
(Deployable) Reduction of Multicast State
with In-packet Bloom Filters

Petri Jokela, Heikki Mahkonen
Ericsson Research, NomadicLab

Kirkkonummi, Finland

Christian Esteve Rothenberg
University of Campinas (UNICAMP)

Campinas, São Paulo, Brazil

Jörg Ott
Aalto University Comnet

Espoo, Finland

Abstract—Recent developments in networking technology
have enabled massive media distribution in the Internet. However,
bandwidth is still a limited resource and unicast-based media dis-
tribution from a single source to multiple receivers is inefficient.
Multicasting provides traffic replication closer to the receivers
allowing more efficient data distribution.

IP multicast can be used for distributing data streams in IP
networks, but the bandwidth saving comes at the cost of increased
state in the network routers. The amount of state is directly
dependent on the number of multicast groups in use. In this
paper, we show how in-packet Bloom filter (iBF) multicast can
be used to reduce multicast state in the network. The deployment
can be done gradually: during the migration phase, a single
AS can replace IP multicast with proposed iBF-based solution
without affecting the rest of the network, and take advantage of
the reduced state in its core routers.

I. INTRODUCTION
The network usage has changed since the dawn of the

Internet as substantial advances in networking technology have
enabled new and more diverse applications. Today’s Internet
performance allows transmitting high-quality audio and video
streams over the net. In a typical live media transmission
case, a stream is delivered to multiple receivers simultaneously.
This dissemination mostly happens via massive fan-outs of
unicast connections because network layer multicasting is not
widely deployed or enabled – beyond possibly intra-provider
IPTV streaming or overlay P2P networks [?]. This makes
the media delivery inefficient from the network point of view
since the data has to be sent repeatedly over the same links.
The need for an efficient multicast solution is obvious. In
the current Internet, multicast can be implemented either at
the IP layer with IP multicast [1], or with different kinds
of application layer solutions [2], such as P2P overlays [?].
Some future networking architectures, e.g., PURSUIT [3], are
also considering multicast as the elementary scheme for data
transmission.

Application layer multicast protocols [2] use unicast con-
nections to deliver traffic across routers supporting application
layer multicast. At each such multicast router, data packets are
replicated at the application layer if necessary, and sent to the
next hop router(s) over separate unicast connections, in essence
forming an overlay somewhat similar to the early Multicast
backbone (Mbone). IP multicast [1], in contrast, replicates the
data at the branching routers at the IP layer. This mechanism
is faster than application layer multicast, but requires on-path
router support. While IP multicast establishes state for each
group in all routers spanning the multicast tree, application
layer multicast limits state creation to a subset of routers.

LIPSIN [4] proposes a new packet forwarding mechanism,

which is not dependent on global addressing and routing
scheme. Packet forwarding is based on source routing, using
on-path link identifiers. To save space and provide a constant
length header for packets, link identifiers are compressed using
Bloom filters [5]. To take a forwarding decision, a router
checks which (if any) of its outgoing links are included in
the Bloom filter in the packet. Since the routing information
is stored in the packet instead of the routers, the routers can
be considered to be nearly stateless.

In this paper, we propose an incremental deployment
scenario for the in-packet Bloom filters (iBF). The main idea
is to replace IP multicast with iBF forwarding, e.g., inside a
single domain, managed by one operator. The iBF multicast
is transparent to IP multicast in the neighboring networks. In
contrast to commercial P2P tree-based or mesh-pull streaming
services [?], iBF multicast is delivered as an in-network
data distribution service. We investigate three alternative ap-
proaches, utilizing the same basic iBF forwarding, but with
slightly different mechanisms to maintain the state.

We carry out extensive simulations and compare the results
with IP multicast in terms of state requirements. We also
examine the forwarding efficiency of iBF: since Bloom filters
are probabilistic data structures and may yield false positives,
additional packet replicas may be created in the network. Our
simulation results show that the proposed solutions make more
efficient usage of the network resources than IP multicast.

The rest of the paper is organized as follows: In Section
2, we describe the multicast protocols related to this work.
In Section 3, we present our solution for reducing state in
the network and Section 4 evaluates the solution. Section 5
concludes the paper and gives future work directions.

II. BACKGROUND
Numerous multicast solutions were proposed in the past, all

of them aiming at utilizing network resources more efficiently.
It is hard to achieve optimal performance, because the network
has originally been designed for unicast communication. In this
background section, we limit the discussion to those protocols
closely relevant for our work.

A. IP Multicast
Deering introduced the idea of IP multicast in the late

1980s [1]. IP multicast replicates packets at the IP layer
according to multicast routing tables without the need for
higher layer interactions. The forwarding procedure is also
relatively fast. Further multicast routing protocols such as
DVMRP [6] and MOSPF [7] were developed early on to
populate multicast routing tables.

Protocol Independent Multicast (PIM) is a multicast routing
protocol family with multiple operation modes, of which PIM
Sparse Mode (SM) [8] is the most popular today. In PIM
SM, the multicast tree is built based on requests from the
clients willing to receive multicast traffic. Clients send join
requests towards a rendezvous point for the group to which
also the sources register. The routers on the path set up the
required forwarding state for delivering data packets towards
the clients. When a client wants to leave the multicast group, it
sends a leave message towards the source. Routers on the path
remove the corresponding multicast group state and forward
the message further, if the router does not have any receivers
left for that multicast group.

Originally, IP multicast groups were identified solely using
a group identifier G. This mode is called Any Source Multicast
(ASM), because all nodes can send data to that group. The
data is delivered to all clients that joined that multicast group.
The group identifier is denoted with (∗, G), where the asterisk
stands as a wildcard for any source. In this case, G must be
globally unique (even though scoped identifiers exist [?]).

In Source Specific Multicast (SSM) [9], the group identifier
is created from the IP address of the source node (S) and a
Group ID (G), where the G identifies the group at the source
node. The multicast group is denoted with (S, G) as a globally
unique identifier for the group. Using the source IP address
as part of the identifier prevents other nodes sending to the
same group and provides a natural rendezvous point for join
and leave messages. Only packets carrying the correct source
and destination group addresses (S, G) are forwarded in the
network.

In our work, we choose PIM SM and SSM as the IP
multicast solution, to which we compare the in-packet Bloom
filter based solution.

B. In-packet Bloom Filter Forwarding
IP routing is based on maintaining state information in the

network routers. Each router has a routing table, describing
the next hop for each of the incoming packets. The growth
of the IP routing tables [10] has created a need for solutions,
reducing the amount of the required routing information.

One alternative for routing packets in the network is to
use source routing. The sending host determines the path that
the packet must take and inserts the list of the nodes on the
path in the packet header. This mechanism moves some of the
forwarding state to the packet itself, and, at the same time,
makes the packet header longer. 1

Bloom filters can be used to store information in a small,
fixed-size space. This property, combined with source routing
mechanism, creates interesting possibilities for packet routing.
In the following, we present the basic iBF based forwarding
idea, utilizing Bloom filters and source routing based upon link
identifiers.

1) Bloom Filter: A Bloom filter (BF) is a probabilistic data
structure. It is used to store membership information of data
items in a fixed-size filter. A BF is an m-bit long bit-string,
where all bits are initially set to zero. Inserting a data item
into the filter, starts by hashing the data with k different hash
functions, resulting in k index values in the range [0..m-1].
Each of the indexed k bits are set to one in the BF. The

1It also requires the sender to obtain knowledge of the entire path to the
receiver.

Fig. 1. In-packet Bloom filter forwarding [4]

procedure is repeated for all data items in the set. If the bit
value at position k of the filter is already one, it remains
unchanged.

Once all the items from the set have been inserted in the
filter, it can be used for verifying if a certain data item belongs
to the set. The verified data item is hashed with the same k
different hash functions, resulting in k values. If all the Bloom
filter positions, indexed by these calculated values, are one,
the data item is assumed to be in the set. If any of the bits is
zero the data item is not part of the set.

The probabilistic nature affects the result accuracy. The
verification operation may give a positive answer without a
correct match: a false positive. The more elements the filter
contains, the higher the probability of false positives becomes.
Depending on the usage of the filter, this may be a manageable
situation. False negatives cannot occur with Bloom filters, i.e.,
if the verification returns a negative result, the item does not
belong to the set.

A Bloom filter does not contain information about the
number of data items that have affected to a certain bit at
location k. This makes it impossible to remove items from
the filter. Since the introduction of Bloom filters, various
enhancements were proposed for it, e.g. for removing items.
One of those is the counting Bloom filter [11]. In a counting
Bloom filter, each position in the filter is actually represented
by a counter instead of a single bit. When an item is added to
the filter, the counter value is increased at each of the k index
points. During verification process, all bit locations having
value greater than zero, are considered to be one. When an
item is removed, each indexed k counters are decreased by
one. If the value goes to zero, the corresponding bit in the
Bloom filter becomes zero.

2) In-packet Bloom Filters: This probabilistic multicast
technique [4] has been proposed as a forwarding fabric for
the Information Centric Networking (ICN) architecture in the
PURSUIT [3] project. iBF enables fast forwarding decisions
in routers and requires no per-flow state in the network.

The iBF forwarding mechanism is not tied to ICN prin-
ciples and can also be used in other network environments.
For example, Multiprotocol Stateless Switching (MPSS) [12]
introduces iBF forwarding in the MPLS network, simplifying
the forwarding, especially in the multicast case. In optical

routers, iBF can be used to achieve more efficient packet
forwarding directly on the optical layer, without the need for
Optical-Electric-Optical (O-E-O) conversion [13].

iBF forwarding does not rely on globally routable ad-
dresses. Instead, all links between two nodes are identified
using a Link Identifier (LID). A LID is an m-bit long bit string,
with k bits set to one, where k � m. Typically, m=256 and
k=5. This makes the LID similar to a data item in Bloom filters,
where the k different hash functions have been run over the
data and the corresponding index values have been generated.
In our simulations, the LIDs are generated randomly. It is
possible to achieve better results by optimizing the LID values
in the network, but the larger the topology is, the harder this
is to implement.

The iBF packet forwarding is based on source routing,
where all the required forwarding information is included in
the header of the packet. A multicast tree consists of a set
of interfaces, that the packet needs to pass. All the LIDs of
the links forming a multicast tree are collected and combined
in the iBF by using logical OR operations. This is similar to
inserting a new data item in the Bloom filter.

In the proposed forwarding fabric [4], the Topology Man-
ager (TM) is responsible for collecting and maintaining the
network topology information. The TM can be implemented,
for example, based on similar principles as OSPF, or by using
a centralized manager, such as PCE [14]. The TM creates
a delivery tree after receiving a request and calculates the
corresponding iBF. The iBF is further delivered to the data
source node, which sets the iBF to the data packet header and
sends the packet to the network.

The Topology Manager can be replaced with other mech-
anisms, such as collecting the forwarding iBF en route. In a
(multicast join request) packet, a new m-bit field is added and
initialized to zero. Each router on the path adds the LID of the
interface from where the packet arrived to the collector field
by logically ORing it with its content. Once the packet arrives
to the destination, the collected field has reverse path iBF that
can be used for data delivery.

Figure 1 shows the packet forwarding process in the iBF
network. When a packet arrives to an iBF router, it verifies
all its LIDs on its outgoing interfaces with the iBF in the
packet header. The router logically ANDs the LID with the
iBF, and if the result equals the LID, the packet is sent out
from that interface. Multicast is an inherent property of iBF
forwarding, and is implemented simply by adding LIDs of
multiple outgoing interfaces of a single router to the iBF. When
the router makes the forwarding decision, it sends the packet
out on all the matching interfaces.

As discussed in the Bloom filter section, the verification
process may return a false positive answer. If this happens
during matching of interface LIDs, the packet is falsely for-
warded out of the corresponding interface. In our simulations,
we calculate the false routing decisions and determine the for-
warding efficiency value. The forwarding efficiency describes
the share of data transmission over links, that are needed for the
data to reach all the destinations, compared to the total number
of transmissions over links. I.e. if the forwarding efficiency is
97%, it means that 3% of the transmissions over links are due
to false positives and not required for data delivery.

III. IBF MIGRATION SCENARIO
Replacing the old Internet forwarding mechanism with a

new one is challenging. When the new system requires changes
on end-hosts as well as on all the routers, the deployment
burden is high. Internet-wide deployment overnight is impossi-
ble, leaving incremental deployment as the only way forward.
Such gradual deployment must allow adopting operators to
take advantage of the new technology, without affecting packet
forwarding in the rest of the Internet.

A. Preconditions
In this paper, we propose replacing IP multicast partially

with iBF, within a single domain. The purpose is to offer some
immediate benefit to the deploying operator compared to using
IP multicast. The iBF multicast area must be transparent to
the surrounding IP multicast in the neighboring domains. The
edge nodes must handle the IP multicast signaling messages
and perform correct conversions between the different types
of networks.

Instead of using a Topology Manager (as one would
in a clean-slate environment), we take advantage of the IP
multicast-based signaling also for controlling operation in the
iBF network. We simply piggyback the additional control
information for the iBF network on the IP multicast con-
trol messages. This has some disadvantages compared to a
Topology Manager-based solution: firstly, IP routing does not
necessarily yield optimal routing and hence no optimization
for the iBF forwarding tree and, secondly, we have to assume
that IP routing is stable and delivers the signaling messages
always using the same route, so that join and leave operations
can be used to properly manage iBF delivery trees. We note
that this choice only adds piggybacking to control messages
and does not affect the actual multicast data delivery.

To estimate the amount of state in a real world scenario, we
use the Shoutcast web site as an example. Shoutcast.com [15]
provides access to different Internet radio stations. In addition,
the site lists the number of listeners for each of the stations.
Figure 2 shows a snapshot of a number of Internet radio station
listeners with the number of stations grouped with resolution
of hundred listeners. We observe that most of the radio stations
have only a small number of listeners.

If all the stations were delivered using IP multicast, the
amount of state would be high due to the number of different
groups. In other words, there would be a lot of state in the
network, but each added piece of state would serve only a
few listeners. With large radio stations, the situation would
be different since it is more likely that added state would
serve more clients: in this case, multicasting would offset its
cost in terms of state by eliminating lots of redundant data
transmissions from the network that would be required for
unicast delivery.

In contrast, iBF packet forwarding provides best per-
formance when the number of receivers is not very large.
Typically, the more receivers a multicast group has—and thus
the more LIDs have been inserted in the forwarding iBF—
the more false positive routing decisions are made in the
network. Therefore, the efficiency is lower when the number
of destinations per group increases.

B. Replacing IP Multicast with iBF
1) Network setup: Figure 3 depicts the basic scenario

for placing an iBF forwarding network between IP multicast

N
um

be
r

of
 M

C
 g

ro
up

s

Number of listeners

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000

Fig. 2. Distribution of the number of listeners (receivers) per radio
stations (modeled as multicast groups) of the popular Shoutcast.com streaming
service [15] (May 25, 2012)

Fig. 3. IP multicast with iBF support

networks. The iBF network is connected to the IP multicast
networks via gateway nodes. These gateway nodes can act
either in Source Edge (SE) and Destination Edge (DE) roles
or in both roles simultaneously. The SE function resides on
the edge, behind which the IP multicast source is located.
Similarly, the DE function operates on the client side edges.

The SE function is responsible for mapping incoming IP
multicast traffic to the iBF network traffic and delivering
packets further to the iBF network. It maintains a mapping
between each IP multicast group (S, G) and a corresponding
iBF, defining the delivery tree for that particular group inside
the iBF network. At the SE, the IP multicast group (S, G)
defines unambiguously the tree on the iBF side. The iBF is
added to the packet header, keeping the original packet intact.
The DE node is responsible for removing the iBF header, and
sending the traffic from the iBF network into the IP multicast
network. The SE and DE functionality can also be in core
routers to support IP multicast clients or servers in the local
network.

2) Joining the multicast tree: Figure 4 depicts the pro-
cedure for creating the iBF for relaying traffic between the
SE and DE routers. When an IP multicast join message for
multicast group (S1, G1) arrives at the DE router, the router
adds two additional iBF fields in the header: iBF collector
and DE identifier. The DE sends the join message further to
the next-hop iBF-capable router. The procedure is repeated for

Fig. 4. Creating iBFs

Fig. 5. iBF mappings at the SE node

each multicast group. If additional joins arrive at the DE node
for the same multicast group, the IP multicast function at the
DE notices this and does not send the join message further.

The join message is routed through the iBF network using
IP routing. Each iBF router on the path adds the LID of the
receiving interface to the iBF collector field in the header. The
LID is added by logically ORing it with the existing content
of the field.

Finally, the join message arrives at the SE node. The SE
removes the added iBF fields from the header. The SE uses
this information for mapping the (S, G) multicast group to the
multicast tree on the iBF network. Finally, the SE sends the
join message further towards the actual multicast source node
in the legacy IP network.

The SE can store (S, G) to iBF multicast tree mappings in
different ways. As described in Section II-B1, it is not possible
to remove items from a basic Bloom filter. This feature is,
however, required for iBF multicast trees: there must be a
possibility to remove destinations from the tree when clients
leave the multicast group. This affects the design of the SE
node tables, for which we present three alternative ways for
the implementation:

Tree-based iBFs: The SE maintains a single multicast
group (S, G) to iBF mapping (see Figure 5a). All individual
iBFs received in the join messages from the DE nodes and

containing the path information from the SE to the DE are
logically ORed into the corresponding iBF. Thus, when a new
DE sends a join message, a new path is added to the (S, G)
mapping. As this solution does not allow removing DEs from
the tree directly, we describe an alternative way for the leave
process is described also for this tree-based approach in the
next subsection.

Path-based iBFs: When the SE receives a join message
from a DE, it creates a mapping from the DE identifier to
the path iBF, leading from the SE to the DE (Figure 5b). If
a previous join message has arrived from the same DE for
another multicast group, the corresponding mapping already
exists, and a new one is not needed.

To create the iBF trees for each multicast group, another
mapping table is required. This table contains the mappings
from each (S, G) group to all the DE nodes that have joined
the multicast group. The SE can calculate the iBF for the tree
using the corresponding DE to iBF mappings whenever the set
of DEs changes.

Counting iBFs: Using counting Bloom filter at the SE node
allows removing entries from the tree iBF. This solution is
similar to the Tree-based iBF solution, but each of the Bloom
filter bits is in fact represented by a counter. Instead of just
ORing the incoming iBF to the existing iBF of the tree, for
each location where the incoming iBF has a bit set to one, the
counter value of the corresponding bit in the iBF of the iBF
tree in incremented.

A Counting iBF does not add to the amount of state at
nodes inside the network nor in the packet headers, but the
required space for the state at the SE node increases. For
example, using a 4-bit cell configuration [16] would increase
the required space for the iBF m = 256 from 256 bits to 1
Kbit.

3) Leaving the multicast tree: The DE has to be removed
from the SE’s mapping table, when all IP clients behind it have
left the group. Once a DE leaves, the SE has to recalculate
the iBF using information from the active DE nodes. We first
present two alternative ways to do this with tree-based iBF.

To inform the SE node that it has no more listening clients,
a DE node forwards the last IP multicast leave message to the
SE node, which now has to recreate the iBF without that DE
node. The SE node sends a request message, requesting the
DEs to re-join for the (S, G), using the iBF that is mapped to
the (S, G) for which the leave message arrived. The request is
thus delivered to all DE nodes associated with the (S, G). All
DEs, with active receivers will respond with a join message,
collecting the corresponding path iBF. Once the joins have
arrived at the SE, it can recalculate the iBF for the active DEs
and send further data using the updated iBF.

Another alternative is to allow the DE nodes to send the
join messages periodically for all the active (S, G) groups.
Thus, the SE can recalculate the iBF for the iBF tree peri-
odically. There is no need for the DEs to send any joins for
updated iBF information.

In all cases, the SE has to receive a leave message from
all DEs when they do not have clients any longer. Once all
the DEs have left, the SE has to send the leave towards the
IP multicast source to inform that it does not want to receive
multicast traffic for that group any more.

For path-based iBFs, the removal process is simpler. When
the leave message arrives from the DE node, the SE can

Fig. 6. Virtual Path Setup

remove the DE from the mapping table for that particular
(S, G) multicast group (Figure 5 and recalculate the iBF for
the tree. There is no need to update the SE to DE iBF mapping
table.

The leave process is simple also for the counting iBF solu-
tion. An iBF collector field is added to the leave message, and
the iBF path is collected, just like with the join message, when
the packet is delivered to the SE. The receiving SE removes
the collected iBF from the corresponding (S,G) mapping table
by decrementing each counter for which which the collected
iBF has one in the bit field.

4) Data delivery: For the incoming multicast traffic, the
SE retrieves the active iBF for the iBF tree and encapsulates
the packet with iBF header. Using the basic iBF forwarding
described in Section II, the data packet is delivered to the
destination DE nodes. Each DE decapsulates the packet and
sends it towards the clients. If the packet arrives at the DE due
to false positive, there is no state for that (S, G) pair at the
DE node, and the data packet is discarded.

C. Virtual paths
As an attempt to reduce the number of false positive for-

warding decisions, we utilize the virtual tree concept, defined
in [4]. A virtual tree is a multicast delivery tree, that has a
unique Virtual LID (VLID) value, which is configured on each
of the interfaces along the delivery tree. Adding a virtual tree
adds one piece of state in each of these interfaces.

Creating optimal virtual trees in the network is not trivial.
When new trees are introduced, the existing trees should be
verified and new trees created so that the state increase is
minimal. Instead of using full trees, we establish a virtual tree
only between two edge nodes. We refer to these trees as virtual
paths. Each virtual path adds one piece of state in each router
on the path. Only one virtual path VLID is needed for each
SE–DE pair, and the same VLID can be reused for all multicast
groups using that path.

Figure 6 shows the virtual path setup process. The SE can
initiate the process after receiving a join message by sending
a VIPS REQ message to the DE (Fig 6, messages 5 and
6). The DE creates a VLID for the virtual path, prepares a
VIPS SET message, and sends it back to the SE (message 7).
Each router on the path sets the VLID as an additional link
identifier on the incoming interface (receivers of messages 7
and 8). Once completed, the virtual path between SE and DE
has been established.

IV. EVALUATION
We evaluated the proposed iBF migration solution using

the ns-3 network simulator [17]. During the simulations, we
concentrated on the amount of state in the network nodes. Each
piece of state requires a different size of storage, depending,
e.g., on the address size. Thus, we estimated also the required
amount of memory in different scenarios.

A. Network Node State
The evaluated solutions behave differently and create the

needed state in different nodes. For example, the tree-based
iBF solution creates state only on the edge routers, while IP
multicast needs state in every router belonging to the delivery
tree. Thus, it is not feasible to focus on the amount of state
on some particular node. Instead, we calculate the total state
maintained in the network. In the simulations, we count each
piece of state as one, not considering the bytes consumed.

In this section, we present the theoretical basis for calculat-
ing the amount of state in the network nodes. In the equations,
we see the various aspects of the method under investigation.
The equations do not count any state for the outgoing traffic
at the DE function because the required state is the same for
all the solutions: a DE requires only the IP multicast state
needed to deliver packets to the next hop IP multicast nodes
in neighboring networks.

Equation 1 shows the state count for IP multicast. In the
equation, g is the number of multicast groups and ti is the
number of core routers that are part of the delivery tree,
excluding the edge routers. The first term in the equation gives
the core router state and g is directly the amount of state in
the SE nodes.

StateMulticast =
g∑

i=1

ti + g (1)

For path-based and tree-based iBF multicast, the forward-
ing nodes do not keep any additional state. For tree-based
iBFs, only a single mapping between the incoming IP multicast
group and the outgoing iBF is needed on the SE routers (see
Figure 5a.). Equation 2 gives the amount of state for this
solution, and the only term is the number of groups.

StateiBF−tree = g (2)

For path-based iBFs, the situation is slightly more complex,
as was shown in Figure 5b. Equation 3 shows the state
requirement for path-based iBFs. The first term describes the
number of mappings between (S, G) and DEs. The second
term, in turn, gives the amount of state at the SE routers for
the DE to iBF mappings. EDi is the number of DE nodes at
the SE node i, including all the groups, ci is the number of
destination edge routers for group i, and ES is the number of
active SE nodes.

StateiBF−path =
g∑

i=1

ci +
Es∑

i=1

EDi (3)

Finally, equation 4 shows the amount of state for the virtual
path enhanced iBF multicast. The only difference to the path-
based iBF is the third term in the equation, describing the
nodes having the VLID set. pij gives the number of routers
on the path from SEi to DEj.

StateV LID =
g∑

i=1

ci +
Es∑

i=1

EDi +
Es∑

i=1

EDi∑

j=1

pij (4)

In tree-based solution, the state saving comes with the
cost of added signaling, when a DE is leaving the group.
In all cases, the DE must inform the SE about leaving the
group, and if that is the last DE leaving, the SE must send
the leave message to the IP network, towards the source
node. However, considering that the DE node leaving does
not happen very often, or it can be time limited, the amount
of required signaling messages is low compared to, e.g., the
transmission of a video stream.

In addition to the amount of state, we calculate the overall
state reduction ratio. This indicates the percentage of state
reduction relative to IP multicast.

B. Simulator
The iBF packet forwarding simulator was implemented in

the PSIRP [18] project for ns-3 [17], version 3.6. We enhanced
the original iBF simulator with the functionality specified in
Section III.

Due to the missing IP multicast functionality in ns-3, the
required functions and packet structures were implemented.
To simulate the IP multicast source and receiver nodes, we
modified the ns-3 UDP echo server and client software. The
client and server applications were handling the sending of join
messages, as well as the data traffic in the IP based nodes. In all
iBF nodes, we implemented the statistics collecting operations
for calculating the number of IP multicast groups, VLIDs, as
well as false positive routing decisions that were made in the
network.

The edge routers are responsible for the conversion be-
tween the two forwarding technologies. The IP multicast join
message is the key signaling message used to create the
required forwarding information in the iBF network. Thus, the
join message handling was implemented at the edge routers,
as well as at the iBF forwarding nodes. The edge routers
implement the required traffic mapping information functions,
and the core routers the required iBF collecting operations.

C. Performed simulations
We selected the Rocketfuel [19] AS6461 topology for

evaluating the different multicast solutions. We simulated both
the path-based iBF and the virtual path solution. IP multicast
state information was collected at the nodes based on the join
messages passing through the routers, and the required state
for the tree-based iBF was calculated.

We used the network with two different setups. 1) We
used all the 138 nodes in the topology as the potential edge
routers, i.e., all the routers were connected either to external IP
networks or they were local receivers or senders of multicast
traffic. Note that there is no difference from the simulation
point of view whether the SE or DE functionality on a node
serves a local IP multicast client or has a complete network
behind it. 2) We selected all the nodes with three or less
connections as the edge routers.

We placed clients behind the edge routers using approx-
imately the same distribution observed in the shoutcast.com
statistics (see Figure 2). The actual distribution for the DE

C
ou

nt
 o

f g
ro

up
s

Number of DE nodes per multicast group

DE nodes / group

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30

Fig. 7. Number of destination edge nodes per multicast group

nodes per multicast group is shown in Figure 7. For the simula-
tion purposes, the number of DE nodes per group is significant.
This number defines the branches for each multicast delivery
tree inside the iBF network. The number of clients receiving
the same multicast group behind a single DE does not affect
the signaling or the data transmission inside the iBF network.

We ran the simulations with 10,000 servers, each sending
multicast data to one multicast group. During the simulation,
the servers were placed one by one, and all the clients for that
corresponding multicast group were placed simultaneously. All
the clients sent the join messages to the multicast group, and
the server started to send data to the clients. The network nodes
collected the statistics of the network usage.

D. Results
Figure 8(a) shows the amount of state with 26 edge routers.

When running the simulation using 10,000 multicast groups,
the IP multicast requires more than two times the state than
the path-based iBF solution. When compared to the tree-based
iBF solution, the amount of IP multicast state is approximately
ten times higher. The Virtual Path solution performs slightly
worse in the beginning, when the state is added to the core
routers. While there are 26 edges, the virtual paths are quickly
established between all combinations, after which the amount
of state grows in line with path-based solution.

Figure 8(b) shows the corresponding overall state reduc-
tion ratio, compared to IP multicast. The tree-based solution
performs best, with state reduction ratio over 90%. Both path-
based and virtual path solutions get close to 60% reduction
ratio.

Figure 8(c) shows the forwarding efficiency. The iBF (both
path-based and tree-based) solutions provide approximately
96% forwarding efficiency, i.e. roughly four percent of data
packets delivered over links are not needed for data delivery,
but are forwarded because of false positive match. However,
virtual paths provide nearly 100% efficiency, i.e. the amount
of false positive routing decisions is very small.

Figures 9(a), 9(b), and 9(c) show the corresponding results
when all the 138 nodes act as edge nodes. In this scenario,
there are more potential edge-to-edge connections; Either the
network is connected to many neighbors, or the nodes are
themselves multicast source or destination nodes.

With tree-based iBF, the IP multicast uses roughly nine
times more state, while the forwarding efficiency is slightly
over 95%. Path-based iBF saves roughly 30% state compared

F
or

w
ar

di
ng

 e
ffi

ci
en

cy
 (

%
)

Multicast clients

iBF tree/path-based
iBF VLID

 60

 65

 70

 75

 80

 85

 90

 95

 100

 105

 0 5 10 15 20 25 30

Fig. 10. Forwarding efficiency, 1 server, 1-35 clients

to IP multicast. However, virtual paths use more state than
IP multicast. The reason for this is that all the SE–DE pairs
have not yet installed the virtual paths. Looking at the curve in
Figure 9(a), we can see that the saturation point is close, and
when more groups are added to the system, the IP multicast
state will grow over the virtual paths later.

Counting bloom filters have the same amount of state as
the tree-based iBFs, but there is no need to do re-joins from
the DE nodes when DE nodes are leaving the group. The
counter consumes more memory than the plain iBF and the
consumption is estimated to be somewhere between IPv4 and
IPv6 multicast memory consumption.

E. False Positives in iBF Forwarding
In LIPSIN [4], the authors discuss the false positives

and the related forwarding efficiency. They show that the
forwarding efficiency gets better when the number of LIDs is
increased, and the used iBF is selected from a set of candidate
iBFs. In some network environments, the false positives do not
necessary cause harm, or the gain from the state saving can
be valued higher than the additional usage of bandwidth.

In Switching with in-packet Bloom Filters (SiBF) [20], the
authors show that it is possible to forward packets using iBFs
with a zero false positive rate in a data center, using only 96-
bit iBFs. Their solution performs careful LID creation based
upon the MAC addresses of the neighboring nodes.

When comparing pure iBF and Virtual path iBF solutions,
we saw in Figures 8(c) and 9(c), that Virtual paths provide
better forwarding efficiency. For comparison, we simulated
also a one multicast group case, where 35 clients joined one by
one, and we calculated the forwarding efficiency for each step.
Figure 10 shows the result. We can see that with pure iBF the
efficiency drops below 95% when more than ten clients join
the group, while with virtual paths this happens only after 27
clients.

F. Memory Requirement
The evaluated solutions consume different amounts of

memory when storing the state information. Table I sum-
marizes the calculated theoretical minimum values for the
different solutions. For the IP multicast case, the table shows
values calculated using data structures from the Linux IP
multicast implementation. These are given inside parenthesis.

With IP multicast, the group identifier (S, G) size is 64 bits
with IPv4, and 256 bits with IPv6. This group ID is mapped

S
ta

te

Number of Groups

IP Multicast
Virtual paths

iBF (path-based)
iBF (tree-based)

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 2000 4000 6000 8000 10000

(a) State Count

O
ve

ra
ll

S
ta

te
 R

ed
uc

tio
n

R
at

io

Number of Groups

iBF (tree-based)

iBF (path-based)

Virtual paths

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

(b) Overall state reduction

F
or

w
ar

di
ng

 e
ffi

ci
en

cy
 (

%
)

Number of Groups

iBF (Path- and Tree-based)

Virtual Paths

 94

 95

 96

 97

 98

 99

 100

 0 2000 4000 6000 8000 10000

(c) Forwarding efficiency

Fig. 8. Simulation results for 26 edge routers.

S
ta

te

Number of Groups

IP Multicast
Virtual paths

iBF (path-based)
iBF (tree-based)

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 2000 4000 6000 8000 10000

(a) State Count

O
ve

ra
ll

S
ta

te
 R

ed
uc

tio
n

R
at

io

Number of Groups

iBF (tree-based)

iBF (path-based)

Virtual paths

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0 2000 4000 6000 8000 10000

(b) Overall state reduction

F
or

w
ar

di
ng

 e
ffi

ci
en

cy
 (

%
)

Number of Groups

iBF (Path- and Tree-based)

Virtual Paths
 94

 95

 96

 97

 98

 99

 100

 0 2000 4000 6000 8000 10000

(c) Forwarding efficiency

Fig. 9. Simulation results for 138 edge routers.

to the MAC address of the next hop router. In addition, the
router needs the incoming interface, that is verified before the
packet is forwarded, to prevent injection attack. The mandatory
information takes (32 + 32 + 16 + 48) = 128 bits for IPv4,
and (128 + 128 + 16 + 48) = 320 bits for IPv6.

Linux IP multicast data structures are defined in the kernel
sources (file: mroute.h). The actual structure for the group
entry takes 368 bits for IPv4 and 560 bits for IPv6. The struc-
tures contain some additional information, e.g., byte counters,
that are not needed for multicast forwarding.

In tree-based iBF, each multicast group requires space for
the multicast group id and the corresponding iBF (Figure 5).
For IPv4, the required memory is (2 × 32 + 256) = 320 bits
and, for IPv6, (2 × 128 + 256) = 512 bits. Using counting
Bloom filters with 4-bit counters, each LID takes 4×256 bits.
With IPv4, the total size is 1,088 bits and, with IPv6, 1,280
bits.

The path-based iBF solution state depends both on the
total number of incoming multicast groups and on the number
of DE nodes per multicast group. In the simulations, we
had roughly 46,000 multicast tree end points in the iBF
network. On average, there are 4.6 end points per multicast
group. The total number can be used to calculate the required
memory at the SE nodes. If we use four bytes for the DE
node identifier (NId), the total amount of used memory is
46, 000 × 32 + 10, 000 × 2 × sizeof(IP address) for the
(S, G) to DE list mappings. For the DE to iBF mappings, we
need maximum of (n − 1) × (NIdsize + iBFsize) at all n
edge nodes. This results in 137 × (32 + 256) × 138 = 0.65
MB, or 25 × (32 + 256)× 26 = 0.02 MB for the edge router
state.

IPv4 IPv6
26 DEs 138 DE*10000s 26 DEs 138 DEs

IP Multicast 1.46 (4.80) 1.18 (3.88) 5.21 (7.30) 4.22 (5.91)
iBF: tree 0.38 0.38 0.61 0.61
iBF: counting 1.30 1.30 1.53 1.53
iBF: path 0.57 1.21 0.81 1.43
iBF: Virt. path 0.67 3.28 0.91 3.50

TABLE I. MEMORY REQUIREMENT (MEGABYTES), 10,000 IP
MULTICAST GROUPS

With virtual paths, using similar kind of SE state ar-
rangement as with path-based solution, the only additional
consumed memory comes from the VLIDs installed on the
forwarding nodes in the network. The amount of state in the
nodes can be calculated using the total amount of state with
virtual paths and the amount of state with path-based solution.
This difference yields the required amount of state in the
forwarding nodes.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we compared the performance of IP multicast
with in-packet Bloom filter based multicast. We evaluated three
different iBF-based solutions and used the required amount of
state as the evaluation criterion. In addition, we estimated the
memory usage of the different solutions.

The tree-based iBF approach provides the best results in
terms of required state and memory consumption, at the cost
of negligible amount of signaling. But the signaling does not
create a huge burden: First, the size of a signaling message
is small compared to the amount of data typically streamed.
Second, the destination edges do not leave a group very often.
It is also possible to limit the leaving process to occur, e.g., at
most in one minute intervals.

The path-based solution, in turn, adds some state at the
SE node, but reduces the required signaling. Still, it is more
efficient, both from the state and memory consumption point
of view, than the IP multicast solutions.

Virtual paths use some more state, but they also provide
better forwarding efficiency. The gain of virtual paths becomes
clear, when the number of multicast groups transmitted is high
and the virtual paths can be used efficiently for multiple groups
simultaneously. Our simulations showed that, when the number
of edges is large, the number of multicast groups should also
be large.

In the simulations, we showed that an iBF-based packet for-
warding solution can be used to partially replace IP multicast
in the network. The replacement provides enhanced operation
in the network, and the deploying operator can benefit from
introducing this technology.

IBF-based packet forwarding significantly reduces the
amount of state when compared to IP multicast. While iBF
causes some false positive forwarding decisions, we can still
maintain forwarding efficiency at very high performance levels.
The efficiency depends on the number of links encoded in the
iBF, and stayed between 95% and 100% in our simulations.
Virtual paths may be used to improve maintain this efficiency
as the number of group members grows.

Some of the assumptions and selected solutions leave room
for improvements. For the future work, we can identify a
couple of interesting topics:

Using virtual trees may result in better forwarding effi-
ciency and less state than the used, naive virtual path solution.
Implementing the mechanism in a real network environment,
would provide us better understanding of the efficiency of the
solution.

Instead of using counting Bloom filters for dynamically
removing elements from the iBF, we intend to investigate the
use of the deletable Bloom filter [21] data structure as a low
overhead probabilistic alternative.

After showing the feasibility of an incrementally deploy-
able solution, we are working on a proof of concept prototype
implementation based on OpenFlow 1.2. With OpenFlow, the
flow matching operations on arbitrary bitmasks on source and
destination IPv6 addresses allow operating with 256-bit iBF
that can be pushed (and popped) at the source and destination
edge nodes.

In our work, we did not consider security issues. As
the presented scenario targets deploying iBF in a single AS,
the risk for attacks is low. The actual iBF operations are
performed completely inside the operator’s network. However,
the potential threats, especially in multi-domain iBF cases, will
be investigated.

Yet another interesting line of work would be to investigate
how iBF multicast forwarding may become an ISP-friendly
mechanism to minimize traffic stresses for the case of next
generation P2P IPTV services [?] delivered in either a tree-
push, mesh-pull or push-pull fashion.

REFERENCES
[1] S. E. Deering and D. R. Cheriton, “Multicast routing in datagram

internetworks and extended LANs,” ACM Transactions on Computer
Systems, 1990.

[2] M. Hosseini, D. T. Ahmed, S. Shirmohammadi, and N. D. Georganas,
“A survey of application-layer multicast protocols,” IEEE Commun.
Surveys and Tutiruals, 2007.

[3] “EU FP7 project PURSUIT,” http://www.fp7-pursuit.eu, accessed:
12.1.2013.

[4] P. Jokela, A. Zahemszky, C. Esteve Rothenberg, S. Arianfar, and
P. Nikander, “Lipsin: line speed publish/subscribe inter-networking,”
in Proceedings of the ACM SIGCOMM 2009 conference on Data
communication, ser. SIGCOMM ’09. New York, NY, USA: ACM,
2009, pp. 195–206.

[5] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[6] D. Waitzman, C. Partridge, and S. Deering, “Distance Vector Multicast
Routing Protocol,” RFC 1075 (Experimental), Internet Engineering Task
Force, Nov. 1988.

[7] J. Moy, “Multicast Extensions to OSPF,” RFC 1584 (Historic), Internet
Engineering Task Force, Mar. 1994.

[8] B. Fenner, M. Handley, H. Holbrook, and I. Kouvelas, “Protocol
Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification
(Revised),” RFC 4601 (Proposed Standard), Internet Engineering Task
Force, Aug. 2006, updated by RFCs 5059, 5796, 6226.

[9] H. Holbrook and B. Cain, “Source-Specific Multicast for IP,” RFC 4607
(Proposed Standard), Internet Engineering Task Force, Aug. 2006.

[10] D. Meyer, L. Zhang, and K. Fall, “Report from the IAB Workshop on
Routing and Addressing,” RFC 4984 (Informational), Internet Engineer-
ing Task Force, Sep. 2007.

[11] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a
scalable wide-area web cache sharing protocol,” IEEE/ACM Trans.
Netw., vol. 8, no. 3, pp. 281–293, Jun. 2000.

[12] A. Zahemszky, P. Jokela, M. Särelä, S. Ruponen, J. Kempf, and
P. Nikander, “MPSS: Multiprotocol Stateless Switching,” in Global
Internet Symposium 2010, 2010.

[13] M. AL-Naday, J. Almeida, R.C., K. Guild, and M. Reed, “Design
proposal of a photonic multicast bloom filter node,” Photonic Network
Communications, vol. 24, pp. 132–137, 2012.

[14] A. Farrel, J.-P. Vasseur, and J. Ash, “A Path Computation Element
(PCE)-Based Architecture,” RFC 4655 (Informational), Internet Engi-
neering Task Force, Aug. 2006.

[15] “Free internet radio stations,” http://shoutcast.com, accessed: 12.1.2013.

[16] S. Tarkoma, E. R. C., and E. Lagerspetz, “Theory and practice of
bloom filters for distributed systems,” IEEE Communications Surveys
and Tutorials, vol. 14, no. 1, 2012.

[17] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and J. B. Kopena,
“Network simulations with the ns-3 simulator,” SIGCOMM’08 Demos,
2008, code available: http://www.nsnam.org/releases/ns-3.1.tar.bz2.

[18] “EU FP7 project PSIRP,” http://www.psirp.org, accessed: 12.1.2013.

[19] “Rocketfuel ISP topology data.” http://www.cs.washington.edu/
research/networking/rocketfuel/maps/weights-dist.tar.gz.

[20] C. E. Rothenberg, C. Macapuna, F. Verdi, M. Magalhes, and A. Zahem-
szky, “Data center networking with in-packet bloom filters,” in SBRC
2010, May 2010.

[21] C. E. Rothenberg, C. A. B. Macapuna, F. L. Verdi, and M. F. Magalhães,
“The deletable bloom filter: a new member of the bloom family,” Comm.
Letters., vol. 14, no. 6, pp. 557–559, Jun. 2010.

