
Authenticated Resource Management in
Delay-Tolerant Networks using Proxy Signatures

Dominik Schürmann∗, Jörg Ott† and Lars Wolf∗
∗Institute of Operating Systems and Computer Networks (IBR), TU Braunschweig, Germany.
†Department of Communications and Networking (Comnet), Aalto University, Finland.

Email: d.schuermann@tu-braunschweig.de, jo@netlab.tkk.fi, wolf@ibr.cs.tu-bs.de

Abstract—In Delay-Tolerant Networks (DTN), individual nodes
with much higher rates of sending new bundles than average can
degrade the delivery rate of other nodes substantially. They have
a much higher impact on the overall network fairness than in
traditional networks because of DTN-specific properties, such as
decentralized design and the store-and-forward approach.

Authenticated resource management schemes were proposed to
guarantee minimum delivery rates in the presence of nodes with
high resource utilization as well as in the presence of malicious
nodes performing Denial-of-Service (DoS) attacks. They partition
the buffer adaptively based on the source node identifier of
incoming bundles, which is cryptographically authenticated by
the network.

We extend such approaches by using a cryptographic primitive
named proxy signature. Our method allows treating a bundle not
only based on its source node. Instead, a combined affiliation
of the source node together with the requesting node can be
used which allows for better support of important communication
patterns such as request-response. Our method can improve the
overall fairness and is similar to a reverse charge call in telephone
networks, as the requesting node “pays” for the response by
allowing it to also use buffer space normally assigned to itself. We
evaluate our approach using simulations in different scenarios.

I. INTRODUCTION

Delay-Tolerant Networks (DTN) have received increased
attention due to their application in scenarios without central
infrastructures [1] and have introduced new security issues
emerging from high communication delays, as well as from
decentralized design [2, 3]. For instance, because not all
rural areas are covered by local service providers messages
have to be send hop-by-hop in a DTN to enable information
exchange between communities. Mobile devices are used to
carry messages from source to destination resulting in large
communication delays. Thus, these networks have special
requirements regarding storage buffers. Since these buffers
are often limited, buffer management schemes are proposed
to improve the overall delivery rate in DTNs [4, 5, 6].
However, most of the proposed buffer management schemes
are not designed to prevent Denial-of-Service (DoS) attacks.
DoS attacks on DTNs have a high impact on the overall
performance due to the unique properties of such networks [7,
8]. A simple attack on storage buffers by sending many big
bundles of various payloads using different forged IDs (Sybil

This work was done while Dominik Schürmann was a guest at the
Department of Communications and Networking, Aalto University, Finland.

attack) causes a significant performance loss. In absence of an
authentication scheme, it will result in full capacity utilization
of storage buffers. Thus, a small subset of malicious nodes
can have a substantial negative impact on the delivery rate of
benign bundles.

A scheme that addresses this problem is proposed by Solis et
al. [9]. Their “fine-grained buffer management” drops bundles
from the buffer based on thresholds that are defined for each
source identifier of stored bundles. To identify nodes, they rely
on already deployed authentication techniques. The thresholds
can also be based on network domains, which constitute
specific subsets of the entire network. Their “coarse-grained
buffer management” separates messages into ones coming from
insiders or outsiders based on the domain affiliation of the
source node. The authors propose a system using pre-emptive
buffer management to prioritize messages from insiders over
messages from outsiders, by setting the thresholds accordingly.
They showed significant improvements in dealing with resource
hogs using their schemes.

As mentioned in their future work, their scheme lacks
fairness when operating under specific communication patterns,
e.g., request-response patterns. Fairness means that there should
be no way for individual nodes to obtain advantages, in this
case higher utilization of buffer space, compared to other nodes,
while decreasing their utilization. In this case, decreasing their
utilization means that an allocation of buffer space would
lead to discarded bundles originating from others. Pre-emptive
buffer management by Solis et al. fulfills this definition, when
considering unidirectional bundles only. Their algorithm drops
bundles affiliated to nodes whose buffer space exceeded the
most, after an incoming bundle was previously added to the set
of bundles and would result in an overfilled buffer. Their scheme
lacks fairness when considering the following request-response
scenario: All nodes are part of one domain and storage buffers
are adaptively partitioned to prevent malicious insiders. Node
A sends a request bundle to node B, which gets forwarded hop-
by-hop until it reaches its destination B. Because the request
bundle is cryptographically authenticated using a signature from
A, it will use buffer space intended for A on nodes forwarding
it. The response bundle is signed by B and will thus use buffer
space intended for B, even though it was requested by A.
Node A has an advantage compared to other nodes, as buffer
space assigned to B is used for data intended for A. The



scenario is not fair because A achieved higher utilization and
caused a decrease of possible utilization by B. It gets worse
when malicious nodes are present and overuse the network by
sending many requests to B performing a DoS attack. This
generates many responses by B intended for malicious nodes.
Thus, buffer space needed to answer legitimate requests is
blocked on forwarding nodes.

Our work is motivated by Solis et al., but other resource
management schemes that utilize variants of Weighted Fair
Queuing (WFQ) and buffer management are also able to
embrace this scheme. The proposed extension is based on
communication patterns that are cryptographically backed by
proxy signatures [10]. Using proxy signatures, node A can
delegate its signing capability to B, allowing B to also sign
the response bundle in the name of both A and B. Thus, we
are using proxy signatures to extend the affiliation of a bundle
to also provide a reference to the requesting node, which can
be verified by any node forwarding the bundle hop-by-hop.
Application of such signatures can be found for example in
mobile agents [11, 12], grid computing [13], and distributed
systems [14]. Proxy signatures have not been used so far to
extend the affiliation based on the communication patterns.

In the next section we will give a short introduction into
authentication techniques in DTNs, as they provide the basis
for any buffer management based on the identification of
nodes. In section III, a suiteable proxy signature scheme is
proposed. Our own contributions consist of a communication
pattern-based application of proxy signatures for DTNs (cf.
section IV) and corresponding resource management schemes
(cf. section V). Before concluding the work, some applied
scenarios are evaluated in section VI.

II. AUTHENTICATION TECHNIQUES

For authenticated resource management, we need signatures
that map one-on-one to IDs. The RFC Bundle Security Protocol
Specification [15] defines methods for encryption and authenti-
cation in DTNs. Encryption is implemented using the Payload
Confidentiality Block (PCB), while the Payload Integrity
Block (PIB) defines digital signatures for authentication. For our
purpose, a traditional Public Key Infrastructure (PKI) serves just
as well as an infrastructure using Identity Based Cryptography
(IBC) [16, 17] as long as it provides authenticated IDs with
strong unforgeability [18].

A. Combining Confidentiality with Authenticity

Typical ways to obtain end-to-end confidentiality in combina-
tion with authenticity are Sign-then-Encrypt and Encrypt-then-
Sign schemes. Using Sign-then-Encrypt results in end-to-end
encrypted signatures that need to be decrypted first before
verification. Signatures can only be verified by the destination
node, as this is the only node that can decrypt the bundle. Thus,
for buffer management schemes it is essential to use the latter,
as every node forwarding a bundle hop-by-hop should be able to
verify the signature and check the affiliation of that bundle. Our
choice is contrary to the Bundle Security Protocol Specification,
where Sign-then-Encrypt “[...] is generally RECOMMENDED

and minimizes attacks that, in some cases, can lead to recovery
of the encryption key” [15].

The PCB can be implemented using PCB-RSA-AES128-
PAYLOAD ciphersuite to provide symmetric AES encryption
using a session key derived from RSA based asymmetric
cryptography [15]. This authenticated encryption scheme
provides the guarantee that the message has not been altered
on the way from the security-source to the destination. It
is based on AES-GCM, which combines encryption and
authentication without the use of asymmetric signatures. AES-
GCM generates a ciphertext and a corresponding tag and
therefore an Encrypt-then-Authenticate scheme. This ordering
follows the recommendation of Krawczyk [19], and no node
on the way between its source and destination can alter the
tag in a manner that leaves it valid. The symmetric key used
for AES-GCM is finally encrypted using the public key of the
destination. Using this scheme without PIBs does not include a
way to identify nodes, as no signatures are attached. Adding the
ID of the originating source to the message before encryption
would also not prevent malicious nodes from including IDs that
are not their own, when generating a message. Consequently,
the scheme has to be used in conjunction with a PIB to get
verifiable nodes.

However, the naïve inclusion of a PCB into a surrounding
PIB to implement Encrypt-then-Sign leads to a widely known
problem in cryptology [20]. A node, for example T , located
on the way from security-source A to security-destination B,
could replace the PIB with its own block. This will make
security-destination B think that the message comes from T
and not A.

We propose implementing a secure scheme using
cross-referencing [20]: When utilizing PCB-RSA-AES128-
PAYLOAD enclosed by PIB-RSA-SHA256 [15], the PCB
should also contain the Endpoint Identifier (EID) of the security-
source along with the message. Besides verifying the signature,
the security-destination must also determine if the EID matches
the owner of the public key used to verify the surrounding
signature. If the signature is replaced by a malicious node,
the security-destination will reject the message because of the
non-matching encrypted EID and corresponding public key
used for signature verification.

B. Encrypt-then-Sign with Domain Certificates

In our scenario, a bundle is sent from node A to B, who
are members of domain X . Every node has a public/private
key pair 〈pki , ski〉 and an IDi , where i indicates the node.
A bundle is sent over the network containing a ciphertext c
of a message m concatenated with the node’s ID for cross-
referencing (cf. section II-A) and the corresponding signature σ.
In this example, the message m is encrypted with the public
key of B, resulting in c = EncpkB

(m ‖ IDA), and a signature
is generated by σ = SignskA

(c). A domain certificate certA∈X
is signed by the trusted authority of domain X .

certA∈X = 〈pkA ‖ IDA,SignskX (pkA ‖ IDA)〉



A

A

B

B

A

warrant ω defines the input space of the proxy signing function
certificate pcert = SignskA(00 ‖ IDB ‖ pkB ‖ ω)

ciphertext c1 = EncpkB (m1 ‖ ω ‖ pcert)
with m1 as request message

request = 〈c1, σ1 = SignskA (11 ‖ c1)〉(forwarded hop-by-hop)

decrypt and verify signatures
proxy signing key pskB = 〈skB , pkA, (IDB ‖ pkB ‖ ω), pcert〉

ciphertext c2 = EncpkA(m2) with m2 as response message
PSignpskB (c2) = 〈IDB , ω, pkB , pcert ,

σ2 = SignskB (01 ‖ pkA ‖ c2)〉

response = 〈c2,Σ = PSignpskB (c2)〉

(forwarded hop-by-hop)

Fig. 1. Delegation-by-Certificate proxy signature scheme

This certificate defines the affiliation with a specific domain and
can be verified by using the operation VerifypkX (certA∈X ).
Finally, the resulting bundle will be sent to B.

bundle = 〈c, σ, certA∈X 〉

Every node that forwards this bundle hop-by-hop can verify
its affiliation to a source node by VerifypkA(c, σ) and by using
the public key pkA, contained in certA∈X . The certificate can
be verified by using VerifypkX (certA∈X ), while pkX has to be
in the node’s long-time storage of public keys. Consequently,
it is verified that the bundle originates from A, which then
again is a member of domain X . These public keys could
be deployed while bootstrapping the devices or distributed by
more sophisticated methods [21]. As discussed in section II-A,
finally, B executes DecryptskB (c ‖ IDA) and verifies the cross-
reference of IDA to the signature.

To maintain clarity in the following discussion, we omit
domain certificates and the inclusion of IDs used for cross-
referencing.

III. PROXY SIGNATURES

Recalling the request-response scenario, our goal is as
follows: After A sends a request bundle to B, the response
bundle should also be affiliated with A and thus use buffer
space intended for requesting node A. Our solution is based
on the idea that security-source A could send a proxy signing
capability to destination B, which should allow B to also sign
the response on behalf of A. The resulting response bundle
would therefore be affiliated with both nodes and could use
storage space intended only for A, or in more liberal settings,
storage space intended for A or B.

We require the typical properties of such proxy signatures,
namely strong unforgeability, verifiability, strong identifiability,
and strong undeniability, as defined by Lee et al. [18].
One important requirement is that anyone should be able to
distinguish between a proxy signature and a conventional one
to verify the sender of the bundle. A standard model for proxy
signatures can be securely derived from already deployed digital
signatures schemes, for instance RSA-based signatures. The
following construction follows the Delegation-by-Certificate
Proxy Signature scheme, discussed by Boldyreva et al. [10].
Other optimized schemes have been proposed [22] and should
be chosen based on already deployed cryptographic schemes.

A. Delegation-by-Certificate Proxy Signature Scheme

Following Figure 1, a warrant ω is generated by defining
the allowed input space for the proxy signing function. The
certificate pcert defines the actual proxy signing capability,
consisting of a traditional signature by the delegating node
including its ID and public key pk together with ω. The prefixes
are added to distinguish between signatures employed in these
proxy certificates (using prefix 00), proxy signatures (using
prefix 01), and traditional signatures (using prefix 11). This
is needed to prevent chosen-message attacks [10], where one
node requests a signature of another node for a crafted message,
which can be used to forge a proxy signature. Following the
scheme, besides the actual request message, node A now also
encrypts ω and pcert and sends the signed ciphertext as a
request bundle over the network.

After verifying the signature and decrypting the content, node
B can construct a proxy signing key pskB = 〈skB , pkA, (IDB ‖
pkB ‖ ω), pcert〉. The proxy signing mechanism outputs a 5-
tuple by

PSignpskB (c2) =

〈IDB , ω, pkB , pcert , σ2 = SignskB (01 ‖ pkA ‖ c2)〉.

The response bundle includes the proxy signature Σ =
PSignpskB (c2) that signs the ciphertext and shows an affiliation
of the bundle to nodes A and B.

Nodes on the path, forwarding the bundle hop-by-hop, can
verify the signature and thus the affiliation of that bundle,
using the following checks based on the traditional verification
algorithm Verifypki (·, ·), where pki is a public key of node i.

PVerifypkA,pkB (c2,Σ) =

VerifypkA(00 ‖ IDB ‖ pkB ‖ ω, pcert)
∧VerifypkB (01 ‖ pkA ‖ c2, σ2) ∧ (c2 ∈ ω).

Concluding the example, a verification of the signature Σ would
show that node B signed the bundle with a proxy signature
from A validly. This means that the bundle is affiliated with
both nodes, where it is indisputable that B was the sending
node issuing a proxy signature on behalf of A.

IV. APPLICATION OF PROXY SIGNATURES

For our application of proxy signatures, we define different
ways of restricting the usage/validity of the proxy signature.



These are added by defining additional restrictions to be
included in the proxy certificate pcert and verified later on.

Validity restriction: This restriction consists of a timestamp,
defining the time the proxy certificate was issued and its max-
imum lifetime. Nodes on the path from source to destination
have to verify that the certificate is valid, considering the
maximum lifetime in addition to verifying the proxy signature
with PVerifypki ,pkj (·, ·).

Limited responses: Besides including and checking a
timestamp, the maximum number of allowed responses can be
defined. This requires that all nodes on the path forwarding the
bundle hop-by-hop have to keep track of the proxy certificates
using a counter of forwarded responses. The certificate would
be invalidated if the counter reached a specific limit, resulting
in an addition to a certificate blacklist. Expired certificates can
be removed from the blacklist using a heartbeat mechanism.

We will concentrate on the utilization of the validity
restriction mechanism, as it requires no additional storage
on nodes forwarding bundles.

The warrant ω can further be defined to restrict the proxy
signing capability to specific usages. Considering that the input
to PSignpskB (c2), namely c2 also contains an unencrypted
identifier of the destination that bundles are send to. For
example, if the network consists of nodes A,B,C, and D,
c2 could be defined as c2 = IDA ‖EncpkA(m2) to set bundles
destination to A. We could then restrict the usage of the proxy
signing capability by defining the warrant as

ω = {IDA ‖ x, IDC ‖ x}, whereas x ∈ {0, 1}∗,

which makes the proxy signature only valid for the destinations
A and C. Applying this, a delegating node A can restrict the
usage of the proxy signature for the proxy node B so that it
can only send the response bundle to A or C while leaving
the signature valid.

A. Application of Proxy Signatures

Signature delegation can be applied in various resources,
e.g., buffer management schemes to enhance the prioritization
of messages, when using specific communication patterns.

When operating in multiple domains, domain certificates
need to be included in bundles to show the affiliation of one
bundle to their domain, as discussed in section II-B. In addition
to the inclusion of certB∈Y , when B sends a bundle signed
with a proxy signature delegated by A, it also needs to attach
the received certA∈X . This is needed to show the affiliation
of both cooperating nodes to every other node on the path,
forwarding this bundle.

The new methods provided for using proxy signatures are
defined as follows:

Delegating signing capability: This method performs the
steps of generating a warrant ω and a proxy certificate pcert
from node A to B (cf. Figure 1).

Generating a proxy signature: Signing a ciphertext c using
the delegated signing capability, consisting of pcert and ω, is
done by invoking the function PSignpskB (c), whereas pskB is

the proxy signing key (cf. Figure 1). In addition to node B, the
proxy certificate pcert states that it also belongs to node A.

Verification of proxy signature: Verification of proxy
signatures is done by PVerifypkA,pkB (c,Σ), where pkA is the
public key of the delegating node and pkB is the public key of
the node that does the proxy signing. The domain affiliation
of the proxy signer B and the delegating node A is verified
via the domain certificates also attached to the bundle.

To counter the chosen-message attack, the traditional signing
and verification algorithms are extended through the following
techniques:

Generating a signature: The traditional signing method
is changed by prepending 11 to the ciphertext c, resulting in
SignskB (11 ‖ c).

Verification of a signature: Verification of traditional
signatures is done by VerifypkB (11 ‖ c, σ).

B. Interoperability in Heterogeneous Networks

To provide interoperability between our new methods and the
established standard [15], we need to make some adjustments.

1) It is crucial to make a distinction between traditional
signatures, proxy signatures, and proxy certificates by
using the prefixes 00, 01, and 11. As this would break
signatures generated by legacy nodes, we propose using
different hashing algorithms to differentiate between
proxy signatures/certificates and traditional signatures.
For example, we could use SHA-512 instead of SHA-
256, as originally defined by the ciphersuite PIB-RSA-
SHA256 [15]. When generating the proxy certificate
or proxy signature, the new ciphersuite with SHA-
512 is used in conjunction with the prefixes 00 or
01. Conversely, traditional signatures can keep using
the existing ciphersuite with SHA-256 without any
prefix. This would also provide a strict distinction
between signatures, because a node can only request
signatures using the ciphersuite with SHA-256, when
performing a chosen-message attack. Legacy nodes can
now ignore signatures with the new ciphersuite and PIB-
RSA-SHA256 will work as before, making the scheme
interoperable.

2) When a node without the new algorithms encounters
a proxy signature Σ and cannot verify it, there is no
signature at all. For the case when new algorithms are
deployed and legacy nodes are present, every bundle
should also include a traditional signature σ besides Σ.

V. RESOURCE MANAGEMENT USING PROXY SIGNATURES

Most resource management schemes abstract from IDs and
concentrate on queue management and message scheduling.
They provide efficient drop and scheduling policies and are not
designed to prevent attacks on the ID of nodes, e.g., pretending
to be another node or forging many new IDs (sybil attack).

Dropping policies, for example, Drop-Least-Recently-
Received (DLR), Drop-Oldest (DOA), Drop-Front (DF), and
schemes like MOFO, MOPR [23] do not utilize IDs and are,
when deployed alone, vulnerable to DoS attacks. History-Based



Drop (HBD) [4] uses IDs to maintain a history of encountered
nodes, carrying different messages with a specific state. Without
authentication, the history is vulnerable to flooding attacks by
forging many new IDs (sybil attack).

Only few resource management schemes have been proposed
to improve the overall fairness in the presence of a few nodes
overusing the network maliciously. Besides reputation and
credit-based schemes [21], Solis et al. [9] have proposed a
pre-emptive buffer management algorithm, taking malicious
insider nodes into account. When storage space exceeds its
maximum on new incoming bundles, old bundles are dropped
from the buffer by defining thresholds for each source identifier.
This paper uses buffer management schemes as an example,
but other mechanisms could also be constructed in a similar
fashion.

Considering communication patterns backed by crypto-
graphic proxy signatures, we can improve the schemes and
provide the necessary tools to provide better fairness while
preventing DoS attacks.

A. Communication Patterns

By using proxy signatures, various communication patterns
are now supported that were not possible using traditional
signatures.

One-time request-response: This pattern consists of a
request bundle and multiple, potentially fragmented, response
bundles. It basically uses one proxy certificate pcert that is valid
for a lifetime in which the requesting node expects response
bundles. The warrant ω can be defined to restrict the destination
of the response bundles to the requesting node or to a number
of nodes defined in the request bundle that should receive the
responses.

Publish-subscribe: Node A could subscribe to information
another node B generates, ranging from standardized RSS feed
to continuous sensor data. We propose issuing long-term proxy
certificates to B. These have to be pro-actively renewed in
good time by A to extend the subscription for a desired time
frame.

Two-way communication: Two nodes, A and B communi-
cate with each other. They both should issue a proxy certificate,
valid for the expected duration of the conversation, to the other
node. The proxy certificates should also be pro actively renewed
to extend the communication.

B. Integration

We propose an application of the algorithms (cf. sec-
tion IV-A) in conjunction with “fine-grained buffer manage-
ment” [9].

1) Request-Response Scenario: A node T that is located at
a gateway position (cf. Figure 2) will have to manage many
incoming bundles. Consider a request-response communication
pattern with one server node S that receives many requests by
the nodes R1, R2, and R3. Without proxy signatures, buffer
space on node T , intended for S, will reach its maximum
utilization fast, because many response bundles are sent by this
node. Proxy signatures would vastly improve the situation, as

T

R1

R2

R3 Server S

request
response

Fig. 2. Request-response scenario with requesting nodes R1, R2, R3, a
server S, and a node T in between, storing and forwarding incoming bundles

A
T

B

re
qu

est

response

DOMAIN X DOMAIN Y

Fig. 3. Request-response scenario for communication between nodes in
different domains. A ∈ X and B ∈ Y with a node T ∈ X at the border of
the domains

the requesting nodes can delegate their proxy signing capability
to S, which results in response bundles assigned to these
requesting nodes.

2) Request-Response Scenario with Domains: Considering
an example with two domains and nodes A and B communi-
cating between domains (cf. Figure 3), our idea would provide
the desired affiliation of response bundles. Node A would issue
a proxy certificate to B, providing it with the capability to
respond in its name. Bs response, crossing domains from
Y to X , can now be recognized as an intended response
affiliated with A and thus get higher priorization on nodes in X
forwarding the bundle hop-by-hop. It is important to point out
that the response bundle is also still affiliated with domain Y
and is therefore forwarded normally by nodes in Y . Real-world
domain scenarios will differ from the depicted one, as nodes
from different domains are not always geographically separated
and can also be mobile devices, resulting in highly diverse
scenarios. This scenario can also be extended straightforwardly
to support more than two domains.

C. Attack Scenarios

Below, we provide an overview over possible attack scenar-
ios, connected to misuse of proxy signatures: Node A ∈ X
delegates its signing capability to B ∈ Y and C ∈ Y using the
proposed scheme.

Misuse of signing capability: B could misuse the signature
delegation and try to flood the storage buffers of nodes in
domain X by sending many messages in the name of A.

Naïve competing nodes: When both nodes B and C are
responding in the name of A using proxy signatures at the



same time, they eventually compete for storage space that is
kept free for A by other nodes in X .

Malicious competing nodes: In addition to the scenario
above, node B could behave maliciously and send many more
bundles in the name of A, than other nodes, for instance C.
This would decrease the delivery rate of bundles from other
nodes that are sending responses to A.

As a first approximation, we could deploy a more fine-
grained buffer management scheme: The buffer on nodes
forwarding these bundles should be adaptively partitioned by
the requesting nodes (in this case A) first. Each of these storage
spaces is now again adaptively partitioned by the responding
node (B and C). Response bundles are recognized by the
attached proxy signatures instead of traditional ones. This
finer partitioning scheme could lead to a minimum ensured
delivery rate, even if nodes perform Denial-of-Service attacks.
As this finer scheme introduces more complexity, we propose
its usage only in networks in need of high DoS prevention,
such as networks connecting critical infrastructure. We argue
that in most networks, A trusts the responding nodes B and
C sufficiently, because it already defined them as bundle
destinations, whereas A does not trust nodes forwarding this
bundle hop-by-hop in most cases. Thus, the attack scenarios and
the proposed finer-grained scheme are only needed in networks
where the requesting nodes can not trust the responding ones.

VI. EVALUATION

We simulated our approach with the ONE simulator [24].
Our implementation1 consists of a threshold-based dropping
scheme, where thresholds are assigned to each source identifier
of bundles in the current storage. The thresholds are adaptively
balanced to sum up to 1, as we consider the scenario where
all nodes are part of one domain (cf. section V-B1). On new
incoming bundles, dropping candidates are chosen based on
which ones most exceed the threshold. From these dropping
candidates, the oldest one is dropped by the simulator, and the
procedure is repeated until there is enough space to store the
incoming bundle.

A. Simulation Parameters

We have done our simulation based on Helsinki city’s
central area. The Shortest Path movement model was used to
simulate 200 nodes interacting while moving at 0.5 to 1.5 m/s.
When sighted within 10 m of reach, bundles are transmitted at
250 kB/s. This approximates a Bluetooth connection and results
in short contact times. When nodes reach their destination, they
stop for 250 s before moving along.

We chose Spray-and-Wait as the routing model with the
default parameters in ONE. Thus, it is configured in binary
mode and starts with six copies of each bundle.

Every simulation is repeated 5 times with different seeds for
the pseudo random number generator and simulates 12 hours.
The standard deviations are depicted in the figures.

1Source code of our application class is available at
https://github.com/dschuermann/the-one-resource-management

B. Scenario Parameters

The implementation was used to verify the request-response
scenario considered in section V-B1, where all nodes reside
in one domain and send requests to servers that form a
small subnet. To define this subnet, 5 % of the nodes are
randomly chosen as servers and tagged accordingly. Three
types of bundles exist in the network: requests, responses, and
unidirectional bundles. Requests are always sent to one of the
servers, which answer with response bundles. Unidirectional
bundles are sent to another node of the network without
awaiting a response.

Request bundles have a size of 1 kB to 100 kB, response
bundles are between 100 kB and 1 MB, and unidirectional
bundles are between 1 kB to 1 MB, where all values are chosen
uniformly at random. The Time To Live (TTL) is set to 5 hours
before bundles are dropped by the ONE simulator. Storage
buffers on nodes are chosen to be 5 MB, while servers are
considered as devices with more storage and thus have 50 MB
storage space. Proxy signatures are simulated by introducing
a different categorization of incoming bundles that have to
be forwarded and thus stored in buffers. Instead of increasing
the threshold for the source identifier of that bundle in the
buffer management, the threshold of the destination identifier
is increased.

C. Request-Response Success Probability vs Percentage of
Generated Requests

We have conducted four main simulations to analyze
the request-response success probability depending on the
percentage of generated requests. We distinguish between
benign nodes that generate a new outgoing bundle every 1000 s
simulation time, and malicious nodes with a generation interval
of 10 s. Additionally, the probability that a node generates either
a new request that is directed to a server or a new unidirectional
bundle is parameterized differently in the four studies. When
a server receives a request, it generates a new response bundle
immediately.

1) Only Benign Nodes: The first two simulations consist of
benign nodes only. The probability of a node to generate a new
request or a unidirectional message was increased from 20 %
requests (80 % unidirectional bundles) to 100 % (only requests,
no unidirectional bundles). One simulation was conducted
using the pre-emptive buffer management algorithm [9] without
the use of simulated proxy signatures, and another with
simulated proxy signatures. The resulting request/response
success probability is presented in Figure 4a.

Without simulated proxy signatures, incoming requests and
unidirectional bundles on forwarding nodes often lead to
dropped response bundles because response bundles are often
affiliated with candidates in buffers with highly excessive
thresholds. These candidates are mostly server identifiers due to
the amount of response bundles forwarded hop-by-hop, which
are all affiliated with a few servers.

When affiliating response bundles to the destination node by
enabling simulated proxy signatures, fewer response bundles
are dropped. On nodes forwarding a bundle, incoming response



20 40 60 80 100
percentage of generated request bundles

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

re
q
u
e
st

/r
e
sp

o
n
se

 s
u
cc

e
ss

 p
ro

b
a
b
ili

ty

with proxy signatures
without proxy signatures

(a) Only benign nodes

20 40 60 80 100
percentage of generated request bundles

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

re
q
u
e
st

/r
e
sp

o
n
se

 s
u
cc

e
ss

 p
ro

b
a
b
ili

ty

with proxy signatures, benign nodes
with proxy signatures, malicious nodes
without proxy signatures, benign nodes
without proxy signatures, malicious nodes

(b) 95 % benign and 5 % malicious nodes

Fig. 4. Request-response success probability depending on the percentage of request bundles. The simulations were conducted using the pre-emptive buffer
management algorithm by Solis et al. [9] without proxy signatures as well as with simulated proxy signatures.

bundles are now assigned to the destination node and not to
one server node. This results in a higher request/response
success probability. Response bundles are now distributed
over the thresholds of the candidates that result in a more
balanced dropping behavior, as requests and unidirectional
bundles assigned to a candidate are now often dropped to make
space for incoming response bundles. Nevertheless, under high
load, there is a competition for buffer space, as the threshold of
a candidate is often already high due to several other bundles.
When only request bundles are generated (100 % case), proxy
signatures do not make a significant difference, as they do not
have to compete with unidirectional bundles for buffer space.

2) Malicious Nodes: These simulations consist of 95 %
benign and 5 % malicious nodes, who compete for buffer space.
Simulating the impact of smaller request intervals, malicious
nodes generate new requests every 10 s simulation time instead
of 1000 s. One setup was simulated with proxy signatures and
one without, as presented in Figure 4b. Comparing Figure 4a
with Figure 4b shows the impact of malicious nodes on
the request/response success probability when implemented
without proxy signatures. Without simulated proxy signatures,
malicious nodes have a higher impact on the dropping rate
of response bundles by benign nodes. As malicious nodes
send more requests, they also cause more response bundles
assigned to them that are generated by server nodes. As these
response bundles are affiliated with the server, other response
bundles, probably for benign nodes, are more often dropped
on forwarding nodes. The success probability for malicious
nodes are low in both simulations, because of their high request
generation interval of 10 s.

Changing the affiliation of a response bundle to the desti-
nation node results in better balanced thresholds and fewer
responses drops for benign nodes. Thus, especially in scenarios
with high load due to a small amount of malicious nodes,
proxy signatures can provide a method to maintain a minimum

10002000300040005000
generation interval of new requests in seconds

0.0

0.1

0.2

0.3

0.4

0.5

re
q
u
e
st

/r
e
sp

o
n
se

 s
u
cc

e
ss

 p
ro

b
a
b
ili

ty
with proxy signatures
without proxy signatures

Fig. 5. Impact of generated load on request-response success probability

amount of request/response success probability.

D. Request-Response Success Probability as a Function of the
Offered Load

We conducted two simulations to show the impact of network
load due to different generation intervals on the request-
response success probability. The basic parameters were set as
discussed before to simulate a 12 h work day. These simulations
consists of only benign nodes with a fixed 40 % probability to
generate requests. This was chosen to simulate a scenario with
enough unidirectional bundles that compete with the requests
for buffer space. The simulations were conducted with and
without simulated proxy signatures. We decreased the request
generation interval from 5000 s to 100 s to simulate different
network loads.

Figure 5 shows an improvement on the request-response



probability. The highest improvements using proxy signatures
result from generation intervals starting with 2000 s. Comparing
absolute values from the simulations, the probability that a
request is received by a server is approximately the same
for simulations with and without proxy signatures. This is
compatible with the proxy signatures method that only has
effects on response bundles in scenarios where all nodes behave
according to the protocol and send the same amount of requests.
In simulations with high generation intervals, fewer response
bundles have to compete on buffer space, which results in
fewer effects by the proxy signatures scheme.

As the scheme was done without malicious nodes, the request
generation interval is the same for every node. This shows that
our scheme improves the balancing of stored bundles even in
scenarios where all nodes behave according the protocol and
no malicious nodes are present.

VII. CONCLUSION

We proposed a way to extend the conventional single
affiliation of a bundle to an affiliation based on communication
patterns between two nodes backed by proxy signatures. This
enhances the method of managing node storage buffers based
on trust. Because no Trusted Authority is involved in the
process of proxy signature delegation between two nodes, our
scheme fits into the decentralized structure of DTNs. Using
our validity restriction scheme for the proxy certificates, no
history has to be kept, as required in other buffer management
schemes.

Our scheme could be extended in multiple ways and opens fu-
ture research avenues. Besides using Delegation-by-Certificate,
other proxy signatures were proposed in the literature [22]
that probably provide better performance. They need to be
evaluated regarding their security and could be selected based
on the specific requirements and already deployed schemes.
Basically, to provide improved prioritization of bundles in
group conversations, multiple proxy signatures, or, for better
performance, Aggregate Signature Schemes [10], could be used.
To improve the general prevention of DoS attacks, new storage
buffer management schemes could be proposed to provide finer
priority schemes, based on different trust levels, similar to the
Web-of-Trust in OpenPGP. Another issue worth investigating
further is the handling of multicast bundles using our scheme.

REFERENCES

[1] K. Fall, “A delay-tolerant network architecture for challenged inter-
nets,” in Proc. of the 2003 conference on Applications, technologies,
architectures, and protocols for computer communications, SIGCOMM

’03, Karlsruhe, Germany: ACM, 2003, pp. 27–34.
[2] L. Wood, W. Eddy, and P. Holliday, “A bundle of problems,” in

Aerospace conference, IEEE Computer Society, 2009, pp. 1–17.
[3] A. Kate, G. M. Zaverucha, and U. Hengartner, “Anonymity and

security in delay tolerant networks,” in 3rd International Conference
on Security and Privacy in Communication Networks, SecureComm
2007, 2007, pp. 504–513.

[4] A. Krifa, C. Baraka, and T. Spyropoulos, “Optimal buffer management
policies for delay tolerant networks,” in 5th Annual IEEE Communica-
tions Society Conference on Sensor, Mesh and Ad Hoc Communications
and Networks, SECON ’08., 2008, pp. 260–268.

[5] A. Krifa, C. Barakat, and T. Spyropoulos, “An optimal joint scheduling
and drop policy for Delay Tolerant Networks,” in Proc. of the Inter-
national Symposium on a World of Wireless, Mobile and Multimedia
Networks, WOWMOM ’08, Washington, DC, USA: IEEE Computer
Society, 2008, pp. 1–6.

[6] Y. Li, M. Qian, D. Jin, L. Su, and L. Zeng, “Adaptive optimal buffer
management policies for realistic DTN,” in Global Telecommunications
Conference, GLOBECOM 2009, 2009, pp. 1–5.

[7] M. Y. S. Uddin, K. Ahmed, and H. D. Jung, “Denial in DTNs,” Tech.
Rep., Jan. 2010.

[8] G. Ansa, E. Johnson, H. Cruickshank, and Z. Sun, “Mitigating
Denial of Service Attacks in Delay-and Disruption-Tolerant Networks,”
in Personal Satellite Services, ser. Lecture Notes of the Institute
for Computer Sciences, Social Informatics and Telecommunications
Engineering, vol. 43, Springer, 2010, pp. 221–234.

[9] J. Solis, N. Asokan, K. Kostiainen, P. Ginzboorg, and J. Ott, “Con-
trolling resource hogs in mobile delay-tolerant networks,” Computer
Communications, vol. 33, no. 1, pp. 2–10, May 14, 2010.

[10] A. Boldyreva, A. Palacio, and B. Warinschi, “Secure proxy signature
schemes for delegation of signing rights,” Journal of Cryptology, vol.
25, pp. 57–115, 2012.

[11] B. Lee, H. Kim, and K. Kim, “Secure mobile agent using strong
non-designated proxy signature,” in Proc. of the 6th Australasian
Conference on Information Security and Privacy, ACISP ’01, London,
UK: Springer, 2001, pp. 474–.

[12] X. Hong, “Efficient threshold proxy signature protocol for mobile
agents,” Information Sciences, vol. 179, no. 24, pp. 4243–4248, 2009.

[13] M. A. Jabri and S. Matsuoka, “Authorization within grid-computing
using certificateless identity-based proxy signature,” in Proc. of the
19th ACM International Symposium on High Performance Distributed
Computing, HPDC ’10, Chicago, Illinois: ACM, 2010, pp. 292–295.

[14] J. Leiwo, C. Hänle, P. Homburg, and A. S. Tanenbaum, “Disallowing
Unauthorized State Changes Of Distributed Shared Objects,” in In
SEC, Kluwer, 2000, pp. 381–390.

[15] S. Symington, S. Farrell, H. Weiss, and P. Lovell, Bundle Security
Protocol Specification, RFC 6257 (Experimental), Internet Engineering
Task Force, May 2011.

[16] A. Seth and S. Keshav, “Practical security for disconnected nodes,”
in Proc. of the First International Conference on Secure Network
Protocols, NPSEC’05, Boston, Massachusetts: IEEE Computer Society,
2005, pp. 31–36.

[17] W. L. Van Besien, “Dynamic, non-interactive key management for the
bundle protocol,” in Proc. of the 5th ACM Workshop on Challenged
Networks, CHANTS ’10, Chicago, Illinois, USA: ACM, 2010, pp. 75–
78.

[18] B. Lee, H. Kim, and K. Kim, “Strong proxy signature and its
applications,” in Proc. of the 2001 Symposium on Cryptography
and Information Security, SCIS’01, vol. 2/2, Oiso, Japan, Jan. 2001,
pp. 603–608.

[19] H. Krawczyk, “The order of encryption and authentication for
protecting communications (or: How secure Is SSL?),” in Proc. of
the 21st Annual International Cryptology Conference on Advances
in Cryptology, CRYPTO ’01, London, UK, UK: Springer, 2001,
pp. 310–331.

[20] D. Davis, “Defective sign & encrypt in S/MIME, PKCS#7, MOSS,
PEM, PGP, and XML.,” in USENIX Annual Technical Conference,
General Track, USENIX, Sep. 2, 2002, pp. 65–78.

[21] H. Zhu, “Security in delay tolerant networks,” PhD thesis, University
of Waterloo, 2009.

[22] M. L. Das, A. Saxena, and D. B. Phatak, “Algorithms and approaches
of proxy signature: A survey,” I. J. Network Security, vol. 9, no. 3,
pp. 264–284, 2009.

[23] A. Lindgren and K. Phanse, “Evaluation of queueing policies and
forwarding strategies for routing in intermittently connected networks,”
in First International Conference on Communication System Software
and Middleware, Comsware 2006, 2006, pp. 1–10.

[24] A. Keränen, J. Ott, and T. Kärkkäinen, “The ONE simulator for DTN
protocol evaluation,” in Proc. of the 2nd International Conference on
Simulation Tools and Techniques, SIMUTools ’09, Rome, Italy: ICST,
2009.


