
Protecting Regular Customer Traffic from

Ad-hoc Traffic in Public WLAN Hot-Spots

Jani Lakkakorpi

Aalto University, Comnet

Email: jani.lakkakorpi@iki.fi

Teemu Kärkkäinen

Aalto University, Comnet

Email: teemu.karkkainen@aalto.fi

Jörg Ott

Aalto University, Comnet

Email: jorg.ott@aalto.fi

Abstract—Mobile devices may often use WLAN hot-spots to
communicate directly with one another in a peer-to-peer fashion
without having to authenticate (and pay) for Internet access.
This ad-hoc-style communication may impede the performance
of regular Internet users’ hot-spot experience. We present how
LEDBAT (Low Extra Delay Background Transport) and its
modified version, fLEDBAT, can be used as transport protocol
between mobile devices in an infrastructure mode WLAN to
reduce the impact on regular traffic. Although promising, the
use of (f)LEDBAT may not solve all the problems arising from
high-volume ad-hoc data traffic. Active queue management at the
access point would do this but this would require controlling it.
To overcome this, we complement LEDBAT by bundle admission
control mechanisms based on the queueing delay and/or the
number of active bundle transfers as alternative approaches. Both
combined make device-to-device traffic yield to regular traffic,
which we validate through extensive ns-2 simulations.

I. INTRODUCTION

Opportunistic communication networks built between mo-

bile devices using store-carry-forward networking can enable

communication in scenarios where the use of fixed network

infrastructure is not possible or not desirable. However, direct

ad-hoc communication between devices remains challenging

due to the limitations in protocol specifications (e.g., IEEE

802.11), chipsets and mobile operating systems. One proposed

way to get around this limitation is to instrument existing,

commercial wireless LAN access points (WLAN APs) that

do not employ L2 security to serve as device-to-device link

layer packet relays. Even though the commercial APs typically

charge clients for Internet connectivity through them, it has

been shown that close to 50% of them allow connected clients

to exchange packets with each other without any input from

the users (i.e., no authentication, payment or interaction with

captive portals) [1]. Further, in addition to the commercially

deployed APs, the mobile devices themselves can act as open

WLAN APs for other devices to connect to in order to

exchange messages with each other [2], [3].

Harnessing commercial APs for ad-hoc communication

presents the immediate problem of ensuring that the device-to-

device messaging does not interfere with the traffic of clients

that pay the AP operator for Internet access; we refer to this

traffic as regular traffic. The disruption occurs since the paid

packets flowing to and from the Internet interact with the non-

paid device-to-device packets—dubbed ad-hoc traffic—at the

WLAN AP’s wireless interface queue. Initial experiments sug-

gested that using less than best effort protocols that voluntarily

scavenge only residual capacity and allow the regular traffic to

take precedence could be a feasible approach [1]. In this paper,

we study such protocols in depth. Specifically, we investigate if

and how using the (fair) less-than-best effort transport protocol

(f)LEDBAT for ad-hoc traffic will reduce the impact of these

flows on regular TCP and UDP flows in a WLAN hot-spot.

The second issue arising from the use of WLAN APs for

direct device-to-device messaging is the high offered traffic

load that this may lead to. Since WLAN APs are a broadcast

medium where every node can hear every other node, the

number of possible device pairs grows proportionally to the

square of the node count. When using delay-tolerant network-

ing [4] in such a scenario, bundles [5] are often distributed

using epidemic routing [6]. In epidemic routing each node

pair aims to synchronize their message buffers by exchanging

messages until both nodes carry the same set of messages.

Since bundles can be arbitrarily large, the total amount of

transfer capacity required to synchronize all buffers between

all node pairs in the broadcast network quickly grows beyond

the available resources. To solve this issue we propose and

evaluate admission control mechanisms that limit the total

number of parallel bundle exchanges in the WLAN AP.

The rest of this paper is structured as follows: We briefly

review opportunistic networking protocols by example in sec-

tion II. We present the use of (f)LEDBAT as transport protocol

for message exchanges in section III and introduce the bundle

admission control mechanisms in Section IV. We then describe

our simulation model used for studying the impact of these

mechanisms and discuss the findings of our simulation studies

in Section V. We conclude the paper with a brief assessment

and hint at next steps in Section VI.

II. OPPORTUNISTIC NETWORKING PROTOCOLS

The past years of research led to a number of opportunistic

networking platforms, including Haggle [7], SCAMPI [8], and

IBR-DTN [9]. The latter two are using the Bundle Protocol

(BP) [5] that defines delay-tolerant communications using

asynchronous messaging [10], and we use it as a representative

example for message transfers. The Bundle Protocol is an

internetworking layer that is mapped to specific underlying

networks (at layer 2–4) by means of convergence layers, which

offer a common abstraction from the lower layers. The actual

message transfer protocol is complemented by a neighbor



discovery mechanism, which may exploit existing services

such as Bonjour or implement some variant of Hello messages

multicast to a well-defined transport address.

Some of the convergence layers offer just minimal func-

tionality: for example, those mapping to UDP and Ethernet

offer not much beyond a defined way to encapsulate individual

bundles in a datagram or link layer frame; they do not

cater for reliability and limit the size of a bundle to the

size of the lower layer maximum transmission unit. More

sophisticated convergence layers either use more powerful

transport protocols, such as the TCP convergence layer [11],

or define such a protocol on top of the lower layers, such as

the Licklider Transmission Protocol (LTP) [12].

For mobile opportunistic communication, the common case

appears using message transfer over a reliable lower layer,

and typically TCP is chosen when using WLAN due to its

ubiquitous availability in mobile phone OSes. As described

above, when using TCP, the ad-hoc traffic of those mobile

nodes carrying out opportunistic device-to-device communica-

tion competes on even ground with the regular traffic of paying

hot-spot customers who access the Internet. This implies that

the ad-hoc users obtain their (fair) share of the network

capacity, possibly even putting the TCP connections to the

Internet at a disadvantage since the latter experience higher

RTTs. To avoid this disturbance, we explore using LEDBAT

underneath the TCP convergence layer instead of TCP.

III. (F)LEDBAT AS A BUNDLE TRANSPORT

Since we do not want our ad-hoc communication to disturb

operator’s regular traffic, we shall use LEDBAT (Low Extra

Delay Background Transport) [13] as our bundle transport

protocol. LEDBAT detects congestion based on access point

queueing delay—this is our bottleneck: all ad-hoc traffic as

well as the regular (commercial) traffic goes into this queue—

and will decrease its congestion window before packet loss

takes place. Thus, LEDBAT will always yield to TCP (and

other non-LEDBAT) traffic. However, LEDBAT has an intra-

protocol unfairness issue, known as late-comer advantage. This

means that the latest flow will get most of the resources while

the other flows starve. A solution for this problem, fLEDBAT

(fair LEDBAT), has been suggested in [14].

The congestion avoidance algorithm of LEDBAT is illus-

trated in Equation 1 and 2. We need to first estimate the current

queuing delay by subtracting the minimum delay, Dmin, from

the measured delay q(t). When we subtract our target queuing

delay, τ , from the queuing delay we obtain ∆(t).

∆(t) = (q(t)−Dmin)− τ (1)

cwnd(t+ 1) =

{

cwnd(t) + α
τ−∆(t)

τ
1

cwnd(t) if no loss,

1
2cwnd(t) if loss.

(2)

In LEDBAT, the congestion window is updated according

to Equation 2. If there is no packet loss, we shall apply the

upper part of the equation, where α is the additive increase

factor. If there is packet loss, the congestion window is halved,

just like in TCP.

Congestion avoidance in fLEDBAT (see Equation 3) is a bit

more complex than in LEDBAT. fLEDBAT introduces a new

parameter, ζ, which is used as a multiplicative decrease factor.

cwnd(t+ 1) =











cwnd(t) + α 1
cwnd(t) ∆(t) ≤ 0,

cwnd(t) + α 1
cwnd(t) −

ζ

τ
∆(t) ∆(t) > 0,

1
2cwnd(t) if loss.

(3)

We compare TCP, LEDBAT, and fLEDBAT as bundle

transport protocol with respect to bundle delivery performance

and the impact of the ad-hoc traffic on the performance of

regular traffic in section V-C.

IV. BUNDLE ROUTING AND ADMISSION CONTROL

We now turn our attention to the second issue: bundle

routing. While many different routing protocols for mobile

opportunistic networks exist (see [15] for a recent survey),

their macroscopic operation is immaterial for our purpose: we

only need to consider their small-scale operations. Specifically:

when a number of nodes “meet” in a WLAN hot-spot, to how

many neighbors will they forward their bundles?

As we assume that WLAN hot-spots always carry regular

traffic, it is important to avoid flooding, i.e., epidemic-style

routing protocols should not be used.1 For this reason, we

use protocols that limit the number of copies per message.

We start from modified binary spray and wait [16] routing

with just four forwarding tokens. In binary spray and wait,

the number of forwarding tokens is halved each time a bundle

is forwarded; the next hop gets half of the tokens. Whenever

a bundle is created at the source node or whenever a bundle

arrives at the forwarder node, the following rules are applied:

If both source/forwarder and destination nodes are within the

access point radio range (Hello messages from the destination

are received), we send the bundle directly to the destination

node (if it does not have this bundle already). After this, we

stop forwarding the bundle. If the bundle cannot be sent to the

destination node directly, we forward the bundle to a limited

number of other nodes that are within the access point range

(and do not have this bundle). If the destination node becomes

reachable later, we send the bundle directly there.

An easy solution for protecting regular traffic would be the

use of priority queueing or active queue management (e.g.,

Random Early Detection, RED [17]) at the access point. In

RED, once the exponentially averaged queue size exceeds a

minimum threshold, we start dropping random packets with

the dropping probability increasing as the averaged queue size

grows. In RIO (RED In and Out) [18], we have different packet

dropping thresholds for in-profile and out-profile packets,

which would map to regular and ad-hoc traffic. However, we

may not be able to configure the access point in any way and

thus we have to somehow limit the number of bundles that the

nodes send to each other.

1We confirmed this assumption in simulations.



We therefore define a number of simple admission control

schemes individual nodes can apply to their ad-hoc traffic.

Our first bundle admission control is based on the number of

on-going bundle transfers (parameter-based admission control,

PBAC): each node has a local limit for the number of on-

going bundle transfers. If the limit (of, e.g., five concurrent

connections) is reached, the node has to wait for one on-going

bundle transfer to complete before it can start a new one.

The aforementioned simple scheme can be made more

efficient (more statistical multiplexing) by having a common

limit (of, e.g., 30 connections) for the total number of bundle

transfers (TPBAC). We propose (see Algorithm 1) that the

number of on-going bundle transfers via the access point

should be calculated based on received Hello messages that

carry the number of on-going bundle transfers per node.

The Hello messages naturally carry the identifiers of stored

bundles, too. Hello message frequency should be rather high,

e.g., one Hello message per 500 ms.

Algorithm 1 TPBAC: Update the total number of connections

N

Hello message from node i arrives:

update the number of on-going connections for node i, Ni

set N ⇐ 0
for each i do

set N ⇐ N +Ni

end for

Bundle admission control can be measurement-based

(MBAC) as well. In this scheme, nodes learn the access point

queueing delay by pinging the AP regularly (e.g., every 500

ms). Bundle can be forwarded only if we have fresh delay

information and if the delay is below the threshold (of, e.g.,

25 ms). The queueing delay could be extracted from Hello

messages, too.

Naturally, PBAC may be combined with MBAC (MPBAC).

We could either have adaptive limits (based on delay mea-

surements) for the number of on-going bundle transfers or we

could simply run the PBAC and MBAC schemes simultane-

ously. We have chosen the latter approach.

We propose adaptive TPBAC (ATPBAC, see Algorithm 2),

where the common limit for the number of on-going bundle

transfers is adaptive. When the AP queueing delay drops below

20 ms, we increment the common limit by one and when the

queueing delay exceeds 25 ms, we decrement the common

limit by one.

We evaluate the performance of our different admission

control schemes and their impact on regular hot-spot traffic

in section V-D.

V. EVALUATION

For our simulations, we use ns-2.35 [19] with the LEDBAT

code from Dario Rossi [20] and our own implementation of

bundle-based communication. The simulation time is 2000

seconds per simulation run, and there are 10 simulation runs

per scenario across which we report the mean results.

Algorithm 2 ATPBAC: Adapt the limit L for the total number

of connections N

Hello message from any node arrives:

update the access point queueing delay D

if D < 20ms then

set L ⇐ L+ 1
else

if D > 25ms then

set L ⇐ L− 1
end if

end if

TABLE I: IEEE 802.11g simulation parameters.

Parameter Value

dataRate 54 Mbps

Propagation 2-RayGround

gSyncInterval 0.01 ms

CWMin 16

CWMax 1024

RTSThreshold 3000 bytes

ShortRetryLimit 8

LongRetryLimit 5

SlotTime 9 ms

SIFS 16 ms

Preamble 72 bits

PLCPHeader 24 bits

Parameter Value

PLCPDataRate 1.0 Mbps

BeaconInterval 100 ms

ScanType Passive

ProbeDelay 0.1 ms

MaxChannelTime 11 ms

MinChannelTime 5 ms

ChannelTime 120 ms

CSThresh 1.559e-11 W

RXThresh 3.652e-10 W

Pt 0.0372 W

freq 2407 MHz

L 1.0

A. Wireless Channel Model

We use IEEE 802.11 infrastructure mode. The IEEE

802.11g MAC/PHY settings presented in Table 1 lead to radio

range of 100 m.

Figure 1 shows our simulated network: one node in the

fixed network is connected to the access point with a link that

has a latency of 50 ms and a bandwidth of 10 Mbps. We have

an area size of 250 m × 250 m, in which ten nodes move

according to the random waypoint mobility (RWP) mobility

model (pause time: 2 s, maximum speed: 5 m/s) and six nodes

are at static positions. The mobile nodes use opportunistic

ad-hoc communication among each other, whereas the static

nodes represent regular users of a hot-spot. One node is the

access point node, located exactly in the middle (x=125 m,

y=125 m).

Fig. 1: Simulated network topology.



B. System Setup and Traffic Models

The access point downlink queue (interface queue, IFQ)

has a default size of 500 packets. This queue becomes the

system bottleneck as all traffic is routed via the access point

(B). In our simulations, we consider two types of regular

traffic: TCP traffic mimicking web page retrieval and RTP

traffic representing VoIP or Internet radio traffic. Both TCP

and RTP traffic are sent from the server node S to the static

client nodes. RTP packets get scheduling priority at the access

point, i.e., they are put to the head of IFQ. The ad-hoc bundle

traffic is sent between mobile nodes, via the AP, and it should

ideally yield to (other) TCP traffic.

One static node is receiving real-time media content from

the fixed network using RTP and one to five static nodes are

downloading web pages using HTTP. All the static nodes are

25 m away from the access point (x=150 m, y=125 m).

HTTP traffic is modeled as follows: Four Linux TCP agents

per session are used simultaneously; page requests are lognor-

mally distributed with µ = 5.9288 and σ = 0.3208. There are

31 items per page (size 9.82 KB each leading to a total page

size of 304 KB). In the original web traffic model [21], page

reading time is lognormally distributed with µ = 2.754 and

σ = 1.566; we have added a maximum reading time of 120

seconds, i.e., the distribution is now truncated.

Our RTP traffic generator uses G.711 codec with 200-

byte packets and 50 packets are generated per second as a

continuous flow without any pauses.

For our ad-hoc traffic, nodes send large files to each other

(5 MB bundles with a random destination, at random intervals,

via the access point) using (f)LEDBAT or Linux TCP as

transport protocol. We have extended Dario Rossi’s LEDBAT

code for ns-2 [20] by implementing fLEDBAT according to

[14]. Target queueing delay τ = 25ms and the additive

increase factor α = 1 are used with both LEDBAT and

fLEDBAT. In fLEDBAT, we choose the multiplicative decrease

factor ζ = 5. The bundle lifetime is 600 s.

Hello message exchange is not modeled. There are no

antipackets or bundle retransmissions. Node buffers are large

enough, i.e., there is no bundle dropping.

C. TCP vs. LEDBAT vs. fLEDBAT

We do not observe any impact on the RTP flows in any

of our simulations (and therefore they are omitted from the

figures). This is due to the RTP packets being given scheduling

priority at the access point, and as a result they experience very

low delays regardless of other traffic load. We further observe

that all the packet losses experienced by the RTP flows were

due to link layer collisions rather than due to queueing. This

indicates that real-time traffic flows that are given scheduling

priority at the AP will not be negatively impacted by the use of

the AP as a device-to-device relay regardless of the transport

protocols employed.

In the first set of simulations in Figure 2 (A-1 to A-4) we

study the impact of the ad-hoc transport protocol choice on

the regular traffic. A-1 shows that this choice has no impact on

the overall throughput, and increasing the number of regular

traffic flows reduces the overall ad-hoc traffic throughput as

the additional TCP flows claim their share of the capacity and

there is less available for the ad-hoc traffic (fLEDBAT case is

shown). A-4 shows that using TCP has a significant negative

impact on regular traffic as all the flows then compete equally

for the AP resources. Using LEDBAT instead of TCP for ad-

hoc traffic leads to significantly less disturbance on regular

traffic, while fLEDBAT has almost no negative impact on the

regular traffic. Overall we can see that, as expected, the choice

of TCP for ad-hoc traffic will significantly hurt regular traffic.

However, using (f)LEDBAT will closely match the throughput

of TCP without causing disturbance on the regular traffic.

As explained earlier, both LEDBAT and fLEDBAT are

based on observing the bottleneck queue. We therefore ex-

amine the impact of the AP IFQ by reducing its size from

500 to 50 packets (B-1 to B-4). From B-1,2,3 we can see

that this has no impact on the overall throughput of the

(f)LEDBAT flows, nor the ad-hoc traffic delivery ratios or

delays. However, from B-4 (compared to A-4) we can see

that LEDBAT has significantly more effect on the regular

traffic when the AP queue is shorter. This is due to LEDBAT

seeing lower queue delays (q(t)) on average and, given that

the rest of the protocol parameters are kept constant, the

bottleneck will appear less congested and therefore LEDBAT

will behave more aggressively. Unfortunately this seems to

indicate that LEDBAT must be carefully parametrized based

on the AP queue characteristics. Fortunately fLEDBAT is far

less sensitive to the AP queue characteristics and performs

almost equally regardless of the AP queue length.

We then validate that the results hold in more sparse scenar-

ios by increasing the simulated area to 500 m × 500 m (C-1

to C-4). Since the network is sparser, there are fewer contacts

between the nodes and the AP, and therefore the confidence

intervals (not illustrated) are larger than in the previous cases.

As expected, the ad-hoc bundle delivery ratios decrease and

latencies increase in the sparser scenario. However, the average

throughput of the ad-hoc traffic transport protocols remains the

same, and the above findings of the impact on regular traffic

still hold in the sparse case.

Finally, we examine the impact of increasing the amount of

message replication done by the routing protocol by increasing

the Spray-and-Wait token count from 4 to 8 (D-1 to D-4).

The increased amount of replication leads to lower delivery

rates (D-2 vs. A-2) and higher delays (D-3 vs. A-3) as

the marginal benefit of spending resources on transmitting

replicas decreases. However, the higher load does not lead

to significantly higher disruption of regular traffic when using

(f)LEDBAT for the ad-hoc traffic (D-4 vs. A-4).

D. Bundle Admission Control

As shown above, increasing the amount of replication by the

routing protocol leads to lower delivery and delay performance

of the ad-hoc traffic. We study this further by employing using

epidemic routing instead of binary Spray-and-Wait (Figure 3).

From A-2 and A-3 we can see that unlimited replication will

severely lower the delivery rate and increase the delay, while



1 3 5 7
4.7

4.8

4.9

5

5.1

5.2

5.3

5.4

5.5
A−1: Average LEDBAT/TCP Throughput [Mbps]

Number of Generated Bundles per Node per 1000 s

 

 

1 HTTP session, TCP

1 HTTP session, LEDBAT

1 HTTP session, fLEDBAT

1 HTTP session, fLEDBAT+RIO

3 HTTP sessions, fLEDBAT

5 HTTP sessions, fLEDBAT

1 3 5 7
74

76

78

80

82

84

86
A−2: Average Bundle Delivery Ratio [%]

Number of Generated Bundles per Node per 1000 s
1 3 5 7

40

60

80

100

120

140

160

180
A−3: Average Bundle Delay [s]

Number of Generated Bundles per Node per 1000 s
1 3 5 7

1

2

3

4

5

6
A−4: Web Page Retrieval Time [s]

Number of Generated Bundles per Node per 1000 s

1 3 5 7
4.9

5

5.1

5.2

5.3

5.4

5.5
B−1: Average LEDBAT/TCP Throughput [Mbps]

Number of Generated Bundles per Node per 1000 s
1 3 5 7

74

76

78

80

82

84

86
B−2: Average Bundle Delivery Ratio [%]

Number of Generated Bundles per Node per 1000 s
1 3 5 7

40

60

80

100

120

140

160

180
B−3: Average Bundle Delay [s]

Number of Generated Bundles per Node per 1000 s
1 3 5 7

1

2

3

4

5

6
B−4: Web Page Retrieval Time [s]

Number of Generated Bundles per Node per 1000 s

1 3 5 7
4.9

5

5.1

5.2

5.3

5.4

5.5
C−1: Average LEDBAT/TCP Throughput [Mbps]

Number of Generated Bundles per Node per 1000 s
1 3 5 7

10

15

20

25

30

35

40

45

50

55
C−2: Average Bundle Delivery Ratio [%]

Number of Generated Bundles per Node per 1000 s
1 3 5 7

200

250

300

350
C−3: Average Bundle Delay [s]

Number of Generated Bundles per Node per 1000 s
1 3 5 7

1

1.5

2

2.5

3

3.5

4

4.5

5
C−4: Web Page Retrieval Time [s]

Number of Generated Bundles per Node per 1000 s

1 3 5 7
4.8

4.9

5

5.1

5.2

5.3

5.4
D−1: Average LEDBAT/TCP Throughput [Mbps]

Number of Generated Bundles per Node per 1000 s
1 3 5 7

55

60

65

70

75

80

85
D−2: Average Bundle Delivery Ratio [%]

Number of Generated Bundles per Node per 1000 s
1 3 5 7

50

100

150

200

250

300
D−3: Average Bundle Delay [s]

Number of Generated Bundles per Node per 1000 s
1 3 5 7

1

2

3

4

5

6

7

8
D−4: Web Page Retrieval Time [s]

Number of Generated Bundles per Node per 1000 s

Fig. 2: Spray and wait. 1st row: 250 m × 250 m, 4 tokens, IFQ size 500 pkts; 2nd row: 250 m × 250 m, 4 tokens, IFQ size

50 pkts; 3rd row: 500 m × 500 m, 4 tokens, IFQ size 500 pkts; 4th row: 250 m × 250 m, 8 tokens, IFQ size 500 pkts.

(f)LEDBAT will still keep down the impact of the ad-hoc

traffic on regular traffic.

To combat this effect we propose bundle admission control

(BAC) mechanisms, which are shown in Figure 3, B-1 to B-4.

B-2 and B-3 show that all BAC mechanisms increase delivery

rates and lower the delays, with similar performance. However,

it appears that TPBAC performs the best overall, leading to

relatively high delivery rates, low delays and low disruption

of regular traffic. Active queue management (RIO) does not

improve the delivery or delay performance, but it cuts down

the disruption on regular traffic more than BAC mechanisms.

VI. CONCLUSION

Ad-hoc traffic between mobile devices in a WLAN hot-spot

quickly impacts regular traffic when TCP is used as bundle

transport protocol and leads to high web page retrieval times

as all TCP connections are equally aggressive. Using LEBDAT

and especially fLEDBAT as bundle transport protocol helps al-

leviating this problem to some extent. However, as the number

of (f)LEDBAT connections grows due to concurrent transfers

of many bundles, controlling the IFQ length at the access

point becomes increasingly difficult because new (f)LEDBAT

connections might obtain higher base delay estimates as the



1 3 5 7
4.4

4.6

4.8

5

5.2

5.4
A−1: Average LEDBAT/TCP Throughput [Mbps]

Number of Generated Bundles per Node per 1000 s

 

 

1 HTTP session, TCP

1 HTTP session, LEDBAT

1 HTTP session, fLEDBAT

1 HTTP session, fLEDBAT+RIO

3 HTTP sessions, fLEDBAT

5 HTTP sessions, fLEDBAT

1 3 5 7
20

30

40

50

60

70

80

90
A−2: Average Bundle Delivery Ratio [%]

Number of Generated Bundles per Node per 1000 s
1 3 5 7

50

100

150

200

250

300

350

400

450
A−3: Average Bundle Delay [s]

Number of Generated Bundles per Node per 1000 s
1 3 5 7

1

2

3

4

5

6

7

8

9

10

11
A−4: Web Page Retrieval Time [s]

Number of Generated Bundles per Node per 1000 s

1 3 5 7
4.7

4.8

4.9

5

5.1

5.2

5.3

5.4
B−1: Average LEDBAT/TCP Throughput [Mbps]

Number of Generated Bundles per Node per 1000 s

 

 

1 HTTP session, fLEDBAT

1 HTTP session, fLEDBAT+RIO

1 HTTP session, fLEDBAT+MBAC

1 HTTP session, fLEDBAT+PBAC

1 HTTP session, fLEDBAT+MPBAC

1 HTTP session, fLEDBAT+TPBAC

1 HTTP session, fLEDBAT+ATPBAC

1 3 5 7

30

40

50

60

70

80

90
B−2: Average Bundle Delivery Ratio [%]

Number of Generated Bundles per Node per 1000 s
1 3 5 7

50

100

150

200

250

300

350

400

450
B−3: Average Bundle Delay [s]

Number of Generated Bundles per Node per 1000 s
1 3 5 7

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

B−4: Web Page Retrieval Time [s]

Number of Generated Bundles per Node per 1000 s

Fig. 3: Epidemic routing: 250 m × 250 m, IFQ size: 500 pkts. Bottow row: bundle admission control schemes.

IFQ is never empty. Without modifying the AP, the mobile

devices themselves have to constrain the generated traffic.

Limiting the number of (f)LEDBAT connections can be

achieved by using less aggressively replicating DTN routing

protocols (to minimize the total incurred load in the first place)

together with a bundle pacing mechanism. For the latter, we

find that bundle admission control is a feasible approach to be

implemented easily only at the mobile nodes.

Together these mechanisms ensure that the ad-hoc traffic

has only a minor impact on the regular TCP traffic. Since

regular RTP traffic is treated preferentially at the access point,

it does not suffer at all. Avoiding such disturbance is key to

providing an incentive to WLAN hot-spot operators (and thus

AP manufacturers) to still tolerate ad-hoc traffic in the future.

While our findings from this paper are promising, further

work with more sophisticated setups and also real-world exper-

iments constitute next steps to understand if these mechanisms

can deliver in practice.

ACKNOWLEDGMENTS

This work received funding from the Academy of Finland

in the RESMAN project (grant no. 134363) and from the

European Community’s Seventh Framework Programme under

grant agreement no. 258414 (SCAMPI).

REFERENCES

[1] T. Kärkkäinen, M. Pitkänen, and J. Ott, “Enabling ad-hoc-style commu-
nication in public wlan hot-spots,” in Proc. of the 7th ACM workshop

on Challenged Networks, CHANTS, 2012.
[2] S. Trifunovic, B. Distl, D. Schatzmann, and F. Legendre, “WiFi-Opp:

Ad-Hoc-less Opportunistic Networking,” in Proc. of ACM MobiCom

CHANTS workshop, Sep 2011.
[3] H. Wirtz, T. Heer, R. Backhaus, and K. Wehrle, “Establishing Mobile

Ad-Hoc Networks in 802.11 Infrastructure Mode,” in Proc. of ACM

MobiCom CHANTS workshop, Sep 2011.

[4] “Delay Tolerant Networking Research Group.” http://www.dtnrg.org.
[5] K. Scott and S. Burleigh, “Bundle Protocol Specification.” RFC 5050,

November 2007.
[6] A. Vahdat and D. Becker, “Epidemic routing for partially connected ad

hoc networks,” tech. rep., Duke University, April 2000.
[7] J. Scott, P. Hui, J. Crowcroft, and C. Diot, “Haggle: A Networking

Architecture Designed Around Mobile Users,” in Proceedings of IFIP

WONS, (Les Ménuires, France), January 2006.
[8] T. Kärkkäinen, M. Pitkänen, P. Houghton, and J. Ott, “Scampi applica-

tion platform,” in Proc. of ACM MobiCom CHANTS workshop, 2012.
[9] J. Morgenroth, S. Schildt, and L. Wolf, “A bundle protocol implemen-

tation for android devices (demo),” in Prof. of ACM MobiCom, 2012.
[10] K. Fall, “A Delay-Tolerant Network Architecture for Challenged Inter-

nets,” in Proc. of ACM SIGCOMM, 2003.
[11] M. Demmer, J. Ott, and S. Perreault, “Delay Tolerant Networking TCP

Convergence Layer Protocol.” Internet Draft draft-irtf-dtnrg-tcp-clayer-
06.txt, Work in Progress, May 2013.

[12] M. Ramadas, S. C. Burleigh, and S. Farrell, “Licklider Transmission
Protocol – Specification.” Internet RFC 5326, September 2008.

[13] G. Carofiglio, L. Muscariello, D. Rossi, and S. Valenti, “The quest for
ledbat fairness,” in GLOBECOM, (Miami, FL, USA), December 2010.

[14] G. Carofiglio, L. Muscariello, D. Rossi, C. Testa, and S. Valenti,
“Rethinking low extra delay backtround transport protocols,” tech. rep.,
Telecom ParisTech, 2010.

[15] Y. Cao and Z. Sun, “Routing in Delay/Disruption Tolerant Networks: A
Taxonomy, Survey and Challenges,” IEEE Communications Surveys &

Tutorials, vol. 15, 2012.
[16] T. Spyropoulos, K. Psounis, and C. Raghavendra, “Spray and wait: an

efficient routing scheme for intermittently connected mobile networks,”
in ACM SIGCOMM Workshop on DTN, (Philadelphia, PA, USA), 2005.

[17] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Trans. Netw., vol. 1, no. 4, 1993.

[18] D. D. Clark and W. Fang, “Explicit allocation of best-effort packet
delivery service,” IEEE/ACM Trans. Netw., 1998.

[19] S. McCanne and S. Floyd, “Network Simulator - ns (version 2).” http:
//www.isi.edu/nsnam/ns.

[20] D. Rossi, “Ledbat module for ns-2.” http://perso.telecom-paristech.fr/
∼drossi/index.php?n=Software.LEDBAT.

[21] M. Molina, P. Castelli, and G. Foddis, “Web traffic modeling exploiting
tcp connections’ temporal clustering through html-reduce,” Network,

IEEE, vol. 14, no. 3, pp. 46–55, 2000.


