: First, intelligent algorithms are needed to build efficient log-
ical topologies. This could include dynamic, time-variant topology
control where a node entering a dense segment would first open a
small number of links in order to disseminate its content quickly –
in case it only stays for a short time – while slowly building more
links over time to eventually start behaving as star node. Second,
simulation models – which are often link-oriented – could be up-
dated to reflect the shared medium, dense segment characteristics.
Third, the protocol stack could be redesigned to take advantage of

the inherent broadcast nature of the wireless communications. In
principle a node should be able to broadcast its content to nearby
peers in constant time, but the current unicast-oriented protocol
stacks are not designed for it. These developments could open in-
teresting scenarios for new opportunistic networking applications
in dense segments that are common in the real world – large public
Wi-Fi networks.

Acknowledgments
The authors would like to thank Viktor Nässi from Aalto University
Comnet department for his valuable help in setting up the experi-
mental infrastructure.

This work was supported by the European Commission Horizon
2020 Programme RIFE Project Grant No. 644663.

6. REFERENCES
[1] R. Beuran, S. Miwa, and Y. Shinoda. Performance evaluation of dtn

implementations on a large-scale network emulation testbed. In Proc.
of ACM CHANTS ’12.

[2] M. Doering, S. Lahde, J. Morgenroth, and L. Wolf. Ibr-dtn: An
efficient implementation for embedded systems. In Proc. of ACM
CHANTS ’08, 2008.

[3] M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi. Understanding
individual human mobility patterns. Nature, 453(7196):779–782,
2008.

[4] O. R. Helgason, E. A. Yavuz, S. T. Kouyoumdjieva, L. Pajevic, and
G. Karlsson. A mobile peer-to-peer system for opportunistic
content-centric networking. In Proc. of ACM SIGCOMM MobiHeld
’10, 2010.

[5] G. M. Johnson Williams, B. Walker, and A. Hennessy. A
performance comparison of dtn bundle protocol implementations on
resource constrained nodes. In Proc. of ACM CHANTS ’12, 2012.

[6] T. Kärkkäinen, M. Pitkänen, P. Houghton, and J. Ott. Scampi
application platform. In Proc. of ACM CHANTS ’12, 2012.

[7] T. Kärkkäinen, M. Pitkänen, and J. Ott. Enabling ad-hoc-style
communication in public wlan hot-spots. SIGMOBILE Mob. Comput.
Commun. Rev., 17(1):4–13, July 2013.

[8] J. Lakkakorpi, T. Kärkkäinen, and J. Ott. Protecting regular customer
traffic from ad-hoc traffic in public wlan hot-spots. In PIMRC, pages
2114–2119, 2013.

[9] K. Lee, S. Hong, S. J. Kim, I. Rhee, and S. Chong. Slaw: A new
mobility model for human walks. In INFOCOM 2009, IEEE, 2009.

[10] Y. Li, P. Hui, D. Jin, and S. Chen. Delay-tolerant network protocol
testing and evaluation. IEEE Communications Magazine,
53(1):258–266, 2015.

[11] H. Ntareme and S. Domancich. Security and performance aspects of
bytewalla: A delay tolerant network on smartphones. In IEEE WiMob
’11, 2011.

[12] W.-B. Pöttner, J. Morgenroth, S. Schildt, and L. Wolf. Performance
comparison of dtn bundle protocol implementations. In Proc. of ACM
CHANTS ’11, 2011.

[13] I. Rhee, M. Shin, S. Hong, K. Lee, S. J. Kim, and S. Chong. On the
levy-walk nature of human mobility. IEEE/ACM Trans. Netw.,
19(3):630–643, June 2011.

[14] S. Trifunovic, A. Picu, T. Hossmann, and K. A. Hummel. Slicing the
battery pie: Fair and efficient energy usage in device-to-device
communication via role switching. In Proc. of ACM CHANTS ’13,

2013.

