
Liberouter: Towards Autonomous
Neighborhood Networking

Teemu Kärkkäinen and Jörg Ott
Aalto University Comnet

Espoo, Finland
firstname.lastname@aalto.fi

Abstract—We present the Liberouter framework, a complete
communication system design (and its implementation) to en-
able neighborhood networking without relying on the Internet
infrastructure for information exchange. The core is a low-cost
router platform that serves as WLAN access points, individual or
(dis)connected ones, and offers message storage and relaying in
combination with a distributed app store. It allows bootstrapping
Android devices to become additional routers (and thus expand
the network) and install applications. It also instruments other
mobile devices to assist in message forwarding and offers web-
based access to content of the neighborhood stored locally.

I. INTRODUCTION

The combination of the Internet’s effortless global connec-
tivity and its hugely popular web- and cloud-based services has
blurred the distinction between local and remote applications;
at least for those well connected. While this has undoubted
advantages for providing high quality services to large numbers
of users, it has also made people (blindly) dependent on the
Internet and centralized third parties. The cloud now stores
the users’ data and controls the software that executes on that
data. We argue that this centralization and globalization should
be balanced by the creation of more localized and distributed
neighborhood networks that are built, operated and controlled
by the users themselves.

There may be a number of reasons to desire such localized
networking: 1) The centralization of power in the cloud
turns the operators into censors for the content published
through their platforms. This can manifest through intentional
filtering or reviewing, or incidental algorithmic ranking and
prioritization of content (and applications in the case of app
stores). Even only locally relevant, ephemeral, user created
content gets moved to physically remote cloud servers to
be stored into third party curated silos. For these classes of
content it may often make much more sense to distribute
only through localized networks and services. 2) As shown
by recent revelations, the centralized networks and services
are targets for ubiquitous, ongoing, large-scale monitoring by
various government agencies, who indiscriminately collect and
analyze end user traffic in bulk both directly from the network
and from the cloud service provider systems. This can lead
to some users losing confidence in the current infrastructure
networks and services. 3) As widely available as Internet
access has become, its use is still constrained by cost (e.g.,
cellular data and WLAN hotspot charges) and by provisioning
limitations (e.g., availability, capacity) in many areas. The
latter is especially true in remote areas where connectivity

is not always available, and in disaster scenarios where the
infrastructure has been rendered inoperable.

In this paper, we present the Liberouter framework for
local networking that i) offers robust communication between
reasonably co-located users, ii) facilitates the creation and
distribution of new applications within the neighborhood, and
iii) provides (limited) infrastructure assistance for running
services. As meta goals, the network should be created from
inexpensive “infrastructure” components that are self-supplied
by the users. The infrastructure may be put and kept in place
permanently and may be extended over time, but instantiating
networks in an ad-hoc manner should also be supported. While
Internet access and gatewaying to Internet services is clearly
an option (and the Internet could also be used to interconnect
multiple local network islands), those are not the foremost
goals. Rather, we emphasize the local character, which also
implies that access to content be limited to those in the vicinity.

The two main approaches to local networking that have
been proposed in the past are opportunistic networking [21],
[20] and wireless mesh networking [2]. The Liberouter system
design arises from an attempt to solve the practical issues
discovered in experimental deployments of both of these
approaches. In particular, opportunistic networking relies on
message passing between mobile devices carried by users.
This requires the devices to be physically colocated and a
radio technology that is capable of discovering nearby peers
and forming links between them. Problems arise when the
density of peers is so low that physical colocation is rare, and
from the energy requirements of continuous peer discovery.
Further, in practice many mobile devices are optimized for
discovering and using infrastructure networks (such as Wi-
Fi access points) and have poor or non-existent support for
discovery of direct peer-to-peer communication opportunities.
Wireless mesh networking, on the other hand, approaches the
problem by trying to build end-to-end packet paths through
a network of cheap Wi-Fi enabled devices. In practice mesh
networks tend to rely on fixed installations of mesh router
nodes [1], [16]. Using mobile devices is also possible [25],
but the instability of the resulting network topology limits the
size and scope of such networks.

The Liberouter approach is positioned between the two
previous approaches. Like opportunistic networking, it relies
on direct peer-wise contacts to pass messages. However, unlike
opportunistic approaches it does not require direct device-to-
device contacts, instead introducing autonomous “opportunis-
tic routers” that devices can connect to and swap messages
with. This relaxes the colocation requirement as well as978-1-4799-4937-3/14/$31.00 c©2014 IEEE

the device-to-device discovery requirement. Similar to mesh
networking, the Liberouter approach relies on cooperating
infrastructure components that are installed by users. How-
ever, unlike mesh networking these components are fully
autonomous and do not need to be directly connected to each
other. This means that already a single Liberouter unit can
provide value to users, and the network is not sensitive to
topology changes due to components being added or removed
from the deployment.

The Liberouter approach is similar to the use of throw-
boxes [26], [4] to increase throughput and reduce latency in
Delay Tolerant Networks (DTN). However, such approaches
typically aim to optimize and improve the performance of
routing algorithms in one-to-one messaging scenarios, while in
our system design focuses on publishing content. Further, we
assume application model where there is not a strict receiving
set for published messages, but rather users get some value
from every received unique message (e.g., in the case of photo
sharing each received photo adds value, while being able to
receive a specific photo is less important). Designs have been
proposed for using throwbox-based systems (also referred to
as infostations) in urban environments [5], [7], [23]. However,
these designs assume infrastructure connected, interoperating
throwboxes as content stores that user queries are executed
against (in the case of [5]), to which users subscribe with their
topics of interest (as for [23]), or that act as Internet gateways
(in the case of [7]). In contrast, our design assumes fully
autonomous Liberouters and focus on content dissemination
instead of fulfilling query-response transactions.

The resulting system properties of our design are also rele-
vant to people in countries with strong censorship mechanisms
[3], [18], [6], and a risk of prosecution for those attempting to
circumvent such mechanisms. The Liberouter framework pre-
sented in this paper should eventually become suitable for such
applications as well, but our present focus is on enabling its
autonomous operation. Mechanisms essential when targeting
censorship circumvention, e.g., for concealing communication,
providing real anonymity, and ensuring plausible deniability
[12] are subject to our ongoing and future work.

II. NEIGHBORHOOD NETWORKING

We use a rather lose definition of neighborhood, mainly
to contrast our work from obtaining global connectivity: for
the purpose of this paper, a neighborhood is a group of at
least two users with some common interests. We expect those
users to be sufficiently close to each other and/or sufficiently
densely distributed that they are often in range of WLAN
routers that are either directly connected or can be indirectly
connected through message ferrying, e.g., because users with
mobile devices move frequently back and forth between the
different locations. Intuitively, this would yield distances of
100m to maybe a few km between users. Examples for such
neighborhoods include a school campuses, parks, groups of
houses in a street or around a lake, entire villages, and
downtown areas, but also camp sites in the middle of nowhere.

Neighborhood networking may take a number of different
shapes, as shown in Figure 1, all of which we seek tos
accommodate. At the very core is using 802.11 WLAN to
interconnect different nodes, for which our Liberouters serve

A	

AP	

B	

C	

Fig. 1. Sample neighborhood networks: A–C are Liberouters, AP is a WLAN
hot-spot, the dots represent nodes. Some nodes (black) are stationary and
connected to a Liberouter, some (grey) move between Liberouters and carry
messages, some (white) interact directly leveraging other WLANs.

as the infrastructure, i.e., (groups of) wireless access points:
(1) Devices (black dots) may be connected to an individual
Liberouter (C) as shown at the bottom, but (2) multiple
Liberouters (A, B) may also be interconnected using a wired or
wireless link.1 To extend communication beyond the reach of
an individual or connected groups of Liberouters, (3) we utilize
delay-tolerant networking concepts [10] and allow mobile
nodes (grey dots) to carry messages between Liberouters.
Finally, (4) we leverage mobile opportunistic networking ideas
for information exchange between mobile nodes when they
encounter each other (white dots on the left) [24], [25],
possibly with the assistance of WLAN hotspots (white dots
on the right) [15].

The key constituents are, on the one hand, (stationary)
Liberouter boxes providing the minimal connectivity infras-
tructure and offering persistent storage, and, on the other hand,
mobile devices (e.g., feature phones, smart phones, tablets,
laptops) serving both as endpoints and as message carriers.
Finally, stationary devices connected to Liberouters serve as
user equipment or servers.

While delay-tolerant and opportunistic networking for re-
lated scenarios has been explored before, our contribution is
in the system design: Liberouters bootstrap capable mobile
nodes and turn them into Liberouters as well; they serve as
distribution mechanism for apps; and they serve as content
store and relay for application data.

III. A LOW-COST DISPOSABLE ROUTER

The Liberouter network is built around inexpensive do-it-
yourself opportunistic routers. They combine cheap, general
purpose computing platforms like the Raspberry Pi2 or the
BeagleBoard3 with the SCAMPI opportunistic communication
stack [14]. Each router can bootstrap and provide services to
mobile devices.

Like wireless mesh network routers, these opportunistic
routers are cheap enough that they can be built and installed
by individual users. But unlike mesh routers that require
careful configuration and positioning in order to produce a
stable topology, Liberouters are fully autonomic, as well as

1This could include overlay links across other networks including the
Internet, provided using such does not violate the target properties of the
neighborhood network. We do not pursue this aspect further in this paper.

2http://www.raspberrypi.org/
3http://beagleboard.org/

Fig. 2. Hardware configuration for a Liberouter device.

configuration and maintenance free and therefore can be placed
anywhere with power and within Wi-Fi range of users. This
means that the routers can be deployed, e.g., in homes and
businesses, where they then provide services to passing users.
They could also be deployed by hiding them in public areas
(possibly with a disguised case) or even in moving nodes
such as cars. Raspberry Pi based hardware configuration for a
Liberouter device is shown in Figure 2.

Liberouters appear as ordinary open Wi-Fi access points to
nearby users. Upon connecting to one with a mobile device the
user is presented with a captive web portal. The portal allows
users to download and install native versions of the SCAMPI
router software and other mobile applications. Each Liberouter
is also running an instance of the SCAMPI application plat-
form. Mobile devices near a Liberouter Wi-Fi access point and
running the SCAMPI router will automatically discover and
connect to, and exchange message with, the router’s SCAMPI
instance without user interaction. Further, the captive portal
and the local SCAMPI router could be potentially integrated
so that the captive portal site can display content stored in the
router to any connected device with a web browser (including
those that do not have a native SCAMPI router implementation,
namely iOS).

Even a single Liberouter can provide useful communication
services to two or more users, while adding more routers
will increase the robustness and reach of the network. This
is in contrast to mesh networks where a single non-Internet
connected mesh node can provide very few meaningful com-
munication services.

A. Basic Operation

Both the Liberouters and mobile devices run instances
of the SCAMPI opportunistic router platform. The SCAMPI
platform is responsible for discovering nearby nodes, open-
ing communication links, and implementing the store-carry-
forward networking that enables the asynchronous multi-hop
messaging service between mobile devices and Liberouters.
The SCAMPI stack is shown in Figure 3.

The SCAMPI platform is based on the Internet Research
Task Force (IRTF) Delay-Tolerant Networking Research Group
(DTNRG) architecture and protocols. In particular, the store-
carry-forward overlay is implemented using the Bundle Proto-
col [22]. The messages generated by Liberouter applications

Fig. 3. SCAMPI application platform architecture.

are encapsulated in Bundle Protocol bundles and routed hop-
by-hop over direct device-to-Liberouter and device-to-device
contacts. The direct device-to-device transport is implemented
using the TCP Convergence Layer protocol [8] running on top
of the platform’s standard TCP/IP stack.

Since every Liberouter access point appears identical to the
connected user devices, service discovery can be implemented
via known IP addresses and ports. Upon connecting to a Liber-
outer access point, the SCAMPI instance on the mobile device
attempts to open a connection to a well known port on the
Liberouter. The Liberouter replies with a service descriptor that
contains, among other things, information on how to establish
a transport link to the router. The result is a star topology
where the Liberouter acts as a hub and the mobile devices as
leaves. Thus, the Liberouter is able to store and forward copies
of all messages created by the clients that connect to it. This is
what allows the Liberouters to act as electronic “drop-boxes”
(or: throwboxes [26]), passing messages between mobile users
that may never be physically co-located, and for the messages
to spread to multiple Liberouters by the users’ devices.

In addition, the SCAMPI instances on the mobile devices
can be configured to discover each other directly when con-
nected to non-Liberouter Wi-Fi networks. This is achieved
through IP multicast beaconing based service discovery mech-
anism, which results in a full connectivity mesh between the
co-located nodes. Further, the SCAMPI platform can provide
support for other lower layer communication technologies such
as Bluetooth and Wi-Fi Direct. However, in current generation
devices these technologies require user interaction (e.g., device
pairing) before communication can take place, and therefore
fully automatic operation is not feasible.

B. Applications

While the Liberouter system forms a general network
layer, it is the applications running on this infrastructure that

provide value to the users. In general, a network composed of
multiple disconnected Liberouters is unsuitable for real-time
media applications such as streaming voice or video (although
non real-time variants of such are possible, e.g., push-to-
talk instead of Voice-over-IP [13]). Further, while unicast
messaging applications are possible in such a network, we
focus on broadcast style communications where each message
has value for multiple users, and therefore leads to efficient
use of the community network resources.

The SCAMPI platform provides a TCP-based API for na-
tive applications running on the same device as the router. This
API can be used by, e.g., Android and Java SE applications
to publish and receive messages in the Liberouter network.
In addition, the platform exposes an HTML5 API though a
lightweight shim, that maps a JavaScript API to the native TCP
API and makes it available to HTML5 applications running in
a web view component4. The different API layers are shown
at the top of Figure 3.

These interfaces provide a publish/subscribe network ab-
straction. Unlike TCP/IP APIs that provide datagram or byte
stream based abstractions, and Bundle Protocol router APIs
that typically provide unstructured binary blob abstractions, the
SCAMPI platform API uses a structured message abstraction
of SCAMPImessages. These are semantically meaningful, self-
contained application level messages, which get mapped into
Bundle Protocol bundles for forwarding in the Liberouter
network. The message contents are abstracted as a map of
arbitrary key-value pairs. Using a common message content
structure allows the lower layer to operate directly on the
message contents, for example, to provide versioning and
intelligent content merging. The message contents can also be
described by attaching metadata. This metadata can be used
by the SCAMPI routers to, for example, fulfil search queries.

Native applications can be designed to run in the mobile
devices, for example, messaging or photo sharing applications.
In addition, native Java SE applications can also run in the
opportunistic routers, implementing application layer services
that mobile client applications can use. Such services could
be, for example, music jukebox applications that publish
music files, or applications that pull information such as news
from the Internet and publish it to mobile clients (assuming
the Liberouter has Internet connectivity in addition to local
connectivity).

In addition to the native API, we have created an HTML5
version of the API. Native applications on mobile devices
tend to be tightly coupled to their particular platform (e.g.,
APIs, frameworks and even the languages used by Android,
iOS and Windows Phone are completely different.) However,
each of these platforms offers rich and mostly uniform support
for the HTML5 standards, allowing for a truly cross-platform
mobile application development. We provide a light-weight
HTML5 shim that offers the messaging functionality through
a JavaScript interface to HTML5 applications running inside
a web view container. This allows developers to build cross-
platform mobile applications using the familiar HTML5 frame-
works and tools, while adding the networking functionality

4This does not refer to mobile web browsers, but rather to a web view
component that is wrapped in a native application; a popular approach to
building mobile applications.

through the SCAMPI interface. However, this approach still re-
quires the mobile client to have an implementation of the shim,
and therefore these applications will not run on unmodified
web browsers. Instead they can be run either through native
wrappers around the web view component and shim, or though
the HTML5 application distribution client also provided by the
platform.

C. A Distributed App Store

In order to use the Liberouter applications, whether native
or HTML5, the user must first get a copy of the application.
Currently the most popular approach to distributing mobile
applications are centralized app stores, such as Apple’s App
Store, Google’s Play Store, Amazon Appstore and Windows
Phone Store. These stores are curated to different extents,
but in all cases the store operator has complete control over
what applications are available. Since Liberouter neighborhood
networks are fully distributed, it is not feasible to rely on
centralized application distribution mechanisms. Therefore a
distributed variant of the app store model is required.

As explained before, the Liberouter neighborhood net-
work is based on publishing and spreading of self-contained
messages. From the point of view of the network layer it
makes no difference whether these messages contain text,
images, videos, audio, or opaque binary data objects. This
means that the very same mechanisms that applications use
to communicate with each other can be used to publish and
distribute the applications themselves.

By bundling the applications into messages, anyone can
publish applications into the network, and anyone can install
and run these applications. On the plus side, this means that no
central curator or censor can make arbitrary decisions on what
the users can or cannot install on their own devices. On the
minus side, the user loses the ability to trust one central source
to verify that the application is not malicious (although central
curators have not stopped malware from being published in
the app stores [11]). Therefore other mechanisms are required
to build trust in the distributed applications. While detailed
discussion of such methods is out of scope for this paper, we
propose that there are a number of possible ways to achieve
this: 1) the application developer can sign the application using
the platform’s native signing tools (e.g., Android APK sign-
ing), allowing users to validate the source of the applications,
2) distributed voting mechanisms can be used to flag known
malware and known good applications, and 3) (de)centralized
curators could still test and sign applications and users can
choose which of those curators (if any) to trust.

HTML5-based Applications: Liberouter applications devel-
oped in HTML5 can be packaged into self-contained sets of
HTML, JavaScript, and CSS files. These files contain the GUI
(HTML and CSS) as well as data models and control logic
(JavaScript libraries and custom JavaScript). A key benefit
of the approach is that the applications contain only code
that does not need to be compiled for any specific execution
platform, and requires only a modern web browser. These
packaged applications can then be sent as SCAMPImessages
similarly to all other messages. This allows all SCAMPI
mechanisms to be applied to the applications themselves,
including metadata-based search and the security features such

as message signing to verify the originator of the application.
We have developed a SCAMPI Market distribution application
as a Liberouter HTML5 application, which publishes, receives,
validates and executes bundled HTML5 applications.

Native applications: Since the Liberouter network depends
on native SCAMPI clients on the mobile devices to spread
messages, there must be a way to bootstrap the system by
distributing native applications to mobile devices that do not
have any special distributed market software installed. We do
this by using the captive web portal on the Liberouter devices
to distribute native applications. Versions of these applications
come pre-installed with the Liberouter distribution, however,
they could also be later updated by publishing new versions
into the Liberouter network. To support this, the Liberouters
must have a SCAMPI update client that receives native appli-
cation update messages, verifies their origin and then installs
them into the captive portal. This mechanism could also be
extended to automatically list user published applications on
the captive portal site.

In addition to distributing native applications through the
captive portal, the SCAMPI Market application can also be
extended to support native application installation, using the
same mechanisms as HTML5 application distribution de-
scribed above.

IV. VALIDATION

We have conducted a simulation study using the ONE
simulator [17] to validate the feasibility of our design. Our
simulation area is 4000 m × 3000 m section of central
Helsinki5, with simulation duration of one week. On this
area, user nodes move according to the ONE map based
random movement model with speeds uniformly drawn from
[0.5 ms−1, 1.5 ms−1], while being constrained to move only on
the roads defined by the Helsinki map. Further, we randomly
place 20 Liberouter nodes on the map. Each node is capable
of Wi-Fi communications with 20 m range and 2 MBs−1

transmission speed. User nodes can only communicate with
the Liberouter nodes and cannot communicated directly with
each other. The Wi-Fi parameters reflect a scenario where
the Liberouters are low performance devices placed inside
buildings in an urban settings, and therefore realistically will
not cover the 100 m range typically assumed for Wi-Fi in
the literature. Each user node has 100 MB storage dedicated
for a message buffer, while Liberouter nodes have 2 GB,
again reflecting a scenario where users are mobile devices and
Liberouters low cost dedicated devices. We model a photo
sharing type application, where each user publishes 1 MB
messages with a period uniformly drawn from (0 min, 30 min]
with a lifetime of 6 hours. These messages are spread epi-
demically in the network and received by other users through
the Liberouters, and are dropped oldest-first when the storage
space is exhausted.

Figure 4 shows the per-user goodput achievable for our
system. Goodput is defined as the total volume of unique
messages that a user receives over the simulated week. In the
case of a photo sharing application, this corresponds to the
number of unique photos that the user would receive from
the Liberouter network per week. We can see in the figure,

5The map distributed with the ONE simulator.

 0

 2000

 4000

 6000

 8000

 10000

 0 10 20 30 40 50 60 70 80

G
oo

dp
ut

 [M
B/

w
ee

k/
us

er
]

Users

Goodput vs. users
5 Liberouters

10 Liberouters
15 Liberouters
20 Liberouters

Fig. 4. Goodput of the Liberouter network.

that the goodput first quickly raises as the number of users
generating and distributing messages increases. However, the
goodput reaches a steady state as the network gets saturated
with messages. At this steady state more users can enter the
system and they will receive the same goodput as existing
users. The amount of data that the system can deliver to a
single user is gigabytes per week. To put this into perspective,
in the case of 80 users and 20 Liberouters, each user would
achieve a monthly goodput of 47 GB, which is an order of
magnitude higher than typical data usage caps on cellular
networks.

Even though the goodput reaches a steady state as the net-
work gets saturated, the congestion causes published messages
to get dropped from the network earlier, which limits the reach
of the individual messages. This effect can be seen in Figure 5,
which shown the fraction of nodes reached on average by a
published message. In an uncongested network the fraction of
nodes reached is dependent on the density of Liberouters and
the mobility of the users. In the case of 20 Liberouters, the
messages will reach well over half the users in the uncongested
case. As the number of users increases (and thus the offered
load), causing congestion, the reach of the message falls, with
only 20% of nodes being reached in the 20 Liberouter case
with heavy congestion. However, this effect does not impact
the goodput since any received unique message provides value
to the user. Furthermore, as congestion causes messages to get
dropped sooner, the messages that users receive are likely to
have been published geographically closer and therefore being
more valuable to the user, e.g., in the case of photo sharing
where the users would receive photos taken closer to their
physical location.

The congestion itself can be seen in Figure 6, which
shows the fraction of all message drops in the network that
are caused by congestion; the remaining message drops are
caused by the messages lifetimes expiring. The congestion is
shown for the user devices, the buffer sizes of the Liberouters
are sufficiently large that no messages are dropped by them
due to congestion (this assumption is likely to hold in real
deployments since Liberouters are dedicated devices, while
the users’ devices are mobile phones where only a limited
amount of the resources will be dedicated to the Liberouter
system’s use). We can see that after reaching the steady state,

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70 80

U
se

rs
 re

ac
he

d
pe

r m
es

sa
ge

Users

Message reach vs. users
5 Liberouters

10 Liberouters
15 Liberouters
20 Liberouters

Fig. 5. Fraction of clients reached by each message.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10 20 30 40 50 60 70

D
ro

ps
 d

ue
 to

 C
on

ge
st

io
n

Users

Congestion vs. Users
5 Liberouters

10 Liberouters
15 Liberouters
20 Liberouters

Fig. 6. Fraction of message drops in the user devices due to congestion.

the fraction of messages dropped due to congestion does not
increase. However, adding Liberouters to the network has the
effect of increasing congestion at the users’ devices. This is
caused by the increased encounters between the users and the
Liberouters causing more messages to be transmitted to the
users’ devices.

Two main approaches can be taken to scale the network: 1)
the number of Liberouters in the network can be increased, or
2) the resources available in the network can be increased. As
can already be seen from Figure 4, adding more Liberouters
to the network increases the goodput to all users. Figure 7
demonstrates this explicitly by showing the achieved goodput
as a fraction of the maximum theoretical goodput6 when the
number of Liberouters is increased. The observed impact on
goodput is higher for cases with smaller numbers of nodes.
It is due to those cases being closer to the transition range
between the congested and uncongested cases, where adding
more capacity will directly increase goodput. In contrast, when
the network is significantly congested, as is the case with
80 users, adding more capacity will not reduce congestion
noticeably and therefore has much less impact on the goodput.

The second approach to scaling is to increase the resources

6Goodput in the case every published message is received by every node.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 5 10 15 20

G
oo

dp
ut

 /
M

ax
im

um
 G

oo
dp

ut

Liberouters

Goodput vs. Liberouters
10 Users
20 Users
30 Users
40 Users
50 Users
60 Users
70 Users
80 Users

Fig. 7. Fraction of maximum goodput achieved.

in the network. There are two main resources in the devices:
buffer space and transmission range and capacity. As we
already showed, in our scenario the Liberouters have enough
buffer space to store all received messages. On the other
hand, the users have more limited buffers that get congested
as the number of users in the network increases. However,
our simulations show that there is no impact on goodput nor
message reach when the users’ buffer is varied from 100 MB
to 500 MB, even though at 500 MB the buffers are no longer
congested. This indicates that the system is not limited by the
buffering resources when it comes to scaling to a larger number
of users, although they are likely to be important when scaling
to higher message generation rate. This makes intuitive sense,
since in the steady state the Liberouters are likely to contain
more new messages than can be transmitted to a user during the
brief contact, which means that regardless of buffer sizes the
user will always get new content when passing by a Liberouter.

This leaves us with Wi-Fi transmission range and capacity
as the other option to scale. Since it is typically easier to
increase the Wi-Fi range (increased transmitter power and
higher gain antenna), we study the impact of increasing the
Wi-Fi range. We simulated increasing Wi-Fi range between
20 m and 100 m and found that the goodput and message reach
increased significantly, almost reaching maximum throughput
for all the studied cases at 100 m range. At the same time
congestion in the user devices grew significantly. This makes
sense since a longer radio range means that the users are within
Liberouter range longer and therefore will receive a larger
number of new messages.

The key observation that can be made about the behavior
of the Liberouter system is that adding more users to the
system does not lead to a congestion collapse7. Instead of
the per user goodput collapsing under congestion, the reach
of the messages drops while goodput remains stable. In the
case of photo sharing, this means that each user will get
the same amount of new photos, but fewer users will see
the same photo. In other words, the system design leads to

7At the system level. A single Liberouter node will collapse given a large
enough number of concurrent clients, which is likely to occur in mass events,
such as stadiums or concerts. There are ways to mitigate this, but they are
outside the scope of this paper.

Fig. 8. Guerrilla Pics (left) and Tags (right) applications.

highly diverse and localized set of content under load. This
means that the Liberouter network is well suited for broadcast
type applications where the aim is to let users publish and
receive a diverse set of highly localized content. Conversely,
the network is not well suited for applications that require
a wide distribution of the same piece of content to a large
number of users, or to a specific receiver, even under load.

V. IMPLEMENTATION

We have implemented a Liberouter device using a Rasp-
berry Pi with a USB Wi-Fi for connectivity and USB flash
drive for storage. The distribution is built on the standard
Raspbian Linux distribution, configured to act as a Wi-Fi ac-
cess point with a captive portal and the SCAMPI opportunistic
router. We use Android devices as the user devices, for which
we provide a SCAMPI router application, Guerrilla Tags mes-
saging application, Guerrilla Pics photo sharing application,
and People Finder disaster recovery application.

We have been running small scale Liberouter deployments
at a number different locations in Helsinki, Stockholm, and
Cambridge, with some continuously operating for half a year
and using Android phones to carry messages back and forth.
Larger scale deployments of some tens of nodes are currently
under development. However, anyone can build and deploy
Liberouters by using the publicly available distribution8.

Liberouters appear to users as open Wi-Fi access points
with the SSID ”LIBEROUTER”. Users connecting to the
network will see a captive portal web site that lets the users
download the native Android (2.3.3 or later) applications
needed for communicating in the Liberouter network. This
includes the Android SCAMPI router (LibeRouter), which
provides opportunistic communication services to the other ap-
plications. After the user installs and launches the LibeRouter
application, it will connect to the SCAMPI router running
in the Liberouter access point. It remains running in the
background (until stopped by the user), which, when combined
with Android automatically connecting to any LIBEROUTER
Wi-Fi networks that it finds, ensures that the device will swap
messages with any Liberouter within communication range.

8Available at: http://www.ict-scampi.eu/results/scampi-liberouter/

Fig. 9. User interface of the People Finder application.

The local applications, Guerrilla Pics, Guerrilla Tags and
People Finder can be used at any time, regardless of whether
the device is connected to a Liberouter or whether the local
LibeRouter instance is running. Guerilla Pics and Guerrilla
Tags (show in Figure 8) let the users publish photos and
short messages respectively. The applications have internal
databases with the contents that the user has published and
received. When the local LibeRouter instance is running, the
applications fill their internal databases with messages received
from the Liberouter network and publish any messages created
by the local user.

The third application, People Finder (Figure 9), is an imple-
mentation of the People Finder Interchange Format (PFIF) [9]
standard for exchanging missing persons records following
disasters. PFIF is designed for enabling large, centralized miss-
ing persons database operators to synchronize their records,
particularly during major disasters when significant number
of people are seeking and providing information about their
friends and loved ones. People Finder application allows
people to publish and collect missing persons records using
the Liberouter network, without needing Internet connectivity
in order to connect to the large centralized databases. This
is especially important, since major disasters often disable
the very infrastructure that is required for the Internet based
centralized solutions.

We are currently developing various aspects of the Liber-
outer system. First, we are continuing to improve the under-
lying SCAMPI platform with more features, especially for
more efficient routing and content distribution. Second, we
are working on providing content to non-Android users by
integrating content from the local SCAMPI router caches
into the captive portal. This would allow users to view the
content in the network without installing the native applications
into their devices. Third, we are preparing a release of the
developer frameworks and APIs through the Liberouters, so
that everything needed for building new applications for the
network can be downloaded from any Liberouter. Finally, we
are building a native application distribution system so that
native applications can be distributed through other means than
the captive portal web site.

VI. DISCUSSION AND CONCLUSION

We have presented our Liberouter framework and a system
design to create and dynamically expand autonomous neigh-
borhood networks using stationary and mobile devices. The
communication, storage, and application distribution features
complement the Internet infrastructure and enable localized
information sharing that avoids central control or restrictions.

Sharing content and particularly applications in au-
tonomous environments raises security issues: as noted above,
while app store control may be seen negative, it serves as
a filter for malicious software; and while cloud and server
infrastructure may restrict content exchange and make content
observable to third parties, it facilitates filtering spam and
malware. Any solution eliminating such central check points
should offer alternative answers to the above issues.

Since we do not target operation in an empty space, we can
leverage existing mechanisms and make use of the Internet if
needed. For example, the bundle protocol supports signing and
encrypting messages and we can implement similar security
mechanisms inside our messages (e.g., using S/MIME) to
provide authentication and access control. As we are targeting
neighborhood networking, we may assume that (groups of) the
involved users will be aware of each other so that individual
signatures actually bear a meaning and users can decide when
to trust a piece of content or an application before viewing or
installing. To simplify introduction and sharing of personal at-
tributes (e.g., certificates), we may also leverage trust between
friends to identify friends of friends and link such relationships
from online social networks such as Facebook to such personal
attributes via servers controlled in the neighborhood, as done
in PeerShare for MAC addresses of mobile devices [19].

Protecting neighborhood networks against DoS attacks is
no different from other mesh or opportunistic networks. The
isolation of the local data path from the Internet has the
positive side effect that injecting traffic into the network would
require physical presence, thus making attacks potentially more
costly and distributed DoS attacks even costlier to carry out.
Moreover, message authentication may help allocating storage
and communication resources.

We note, however, that addressing these aspects becomes
substantially harder for systems targeting censorship-resistant
communications: access to (sufficiently trustworthy) infrastruc-
ture services may no longer exist, message and authentication
may need to follow quite different paths, and the cost of being
subverted by adversary applications may become immense so
that false negatives are no longer tolerable. This is an area for
future work.

ACKNOWLEDGEMENTS

This project has received funding from the European Com-
munity’s Seventh Framework Programme for research, techno-
logical development and demonstration under grant agreement
no 611366 (PRECIOUS) and from EIT ICT Labs.

Special thanks to the Liberouter team in Aalto Design Fac-
tory Product Development Project 2012: Bryn Haffey, Mikko
Heiskanen, Xueyun Li, Zijia Liu, Jessie Mislavsky, Chirapriya
Mondal, Lasse Rantanen, Markus Selensky, Shengjun Shi, Yue
Shen, and Qiuyang Tang.

REFERENCES

[1] D. Aguayo, J. Bicket, Biswas S, G. Judd, and R. Morris. Link-level
Measurements from an 802.11b Mesh Network. In Proceeding of ACM
SIGCOMM, August 2004.

[2] I.F. Akyildiz and Xudong Wang. A survey on wireless mesh networks.
IEEE Comm. Magazine, 2005.

[3] S. Aryan, H. Aryan, and J. A. Halderman. Internet Censorship in Iran:
A First Look. In USENIX FOCI Workshop, 2013.

[4] N. Banerjee, M.D. Corner, and B.N. Levine. An energy-efficient
architecture for dtn throwboxes. In INFOCOM 2007. IEEE, May 2007.

[5] A. Bujari, C.E. Palazzi, D. Maggiorini, C. Quadri, and G.P. Rossi.
A solution for mobile dtn in a real urban scenario. In Wireless
Communications and Networking Conference Workshops (WCNCW),
IEEE, April 2012.

[6] Richard Clayton, Steven J. Murdoch, and Robert N. M. Watson. Ignor-
ing the Great Firewall of China. In Workshop on Privacy Enhancing
Technologies (PET), 2006.

[7] F. De Pellegrini, I. Carreras, D. Miorandi, I. Chlamtac, and C. Moiso.
R-p2p: A data centric dtn middleware with interconnected throwboxes.
In Proc. of Autonomics ’08. ICST, 2008.

[8] Mike Demmer, Jörg Ott, and Simon Perreault. Delay Tolerant Net-
working TCP Convergence Layer Protocol. Internet Draft draft-irtf-
dtnrg-tcp-clayer-06.txt, Work in Progress, May 2013.

[9] Ka-Ping Yee (ed.). PFIF 1.4 Specification. http://zesty.ca/pfif/1.4/, May
2012.

[10] Kevin Fall. A Delay-Tolerant Network Architecture for Challenged
Internets. In Proc. of ACM SIGCOMM, 2003.

[11] Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve Hanna, and
David Wagner. A survey of mobile malware in the wild. In Proc. of
ACM SPSM workshop, Chicago, 2011.

[12] S. Hasan, Y. Ben-David, G. Fanti, E. Brewer, and S. Shenker. Building
Dissent Networks: Towards Effective Countermeasures against Large-
Scale Communications Blackouts. In USENIX FOCI workshop, 2013.

[13] Md. Tarikul Islam. DT-Talkie: Push-to-talk in Challenged Networks. In
Demo at ACM MobiCom, 2008.

[14] Teemu Kärkkäinen, Mikko Pitkänen, Paul Houghton, and Jörg Ott.
Scampi application platform. In Proc. ACM CHANTS workshop, 2012.

[15] Teemu Kärkkäinen, Mikko Pitkänen, and Jörg Ott. Enabling Ad-hoc-
Style Communication in Public WLAN Hot-Spots. In Proc. ACM
CHANTS workshop, 2012.

[16] R. Karrer, A. Sabharwal, and E. Knightly. Enabling large-scale wireless
broadband: the case for taps. SIGCOMM Comput. Commun. Rev.,
34(1):27–32, January 2004.

[17] Ari Keränen, Jörg Ott, and Teemu Kärkkäinen. The ONE Simulator for
DTN Protocol Evaluation. In Proc. of SIMUTools ’09, 2009.

[18] Zubair Nabi. The Anatomy of Web Censorship in Pakistan. In USENIX
FOCI workshop, 2013.

[19] N. Asokan Marcin Nagy and Jörg Ott. PeerShare: PeerShare: A System
Secure Distribution of Sensitive Data Among Social Contacts. In Proc.
of NordSec, October 2013.

[20] L. Pelusi, Andrea Passarella, and Marco Conti. Opportunistic network-
ing: Data forwarding in disconnected mobile ad hoc networks. IEEE
Comm. Magazine, November 2006.

[21] J. Scott, P. Hui, J. Crowcroft, and C. Diot. Haggle: A Networking
Architecture Designed Around Mobile Users. In Proc. of WONS, 2006.

[22] Keith Scott and Scott Burleigh. Bundle Protocol Specification. RFC
5050, November 2007.

[23] G. Sollazzo, M. Musolesi, and C. Mascolo. Taco-dtn: a time-aware
content-based dissemination system for delay tolerant networks. In
Proc. of MobiOpp ’07, 2007.

[24] Sacha Trifunovic, Bernhard Distl, Dominik Schatzmann, and Franck
Legendre. WiFi-Opp: Ad-Hoc-less Opportunistic Networking. In Proc.
ACM CHANTS workshop, 2011.

[25] Hanno Wirtz, Tobias Heer, Robert Backhaus, and Klaus Wehrle. Es-
tablishing Mobile Ad-Hoc Networks in 802.11 Infrastructure Mode. In
Proc. ACM CHANTS, 2011.

[26] W. Zhao, Y. Chen, M. Ammar, M. Corner, B. Levine, and E. Zegura.
Capacity enhancement using throwboxes in dtns. In IEEE MASS, 2006.

