
Analysis of Hop Limit in Opportunistic Networks
by Static and Time-Aggregated Graphs
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Abstract—In this paper, we examine how the paths between
any two nodes in a mobile opportunistic network change with
increasing number of hops a message can follow. At the core of
our analysis is the all hops optimal path (AHOP) problem that has
been explored in the context of network capacity analysis of static
networks. We represent the total delay of a route from a source
node to a destination node as additive weight and use the number
of encounters as a representation of bottleneck weight. First, we
construct a static (contact) graph from the meetings recorded in
a human contact trace and then analyze the change in these two
metrics with increasing number of hops. Next, we aggregate all
the contact events in a time interval and construct several time-
aggregated graphs over which we calculate the capacity metrics.
Although, we observe differences in the properties of the static
and the time-aggregated networks (e.g., higher connectivity and
average degree in static graph), our analysis shows that second
hop brings most of the benefits of multi-hop routing. However,
the optimal paths are achieved at further hops, e.g, hop count ⇡
4. Our finding, which is also verified by simulations, is paramount
as it puts an upper bound on the hop count for the hop-restricted
routing schemes by discovering the optimal hop count for both
additive and bottleneck weights.

I. INTRODUCTION

Mobile opportunistic networks rely on short-range radios
(e.g., Bluetooth, WiFi Direct) to transmit data between two
nodes and exploit the mobility of nodes to physically carry
messages from one location to another. This kind of operation
is favourable for several reasons: (i) interconnection without
dependency on the infrastructure, (ii) hop gain due to direct
link between the transmitter and the receiver [1], (iii) spectrum
reuse gain, and (iv) mobile data offloading. On the other hand,
it is more challenging to provide guaranteed performance
in such a dynamic network. Mobility of nodes results in
intermittent connections and raises uncertainty in the network
topology. The major challenge is hence the lack of global
knowledge at the nodes to decide on the optimal forwarding
paths or other networking tasks.

Epidemic protocol [2] is the simplest protocol that does
not rely on any information about the network (e.g., about
nodes and connections) but greedily replicates a message to
every node that does not have it. Albeit being desirable due
to its simplicity, epidemic protocol over-consumes network
resources (e.g., waste of bandwidth due to too many repli-
cations) and may not perform well under resource-restricted
networks (e.g., short contact duration or small buffer capacity).

A less greedy solution is hop-limited protocol [3], [4] which
limits the journey of a message in the network to maximum
h hops. More sophisticated protocols aim to balance the
tradeoff between delivery ratio and resource consumption by
tuning the protocol parameters, e.g., the maximum number
of replications [4], lifetime of a message in the network [5],
replication/forwarding logic [6], and so on. However, no matter
how optimized the protocol is, the performance of a mobile
opportunistic network also strongly depends on the node
mobility [7]. More specifically, two properties related to node
mobility are paramount: contact duration and inter-contact
time duration. Contact duration is the time two nodes stay
connected while inter-contact time is the time elapsed between
two consequent contacts among two nodes. Both determine the
transmission capacity (i.e., how much data can be transmitted)
as well as the speed of change in the network topology.

Although opportunistic routing protocols have been studied
extensively from many perspectives, the effect of hop limita-
tion is not yet fully understood. In this work, we focus on
a general hop-limited protocol and analyze how hop count
limitation affects the network performance. We do not assume
any sophisticated protocol as we attempt to understand the
effect of node mobility rather than other parameters (e.g.,
number of replicas, time-to-live duration, effect of social-
structure). Instead of modelling the node mobility analytically,
we focus on the change of the network graph as a consequence
of node mobility using the real human traces. First, given a
mobility trace we construct a connectivity graph and explore
the change in the network performance indicators, e.g., frac-
tion of reached nodes, using the solution for all hops optimal
path problem (Section III). This static graph aggregates all the
contacts into a contact graph.

Second, instead of aggregating all the contact history into a
single connectivity graph, we sample the network on regular
time intervals and analyze each snapshot separately (Sec-
tion IV). Social-aware opportunistic routing schemes largely
tend to aggregate contacts either using a sliding window
approach (e.g., BubbleRap [8]) or accounting for the whole
past events (e.g., SimBet [9]) to derive metrics about the
nodes, e.g., centrality, average degree. But, [10] shows that
both short and long time windows fail to differentiate the nodes
according to their social metrics. Similarly, we compare these
two approaches for hop analysis to see how local observations



agree/disagree with the analysis of the static graph.
Finally, we simulate a hop-limited routing scheme to see

the change in performance during operation (Section V).
Obviously, the third analysis explains the real effect of the hop
count. However, the formers are also useful for estimating the
network performance if they can provide similar conclusions
to the third analysis.

The main contributions of our paper are to answer the fol-
lowing questions using AHOPs algorithm on static graph and
time-aggregated graphs, and compare them with simulation
results:

• Q1: How is the average time to send a packet from one
arbitrary node to another arbitrary node affected by hop
restriction h?

• Q2: How is the fraction of nodes reachable from one
arbitrary node to another arbitrary node affected by h?

• Q3: How is the delivery ratio from one arbitrary node to
another arbitrary node affected by h?

II. SYSTEM MODEL

We consider a network of n mobile nodes. A contact starts
when two nodes come in transmission range of each other,
and ends when they can not maintain a connection. Nodes
can exchange messages only during contact time.

In a hop-limited routing scheme, each message has a hop
count field that shows the number of routers this message has
followed. When a message is forwarded from one node to
another, the hop count of this message is incremented by 1 at
the receiving node. If the hop limitation is h, the message can
only be forwarded h hops.

We use the following human contact traces in our analysis
Infocom05 [11], Cambridge and Infocom06 (collected by
Haggle project [12] and downloaded from [13]), whose basic
properties are listed in Table I.

TABLE I
HUMAN CONTACT TRACES USED IN THE ANALYSIS.

Trace Duration # of devices(n) Context
Infocom05 ⇡3 days 41 Conference participants
Cambridge ⇡11 days 36 1st and 2nd year undergrad-

uate students
Infocom06 ⇡4 days 78 (and 20 stationary

devices)
Conference participants

III. ALL HOPS OPTIMAL PATHS (AHOP)
One common practise in exploring the network capacity is

to analyze the network topology. In opportunistic networks, the
topology changes frequently. However, human contact traces
that are collected for a long duration can reflect the stationary
contact probabilities which then can be used for constructing
the expected network topology. Given the network’s stationary
meeting characteristics, we can model the encounter events as
a graph G = (V, E) where vertex set V is the set of nodes and
edge set E is the set of all possible pairwise contacts among
nodes. In this graph, there are n = |V| vertices and maximum
|E| = O(n2

) edges for which we assign weights (w) based
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Fig. 1. (a) Static graph derived from the encounters in the contact trace, (b)
paths from A to L in h = {1, 2, 3, 4} hops.

on the contact characteristics of the two connecting vertices.
Given a source node s, our aim is to find the shortest (e.g.,
fastest) path to a destination d that has at most k hops for each
k, 1  k  h. In the most general form, this problem is known
as all hops optimal path problem (AHOP) [14]. Fig. 1(a) shows
an example connectivity graph. An edge in this graph indicates
that the two nodes has met at least once. Fig. 1(b) depicts some
of the paths from A to L (the leaf nodes). Number near each
leaf shows the hop count of the path. The optimal path among
all these paths depends on the edge weights.

Let p be a path from s to d consisting of vertices hs =

n0, n1, · · · , d = nki in the given order, and let w(ni, nj) be
the weight of the edge between ni and nj . Denote by w(p)
the weight of a path p and define it as a function of weights
of edges along this path:

w(p) = f(w(n0, n1), w(n1, n2), . . . , w(nk�1, nk))

where k  h and ni 2 V for all i. If f is additive, the weights
are said to be additive weights; if f is maximum/minimum,
the weights are bottleneck weights [14]–[16]. Both metrics are
of our interest as they reflect different performance require-
ments in networks; bottleneck weight matches the minimum
bandwidth requirements needed for a service whereas additive
weight is more appropriate to measure the total delay of a path.
As for opportunistic forwarding, we consider both weights:

(i) additive weight: expected time to reach a target node
is the total expected inter-contact time of the selected path.
Hence, we compute the total delay between s and d as the
additive weight of the path p:

w(p) =
X

(ni,nj)2p

w(ni, nj).

(ii) bottleneck weight: as encounters are probabilistic, we
aim to select the edges that will appear with high probability.
In a sense, given the number of encounters among nodes, a
routing scheme tries to decrease the risk of relying on less
probable encounters by selecting the most probable paths. An
additive weight may not properly choose the highest probable
paths if only total delay is considered. Hence, we define the
weight of an edge as the inverse of the number of encounters
between the corresponding nodes. Then, the weight of p is



the maximum weight of the edges along this path:

w(p) = max

(ni,nj)2p
w(ni, nj).

Let l(p) denote the length of the path, i.e., number of edges.
Then, we define an h-hop constrained optimal shortest path
as the path with at most h hops and yields the minimum
weight among all paths between s and d. More formally, ph⇤
is defined as follows:

ph⇤ = argmin

p
w(p) and l(p) 6 h.

In [14], it was shown that Bellman-Ford algorithm provides
the best solution with complexity O(h|E|) for additive weights
whereas for the simpler case of bottleneck weights authors
propose an improvement upon Bellman-Ford with lower com-
plexity. We should note that for human contact networks
h ⌧ n due to the small world structure [17]. Hence, although
the worst case complexity is cubic for additive weights,
average complexity would be much lower, e.g., O(n2

). We
compute the solution for AHOP by modifying the Bellman-
Ford algorithm for hop restricted shortest paths [18]. We do
not focus on efficiency of this calculation, but we should note
that the running time of the algorithm can be decreased by
pruning some of the edges via thresholding.

IV. ANALYSIS ON THE NETWORK SNAPSHOTS

Solving the AHOP problem as discussed above lets us
discover the shortest paths and their capacities given hop
restrictions. With this knowledge, we can grasp the net-
work characteristics and the capacity limitations. One of the
shortcomings of such an analysis is the loss of temporal
network dynamics [19], [20]. In other words, we aggregate the
snapshots of the network as if an occurring edge always exists
there. On the other hand, temporal reachability graph [21] is
not identical to the aggregated connectivity graph. In the above
AHOP analysis, the time of appearing of the edges is lost.
Take the graph in Fig.1(a) as example. Node B can be a good
relay for A in reaching E, only if B meets E after meeting
A. Fig. 2 illustrates two snapshots of the same graph. Neither
of the networks is connected contrary to the network that is
formed by aggregating these two snapshots. The encounter
between A and B occurs after B-E meeting which makes the
path A ! B ! E impossible. The static network derived from
the encounters does not express this property of the network.
Hence, some of the paths discovered by our AHOP solution
may be causally impossible due to the time ordering of the
edges in the temporal network. As a result, the connectivity
of the network is overestimated and thereby also the resulting
network capacity [10].

Another approach is to decrease the time window of the
analysis. Instead of aggregating the whole contact events, we
analyze the network several times and average the statistics
over these observations. In this approach, events occuring
inside a time window are aggregated, and at the end of the
time window we have a snapshot of the network. The proper
choice of the time window size is paramount and it depends
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Fig. 2. Connectivity graph (snapshot) in two consequent time intervals and
the aggregated graph.
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on the network dynamics. If the network is changing abruptly,
then the time window should be shorter compared to that of a
more stable network. Understanding the effect of time window
length is of our interest as many opportunistic routing proto-
cols collect encounter information to predict future meetings or
make informed forwarding decisions. However, the collected
information becomes stale due to the change in the network
dynamics. Therefore, the metrics that are derived from the
aggregated network may be misleading for these protocols
and result in performance degradation. Hence, time-varying
graph (TVG) and related metrics (e.g., temporal shortest path)
are argued to be more powerful [20], [21].

Time-varying graphs (TVG) have been studied under dif-
ferent contexts and with different terminology (see [20]). For
example, ad hoc networks [22], animal networks such as ant
colonies [23], and social networks [24] entail connections
among the network entities that are changing (appearing,
disappearing) over time and are complicated compared to the
static graphs. TVGs extend the static graphs on time dimension
by a presence function that shows if a particular edge exists
at a specific time. An opportunistic network is obviously a
TVG and previous works [17], [21] highlighted the benefits
of TVG modelling for opportunistic networks. In this work,
we take a midway approach and analyze the traces by breaking
down the whole history of contacts into regular time intervals.
This approach is obviously not as accurate as TVGs, however
it alleviates the deficiency of the information loss by static
graphs to some extent.

Suppose that the aggregation time is Tagg for a trace of



T time units. Then, we have bT/Taggc intervals. A contact
event occurring in a specific interval is reflected as a link in
the corresponding contact graph Gi where i is the index of the
graph. For each link in Gi, we calculate average inter-contact
time and number of meetings. Finally, we apply the previous
analysis in Sec. III to each Gi. Fig. 3 summarizes the time
granularity of static, TVGs, and time-aggregated graphs.

Lastly, we observe the change in network capacity while
the network is under operation. We simulate a flooding-based
forwarding protocol that is subject to hop limitations.

V. NUMERICAL EVALUATION

We analyze the traces using R and use ONE [25] for sim-
ulations. We generate network snapshots using Timeordered
package [23] from a trace and a list of time intervals.

Fig. 4 shows the effect of hop count for all traces. We
normalize the bottleneck and additive weights for each trace
as we aim to show the change in the network dynamics rather
than the actual values of the related metrics. As Figs.4(a) and
4(b) show, relaxing the hop limitation improves the network
capacity: higher bottleneck capacity indicating the higher
probability of path’s existence and lower additive weight
indicating lower delays among the nodes. The most significant
gain is achieved by letting two hop routing rather than a
direct delivery (i.e., h = 1). Increasing to h = 4 still brings
benefits especially for bottleneck capacity, however after h ⇡ 4

change in the considered metrics is negligible. Please note
the consistency of the behaviour for all traces. Infocom05 has
the highest delays followed by Cambridge and Infocom06.
Regarding connectivity, we observe that only two hops are
sufficient to reach all the nodes in the network from any node
(not depicted). For h = 1, the reached fraction of nodes is
(0.96, 0.82, 0.88) for Infocom05, Cambridge, and Infocom06,
respectively. However, the existing path is not optimal as
shown in Figs. 4(c) and 4(d).

Recall that in AHOP an h-hop optimal path is the path
with the minimum path weight and is shorter than or equal
to h hops. We refer to the hop count that achieves the
optimal path as the optimal hop count. From Fig. 4(c) and
Fig. 4(d) we have two observations: all networks represented
by the traces achieve optimal operation at very few hops, three
to four. Second, generally speaking, the optimal bottleneck
capacities are achieved at higher hops compared to additive
capacity. This is due to the strength of weak ties [26] in
case of additive weights; in bottleneck capacity calculation
our algorithm avoids the weak links (links with low number
of meetings) whereas in additive weights these weak links may
be a fast move towards the target node.

In summary, for the research questions we listed in Sec-
tion II, we have the following conclusions from the AHOP
analysis. As for (Q1), nodes can be reached faster by relaxing
hop count, however the improvement vanishes after several
hops. More specifically, optimal hop counts considering the
total path delay are h ⇡ 3 for Infocom05, h ⇡ 2 for
Cambridge, and h ⇡ 2.6 for Infocom06. As for (Q2), two
hops are sufficient to reach every node from every other node.
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Fig. 4. AHOP analysis for Infocom05, Cambridge, Infocom06.

As for (Q3), indirectly from our bottleneck weight analysis,
we can conjecture that delivery ratio increases significantly
if at least two hops are allowed. However, for all traces the
performance increase tends to stabilise after h ⇡ 4.

Next, we set Tagg = {1, 6, 24} hours to analyze how time-
aggregation affects the network dynamics. We refer to these
settings as short, medium, and long aggregation windows.
Before presenting the average capacity and optimal hop count,
let us see how optimal hop count changes over time for each
trace. In Fig. 5(a), we plot the results for short Tagg. As
Infocom05 trace is approximately 3 days long, we have 70
snapshots while Cambridge has 274, and Infocom06 has 93
snapshots. The figures show the hop counts providing the best
bottleneck weights for h = 3 and h = 8 for both the time-
aggregated graph and static graph. The reachable fraction of
nodes is not presented here due to space restrictions, but our
results show that static graph overestimates the connectivity of
the network. All nodes can be reached in two hops if waited
sufficiently long. However, the actual reachable fraction is
much lower according to the results of our snapshot analysis
in Fig. 6(a). This is not primarily because of the hop restriction
but the inherent network dynamics. Albeit setting h = 8 leads
to higher connectivity than that of h = 3, the connectivity is
still drastically lower than the static graph. Figures also capture
the difference in time: during daytime connectivity is higher
compared to the night times. This change in the connectivity
manifests itself as the change in optimal hop count over time.
During some periods, connectivity is so low that although the
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Fig. 5. Change in optimal hops over time.
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Fig. 6. AHOP analysis for Tagg = {1, 6, 24} hours. Infocom05 trace.

protocol lets 8 hops, single hop routing achieves the optimal
performance (which is very low). This change in hop count
may call for protocols that adapt the parameters according to
the time of the operation. Regarding the amount of change,
the standard deviation is 0.54 hops for h = 2 and 0.77 hops
for h = 8 in Infocom05, while they are (0.45, 0.62) hops in
Cambridge and (0.42, 0.83) hops in Infocom06.

Fig. 6 demonstrates the average results collected from
multiple snapshots of the network. We present only results for
Infocom05 as the rest behave similarly. As our simple example
showed, reachable fraction of nodes in static graph is higher
than what actual graph Gt could provide. The overestimation is
clear in Fig. 6(a): static and long Tagg have the highest reach-
able fraction (⇡ 0.9 � 1) whereas short Tagg is significantly
lower (⇡ 0.3). Regarding the improvement with increasing
h, all exhibit the same behaviour. In line with the results
of Sec.III, we see that h = 2 provides most of the benefits
of multi-hop routing. However, our previous conclusion that
two hops are sufficient to provide full connectivity among all
nodes does not hold. Increasing hop count does not help as the
dynamics of the network put a limit on the ratio of reachable
nodes in the given time period. Regarding bottleneck capacity,
increasing hop count (h > 2) leads to higher bottleneck
capacity for all settings. Similar to our previous results, the
benefits diminish after h ⇡ 4. As Fig. 6(c) illustrates, the
optimal hops are on the average higher for higher Tagg. This
is due to the added edges that may violate the time ordering
in reality but increasing the bottleneck capacity.

In Fig. 7, we plot the simulation results: the delivery ratio,
delivery delay, and average hop count of the delivered mes-
sages for Infocom05 and Infocom06 traces. In these scenarios,
we set time-to-live (TTL) of a message to ttl = {1, 6, 24}
hours. A message exceeding its ttl is dropped. For the sake of
comparison, we set buffer capacity and contact capacity large
so that the performance is not restricted by these factors. From
Fig. 7(a), we can see the improvement facilitated by increasing
h. In all scenarios, we see two regions; in the first region the
delivery ratio increases with increasing h which later changes
marginally in the second region. The turning point is 3 � 4

hops. This behaviour agrees our previous AHOP analysis.
Unsurprisingly, delivery delay in Fig. 7(b) shows a similar
trend to that of additive weights in Fig. 4(b). In this figure,
the results are not normalized to give an idea about the delay of
communication in such opportunistic networks. For ttl = 1 h,
the delay slightly changes across different h, which indicates
that the performance is primarily determined by the time
restriction (and network mobility) rather than the hop count
restriction. Lower average hop count in Fig. 7(c) corroborates
this claim. For other settings, we observe a significant drop in
delivery delay from h = 1 to h = 2. Another thing to note is
that messages are routed in h ⇡ 2.3 hops in Infocom05 trace
independent of ttl, whereas h ⇡ 3.2 for Infocom06.

VI. CONCLUSIONS

In this paper, we have explored the effect of hop count
restriction on opportunistic routing schemes. We have used
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Fig. 7. Simulation results for ttl = {1, 6, 24} hours. Infocom05 and Infocom06 traces.

the modified Bellman-Ford’s algorithm which is proposed for
all hops optimal path problem (AHOP) and is a good fit
for our research question. We analyzed human contact traces
using three approaches: first we derived the contact graph from
the traces and computed the AHOP on the static graph. This
approach is optimistic as it disregards the time ordering of
the links. To decrease the deviation from the actual graph, we
observed the network on multiple time points and aggregated
all events occurring in a time interval into a network snapshot.
Next, we derived the performance by averaging related metrics
over the snapshots. Finally, we simulated a hop-limited routing
protocol. Although characteristics (e.g., connectivity) of the
network snapshots may be different than the static graph, they
are similarly affected by the hop count limitation. Connectivity
of the network as well as the performance (e.g., lower delay)
improves with increasing hop count. Generally speaking, while
two hops are sufficient to achieve the highest connectivity
the network can provide given the time restrictions, routing
protocols can perform better by increasing hop count to h ⇡ 4.
After this point, the performance tends to stabilize.

In this work, we studied small-world networks that exhibit
some community structure which reflected this property as
low number of hops achieving good connectivity for the static
graph. As future work, we plan to provide a formal framework
which can guide us better in understanding the effect of hop
count for general opportunistic networks.
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