
Deadline-based Resource Management for

Information-Centric Networks

Somaya Arianfar, Pasi Sarolahti, Jörg Ott
Aalto University, Department of Communications and Networking

{Somaya.Arianfar, Pasi.Sarolahti, Jorg.Ott}@aalto.fi

ABSTRACT
Unlike in traditional IP-based end-to-end network sessions, in in-
formation-centric networks the data source may change during a
communication session. Therefore the response time to subsequent
data requests may vary significantly depending on whether data
comes from nearby cache, or a distant source. This is a compli-
cation for designing resource management, reliability and other al-
gorithms, that traditionally use RTT measurements for determining
when data is considered lost and should be retransmitted (along
with related congestion control adjustments). This paper discusses
a different approach for designing resource management in infor-
mation-centric networks: data packets are assigned with a lifetime,
that is used as a basis for scheduling and resource management in
the network, and for congestion control and retransmission logic at
the end hosts. We demonstrate an initial evaluation of this approach
based on ns-3 simulations on CCN framework.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design

Keywords
Content-oriented Networking, Resource Management

1. INTRODUCTION
In the traditional network transport round-trip time measurement

plays an important role. Retransmission timers are typically set
based on round-trip time (RTT), with the aim of optimizing rapid
enough retransmission time for potentially lost packets, while avoid-
ing unnecessarily retransmitting data that is still under delivery. For
window-based protocols such as TCP, round-trip time is also a fac-
tor that affects the rate of congestion control adjustments, and ulti-
mately the transmission performance [11, 15].

Algorithms based on round-trip time measurement come with an
implicit assumption that the end hosts of the communication ses-
sion remain the same. Since many information-centric networking

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM or the author must be honored. To
copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICN’13, August 12, 2013, Hong Kong, China.
Copyright 2013 ACM 978-1-4503-2179-2/13/08 ...$15.00.

models do not assume fixed communication end points, but rather
enable distributed delivery of data from multiple potential sources,
RTT measurement becomes a nearly useless concept: even if we
know RTT distribution (delay between request and corresponding
response) for past data, we cannot know whether that matches the
RTTs of upcoming data, because the data source may change at
any time [2, 3]. This makes data retransmissions difficult, because
end host receiver cannot know when to re-request data. The impact
of round-trip time is not limited to the behavior at the end host.
In some cases also router algorithms either directly or indirectly
depend on the assumptions of the typical RTTs. RCP [6] is one
example of such algorithm in IP network, while an ICN equivalent
of it could be found in different interest shaping algorithms such as
the one in [18].

Another aspect that complicates RTT measurement – not only
in information-centric networks, but also in general – is the ex-
tent of buffering in today’s networks. Excess buffering (sometimes
termed “bufferbloat”) significantly impairs the communication per-
formance has been observed in some networks [13]. Most proposed
Information-centric network architectures come with a built-in ca-
pability storing data along the communication path, and are thought
to have a large capacity for storing data for later transmission. This,
of course, does not make RTT estimation any easier.

Because of the inherent difficulty of path RTT estimation in in-
formation-centric networks we propose an alternative way to ap-
proach data retransmission and resource management in general:
each network packet is supplied with a lifetime that tells how long
it lives in the network before being dropped. The lifetime is used
primarily in three ways in our work: first, from lifetime the data
receiver knows how long to wait for answer before re-requesting
data. Second, the network routers can use the lifetime as part of
their queue management policy: it is ok to delay data that does not
have tight lifetime constraints, if that helps to provide better service
for more delay-sensitive data. We also aim at discarding packets as
soon as it becomes obvious that they are going to miss their dead-
line, and thus make space for more useful data as soon as possible.
Third, we use the lifetime information in interest packets to predic-
tively discard them as a resource management measure, if it seems
that the data would not reach its destination in time. This release
resources early for other traffic with better chance of survival.

2. BACKGROUND
In the following we discuss the related work on assigning data

lifetimes for traffic management, and resource management in in-
formation-centric networks in general.

2.1 Lifetimes
The concept of lifetime is not new in networking: the IPv4 pro-

tocol has “Time To Live (TTL)” field that originally indicated the
number of seconds a packet is allowed to remain in the network [17].
Because the actual packet propagation times are typically much less
than a second, and on the other hand, all forwarding nodes are re-
quired to decrement this field at least by one, the actual meaning of
the TTL field has evolved into hop count rather than real lifetime.

Packet lifetimes have also been discussed in the context of real-
time transfers over cellular networks [9]. We extend this think-
ing into information-centric networks and resource management
in general. The notion of data lifetimes has also been applied in
Delay-Tolerant Networks [7]. However, while Delay-Tolerant Net-
works are designed to operate on relatively long time scales, we
assume lifetimes that are on the order of few round-trip times, i.e.,
no more than a few seconds in typical networks.

The notion of lifetime has not been discussed in the context
of information-centric networks extensively, although cached data
at intermediaries, or the pending data subscriptions could be as-
signed with a maximum lifetime. We are not aware of previous
work for applying packet-level lifetimes for resource management
in information-centric networks, as we do in this paper.

2.2 Network Rate Control
A few rate control algorithms have been proposed for information-

centric networks. Typically these follow the principle of additive
increase, multiplicative decrease (AIMD) that is familiar from
TCP [4, 1], but at the receiver, regulating the rate of data requests.
Also interest shaping at the intermediate nodes has been
proposed [18, 5]. These algorithms are partially based on RTT
estimates between the request and corresponding data. However,
we argue that in information-centric networks, where data can be
sent by any of the potentially large number of sources or network
caches, measuring RTTs is not useful because of its potentially
large variance. Therefore, in the following we propose an approach
that is independent of RTT estimation.

3. NETWORK MODEL
We now focus on the basic communication model of lifetime

based packet delivery: packets with the remaining lifetime infor-
mation in their headers, and the queuing models that distinguish
these packet lifetimes in the transmission scheduling. We assume
receiver-oriented information-centric communication model where
data is requested by the receiver, and may be sent by any number
of possible alternative sources or network caches.

3.1 Packets with lifetimes
In our model each network packet is provided with a lifetime

that is specified on the granularity of milliseconds. The sender
initializes the packet lifetime primarily based on the application
requirements indicated to the networking implementation. For ex-
ample, a conversational application might request a packet lifetime
of 100 milliseconds, whereas for batch file transfer significantly
longer lifetimes would be sufficient. After the lifetime for pack-
ets has been specified, the receiver knows how long it must wait
before declaring the packet lost, and re-request the data if needed.
There is a trade-off that an implementation needs to consider when
choosing the packet lifetimes: too long lifetime makes loss recov-
ery more inefficient. Too short lifetime may increase the likelihood
of premature elimination of a packet. An implementation may also
adjust the lifetime of consecutive packets adaptively based on some
heuristic. Unlike with TCP and similar unicast protocols, detect-
ing packet loss from out-of-order acknowledgments is not possible,
because in ICN there may be multiple data sources and packet re-
ordering may therefore be an intrinsic behavior. Similarly, taking

RTT samples is not useful, as the expected RTTs may vary signif-
icantly between packets. Therefore lifetime is the main recovery
method in our model.

The underlying network characteristics should not be a factor
affecting the choice of the lifetime, but the lifetime should be set
solely based on the application requirements. Similarly, the life-
time should not be directly adapted based on the observed network
characteristics such as RTT or packet loss rate, without involving
the application. However, an application can adapt its behavior
based on observed network conditions in a way that may result also
in packet lifetime changes, for example by choosing a different con-
tent encoding.

A separation should be made between the packet lifetimes and
lifetimes used for cached data in the network. Packet lifetimes
are primarily intended for the uses for protocol operation, and are
thought to be on the order of few seconds at maximum. The data
receiver specifies the packet lifetime based on how long it is ready
to wait for response. On the other hand, data source can specify
the time how long data is valid to be cached, to be shared between
multiple receivers. This time is typically longer, for example on the
order of minutes or hours.

Packet expiration can be indicated in packets in two ways: either
as a absolute “wallclock time” indicating the deadline after which
the packet should be discarded, or as a relative remaining lifetime,
that should be decremented at each hop1. Both approaches have
their challenges: for reliably decrementing remaining lifetime at
each hop, a router should know how long the packet spends in
router processing and queues, which is doable, and the time the
packet takes to propagate over a link, which may be challenging, for
example on wireless links, or multi-access links in general. Indi-
cating a deadline would require synchronized clocks, or that nodes
make adjustments on the deadline based on what they know about
the clock differential to the neighbors. We choose to follow the
deadline approach, because the time difference between neighbor-
ing hosts can be estimated with sufficient detail by having the hosts
mutually exchange their local view of the clock, and compensat-
ing the communication propagation time based on RTT measure-
ments between neighbors. The Network Time Protocol (NTP) [14]
applies similar methods in a rather successful way. After such ad-
justments are made, we believe that the deadline can be managed
with sufficient accuracy to allow correct operation, as long as each
hop along the path makes similar adjustments. Global synchroniza-
tion of clocks is not required for correct interpretation of lifetimes,
as long as each node makes the needed adjustments on the dead-
line communicated on wire based on observed clock differences
between neighbors. There may be inaccuracies in this estimation,
but as long as the inaccuracies remain relatively small, they do not
prevent correct protocol operation.

When packet arrives at a node, the node checks its deadline from
the header. The header is indicated relative to the source node’s
clock, so the receiving node adjusts the deadline based on the mea-
sured time difference to the source node (Diffi, where i identifies
one of the neighboring hosts). If the packet is not expired, it is
scheduled for forwarding.

3.2 Queues with lifetimes
Even though some of the ICN research appears to assume that

network queues are not needed with ICN because of the network-
based content storage model [12], we believe that for scheduling
purposes queues are inevitable in any network, including information-
1In the text we use the terms lifetime and deadline interchange-
ably. However, our implementation assumes deadlines as absolute
timestamps.

T T+K
T+K T+2K
T+2K T+3K
T+3K
T+4K

T+4K
T+5K

Content
StorePIT

DATA

INTR

Uplink
Queue

Management

Downlink
Queue

Management

Content
Management
Subsystem

Figure 1: Queuing model for lifetimes.

centric networks. Data can be sent out on an interface only one
packet at a time, and if the demand for outgoing data exceeds the
transmission capacity, queues are needed for scheduling the outgo-
ing packets, regardless of the data storage model.

The queue management at routers can leverage the lifetime infor-
mation in packets to enable differential treatment for urgent traf-
fic. Various queuing models could be applied, and for example
the Shortest Remaining Processing Time (SRPT) queuing has been
proposed for web transfers [10]. However, in the following we dis-
cuss a simple deadline-based queuing method, that we believe to be
more appropriate for packet-level information-centric networking.

Figure 1 illustrates our assumed network model. We make a dis-
tinction between content management functions, such as the Pend-
ing Interest Table (PIT) and Content Store in CCN, and between the
queue management functions that are used for scheduling transfers
to outgoing links, and if needed, for discarding packets that are
deemed not to be useful considering their remaining lifetime.

The router queue space is divided into N different subqueues to
which packets are assigned based on their deadlines. The illus-
trated group of time-limited queues is called a queue stack. In the
figure T indicates the starting time of the first queue that contains
packets with deadlines between time T and T+K, the second queue
contains packets that have deadlines between T+K and T+2K, and
so on. At any moment, the current time is between T and T+K, and
when time reaches T+K, the first queue, and any possible unsent
packets in the queue are discarded, because the remaining packets
have missed their deadline. In addition, a new queue is allocated at
the end of the queue stack. There is a separate queue stack for each
outgoing interface of a node.

A network node can choose its queue management algorithm,
and parameters N and K independently of other nodes. The sub-
queues of a queue stack do not have fixed length limit, but rather
their length is limited based on the measured outgoing bandwidth
and the length of the time window (K) per subqueue. For exam-
ple, if K is 100 milliseconds, and outgoing bandwidth is 1 Mbps,
storing more than 12500 bytes worth of packets to the first queue is
not useful, because further packets would be missing their deadline.
The following subqueue can have a similar limit to the amount of
data, but the potential maximum length can be larger for each sub-
sequent queue, if the prior queues do not use all of their associated
time slot.

It is not in receiver’s interest to assign only short lifetimes to

packets because of the combined effect of two properties. First, the
queue stack is in constant move: when a queue expires from the
head of the stack, it is removed, and a new queue is added to the
end of the stack. As this rotation happens, packets that have waited
longer in the queue (i.e., they were originally assigned longer life-
times) move towards the head of the queue stack. Second, when a
new packet arrives, it is placed at the end of the particular queue
chosen based on the packet deadline. Because of the queue ro-
tation, packets that have arrived earlier (possibly with longer ini-
tial lifetime) occupy the first positions of the queue. Therefore,
using appropriately scaled lifetimes improves the likelihood that
packet will be delivered in time, even if the average delivery delay
might increase under increased load. Using excessively short life-
time would cause increased likelihood of packet expiration when
multiple packets arrive at the same queue in the queue stack, pos-
sibly occupied by earlier arrived packets. By distributing the life-
times more evenly such that they are uniformly assigned to differ-
ent queues in queue stack is expected to yield better packet delivery
rates. Therefore, we believe that the receiver has a real interest in
trying to assign appropriate deadlines for packets.

It is important to distinguish the earlier queue management pro-
posals and QoS mechanisms [8, 16] from the approach described
above. The queues in queue stack do not reflect priorities of traffic,
and are not flow-aware: each packet is processed independently,
which is appropriate for ICN that do not have clearly defined flows.

3.3 Network resource management
With the additional knowledge of packet deadlines, the network

nodes can perform advanced scheduling algorithms for more effi-
cient resource management. Before acting on a data request (e.g.,
Interest packet in CCN), the router checks the current load on the
return path, and calculates whether it is possible to deliver the re-
sponse within the assigned deadline, considering the currently sched-
uled data transmissions. If it seems that the data cannot be deliv-
ered by the deadline, the data request is dropped immediately. This
way the router predictively avoids using the upstream network re-
sources, and helps in reducing load on the return path.

Our scheduling algorithm is based on a few assumptions, similar
to the ones made in CCN [12]. In the following we also use the ter-
minology and communication model from CCN: the packets for re-
questing data are called “Interest” packets, which are responded by
“Data” packets, and for each data packet a separate Interest packet
is required. We assume that the paths are symmetric: data follows
the reverse path of the Interest packets, and the packet lifetime (or
deadline) is set by the sender of the Interest packet. When Data
packet is sent in response to the interest, it inherits the lifetime
from the Interest packet.

When an Interest packet arrives at router, it evaluates the status
of queue stack both on the next hop interface, to see if the Inter-
est can be forwarded in time; and on the previous hop interface,
to estimate whether the returning data packet can be delivered in
time. If either of the tests indicate that the data cannot be delivered
in time, the Interest packet is discarded, because it would only un-
necessarily consume the upstream network resources if forwarded.
In both above cases the router calculates how many packets are
scheduled before the current Interest on the respective queue stack,
and what is the estimated queue delay based on the knowledge of
the outgoing link bandwidth. For the return path queue the router
makes an pre-allocation for the expected upcoming Data packet.
This way the router avoids over-subscribing the return path: the
Interest is forwarded only if the router calculates it can deliver the
data packet. The pre-allocation is replaced with actual Data packet,
when it arrives at the router. Note that even if the router determines

that it can deliver the Data packet at the Interest time, the Data
packet can still be late, because the upstream round-trip time is not
known. However, this mechanism provides a best-effort way to
predictively reduce congestion at the time of receiving the Interest
packet.

If data is in the content store of the local node, the queue stack
for forwarding the Interest does not need to evaluated, and the pre-
allocation is not needed. In that case the data is just queued for
transmission on the return path queue stack, based on the deadline
received on arriving interest.

Algorithm 1 details this predictive interest discard approach in
more specific terms, for an arriving Interest packet with deadline
D. Qi and Qd are the queue stacks for interface where the Interest
packet is forwarded next, and where the arriving Data packet is ex-
pected to be delivered, respectively. qi and qd represent particular
queues in these stack, as determined by the deadline in the packet.
startTq and endTq represent the starting and ending time bound-
aries in these queues, and currentT stands for the current time.
thresholdi and thresholdd are the calculated maximum amount
of data that can be delivered to the link before the deadline, consid-
ering outgoing link bandwidth (Bi, Bd). Ji and Jd are subsets of
the respective queue stacks to represent queues from which packets
are sent before the newly arriving packet, and Si and Sd are the
amount of data currently in these queues that will be sent before
the newly arrived interest packet (Si), or the data packet expected
to arrive (Sd). length(s) refers to the current length of the queue
s in bytes). If S exceeds the calculated threshold value in either di-
rection, we know that data cannot reach the receiver in time, and the
interest can be discarded. We also note that endT in the last queue
of the queue stack is infinite, to cover packets with unexpectedly
long lifetime.

Qi = {Queue stack for Interest};
Qd = {Queue stack for expected Data};
Pick qi 2 Qi so that D 2 [startTqi , endTqi [;
Pick qd 2 Qd so that D 2 [startTqd , endTqd [;
thresholdi = Bi ⇤ (endTqi � currentT);
thresholdd = Bd ⇤ (endTqd � currentT);
Ji = [qj , 8qj 2 Qi, so that startTqj <= startTqi ;
Jd = [qj , 8qj 2 Qd, so that startTqj <= startTqd ;
Si =

P
s2Ji

length(s);

Sd =
P

s2Jd

(length(s) + PreAllocateds);

if Si >= thresholdi then
Discard packet;

else
if Sd >= thresholdd then

Discard packet;
else

Forward packet to qi;
PreAllocatedqd+ = Max packet size;

end
end

Algorithm 1: Predictive interest filtering

Later, when data packet corresponding to the interest arrives, it
is placed on queue qd based on the deadline that should remain
unchanged from the deadline of the corresponding interest packet.
The value of PreAllocatedqd is reduced by maximum packet size
to keep the bookkeeping in balance. Naturally, when a queue ex-
pires, i.e., endTq becomes less than current time, the pre-allocations

A B

Publishers

Bottleneck link

1 Mbps/
5 ms

Subscribers

1 Gbps/ 20 ms

1 Gbps/
2 ms

1 Gbps/ 45 ms

1Gbps/
1 ms

1Gbs/
1 ms

Figure 2: The simulation topology

on that queue are forgot at the same time as the packets still in the
queue are discarded.

It is possible that the Interest packets are forwarded to more than
one interface. In such case, Algorithm 1 is evaluated separately
for each outgoing interface before the packet is forwarded to that
interface.

3.4 Receiver Behavior
Because in an information-centric network the communication is

typically receiver driven, potentially multi-party interaction, TCP
is not a suitable protocol to be used as transport. This paper does
not specify any transport protocol in detail, but in the following
we describe our assumptions of the data transmission logic at the
receiver, for example as applied on top of the CCN architecture.

The data receiver dynamically adjusts the rate at which it sends
Interest packets to the network, responding to packet losses or other
congestion notifications following an additive increase, multiplica-
tive decrease congestion control principle similar to TCP. If the re-
ceiver does not receive an expected Data packet in the specified
lifetime, the network has dropped the expired packet. After the
lifetime is expired, the receiver does two things: first, it reduces
the rate of sending interests as a congestion reaction, because the
failure to meet the deadline can be assumed to be caused because
of excess queuing in the network. Second, the receiver may option-
ally re-request the data, if reliable transmission mode is desired. In
our implementation we assume similar behavior to TCP: the rate of
outgoing interests is increased steadily, and a packet loss triggers
dropping the sending rate to half of the previous rate. Adjusting
lifetime is not considered to be a proper congestion reaction ac-
tion, because – as discussed earlier – the lifetime should primary
be based on the properties of application. If an application can
operate with long lifetimes, it should use such lifetimes from the
beginning, and not only after congestion events in the network. It
should be noted that long lifetime does not automatically result in
long delay, unless the network is under heavy load.

4. EVALUATION
We analyzed the basic dynamics of the deadline-based resource

management model using the ndnSIM simulation framework for
ns-32, conducting simulations on a dumbbell topology illustrated
in Figure 2. In this topology, all the links between different sub-
scribers and the router B share the same attributes: 1 Gbps capac-
ity and 1 ms propagation delay. The round-trip delay between data
sources and receivers ranges from a few milliseconds to 100 ms, ex-
cluding the possible effects of queuing. We use ndnSIM’s normal
communication model of Interest packets consisting of 32 bytes
(for content name), and data packets being 1055 bytes. In our sim-
ulation the data flow is unidirectional, as illustrated in Fig. 2.

We start our evaluation by analyzing different RTTs and deadline
settings for continuos ongoing content transfer operations in the
2http://ndnsim.net/

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 60 80 100 120 140 160 180 200

A
v

er
ag

e
R

T
T

 (
m

s)

#Sent intersets/sec

lifetime 1s-bottleneck 1 Mbps
lifetime 200ms-bottleneck 1 Mbps

lifetime 200ms-bottleneck 500 Kbps

 0

 50

 100

 150

 200

 250

 300

 60 80 100 120 140 160 180 200

#
E

x
p

ie
re

d
 d

ea
d

li
n

es
/s

ec

#Sent intersets/sec

lifetime 1s-bottleneck 1 Mbps
lifetime 200ms-bottleneck 1 Mbps

lifetime 200ms-bottleneck 500 Kbps

 0

 50

 100

 150

 200

 250

 300

 60 80 100 120 140 160 180 200

#
R

ec
ei

v
ed

 p
ac

k
et

s/
se

c

#Sent intersets/sec

lifetime 1s-bottleneck 1 Mbps
lifetime 200ms-bottleneck 1 Mbps

lifetime 200ms-bottleneck 500 Kbps

Figure 3: The variation in the (a) average RTT on the left, (b) number of dropped packets in the middle, (c) number of received
packets on the right

network. Figure 4 compares the number of received and dropped
packets and the average experienced RTT in different scenarios.
We have chosen 3 different cases in which lifetime is set either to
200 milliseconds or 1 second, while the bottleneck link capacity is
set to either 1 Mbps or 500 Kbps. Figure 3a illustrates the simple
observation that depending on the deadline setting, content transfer
operations can tolerate different range of RTTs. In our simulation
scenario setting the lifetime to 200 ms keeps the average experi-
enced RTT below 200 ms. In the same scenario, choosing the life-
time of 1s allows for a wider range of RTT variation from a few mil-
liseconds of two-way propagation delay to about 700 milliseconds,
involving a significant amount of queue delay. Figure 3b illustrates
that the number of dropped packets increases as the deadline is set
to the lower values. In the same network setting, having the life-
time set to 1 second allows lower drop rates compared to the case
of packets with 200 millisecond lifetime. Therefore, if shorter life-
times are desirable, it is useful for the application to limit its data re-
quest rate to reduce the likelihood of packet losses. Figure 3c shows
that if there is sufficient network capacity, the deadline setting does
not have significant effect on the transmission performance: with
the bottleneck of 1 Mbps the performance is the same both with
200 ms and 1000 ms lifetimes. Figures 3b and 3c also show that if
the network is congested, the number of received packets decreases
as the number of packet losses increases (see 200 ms lifetime with
500-Kbps bottleneck link). If no resource control is applied either
from the network side or from the application side, in extreme cases
hardly any data gets through in the allowed lifetime.

We next analyze different scheduling models that can help the
network to better meet the assigned deadlines. For this purpose we
use three different kinds of traffic models in our simulation sce-
nario. Type A traffic has 1000 ms packet lifetime with retransmis-
sions for missing packets (for example, time-insensitive reliable file
transfer); type B with 200 ms lifetime with retransmissions, and
type C with 200 ms lifetime, but without retransmissions (for ex-
ample, real-time media streaming with tighter timing constraints).

The routers in our simulation model have a queue stack of 15
queues at each interface with 100 ms time window for each queue,
i.e., the last queue accepts packets arriving with more than 1400 ms
remaining lifetime. The router applies early discard of packets be-
fore the queues are fully used, to prevent bursts of traffic from oc-
cupying full queue capacity in a queue stack, and thereby leaving a
window of opportunity for urgent traffic that may arrive later.

We analyze three different scheduling heuristics. First is a tradi-
tional single queue FIFO, where packets are forwarded in the order
they arrive. The FIFO scheduling has one element per content item:
if another Interest comes for a same name that already exists in the
queue, it shares the queue position with the previous request. Sec-
ond scheduling approach is Last-In-First-Out with a single queue,
which we expect to yield different results especially for data with

short lifetimes. Finally, we analyze the deadline-based scheduling
as described in Section 3.3.

Figure 4 shows the goodput with the three scheduling heuristics,
when three different types of content flows are in transit (as de-
scribed above) as the intensity of the load on the network increases.
The FIFO scheduling results in devastating effect on the content
with short lifetimes, because as the queues build up on higher load,
these packets have no chance of surviving. In contrast, with LIFO
scheduling the different traffic classes are treated more equally. The
deadline-based scheduling gives most capacity on the packets with
short lifetimes, but less capacity for the traffic with longer lifetimes.
We can also see that under high load, the performance suffers with
the single queue models, leading to unpredictable behavior.

For FIFO scheduling there is an interesting difference between
the reliable and unreliable variants of traffic with short lifetimes.
This is a result of two interacting details in our implementation: fol-
lowing the information-centric principles, the Interests of the same
data share a single queue position, instead of taking multiple posi-
tions in the queue. On the other hand, whether to discard or send a
packet is evaluated only at the head of the queue. With long queue
there will be expired elements waiting for their turn, but because
receiver re-sends the Interest, they occupy the earlier position. This
works in favor of the reliable traffic in the FIFO scheduling model.

Figures 5a, 5b, and 5c illustrate the number of discarded data
packets for each traffic type. They explain why in case of FIFO the
performance of unreliable, short-lifetime traffic suffers: the packets
get delayed and dropped by network queuing. The other scheduling
heuristics treat the different traffic types more equally.

5. CONCLUSIONS
In this paper we described a new approach to network resource

management, leveraging packet lifetimes. This approach makes the
network management independent of round-trip time measurement,
which is useful property in environments where RTT measurement
is difficult, such as information-centric networks. We presented a
scheduling algorithm that makes use of the packet lifetimes, trying
to ensure that packets are delivered within their assigned lifetimes,
and compared it with alternative scheduling algorithms based on
ns-3 simulations.

Even though this work was based on information-centric net-
works, deadline-based network operations may be useful also in
other contexts with challenged RTT measurement. For example,
bufferbloat has been identified as a significant challenge for the re-
source management in IP networks, because of the varying packet
delays. Similar problem has also been observed on wireless links,
where unreliable link technology and link-layer reliability mech-
anisms cause high variations in packet transmission delays. We
will continue to investigate these avenues further, along with a

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200

#
R

ec
ei

v
ed

 p
ac

k
et

s/
se

c

#Sent intersets/sec

lifetime 1s-reliable
lifetime 200ms-reliable

lifetime 200ms-unreliable

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200

#
R

ec
ei

v
ed

 p
ac

k
et

s/
se

c

#Sent intersets/sec

lifetime 1s-reliable
lifetime 200ms-reliable

lifetime 200ms-unreliable

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200

#
R

ec
ei

v
ed

 p
ac

k
et

s/
se

c

#Sent intersets/sec

lifetime 1s-reliable
lifetime 200ms-reliable

lifetime 200ms-unreliable

Figure 4: Number of received packets (a) with FIFO style scheduling on the left, (b) with LIFO style scheduling in the middle, (c)
with time scheduled queues on the right.

 0

 50

 100

 150

 200

 0 50 100 150 200

#
E

x
p

ie
re

d
 d

ea
d

li
n

es
/s

ec

#Sent intersets/sec

lifetime 1s-reliable
lifetime 200ms-reliable

lifetime 200ms-unreliable

 0

 50

 100

 150

 200

 0 50 100 150 200

#
E

x
p

ie
re

d
 d

ea
d

li
n

es
/s

ec

#Sent intersets/sec

lifetime 1s-reliable
lifetime 200ms-reliable

lifetime 200ms-unreliable

 0

 50

 100

 150

 200

 0 50 100 150 200

#
E

x
p

ie
re

d
 d

ea
d

li
n

es
/s

ec

#Sent intersets/sec

lifetime 1s-reliable
lifetime 200ms-reliable

lifetime 200ms-unreliable

Figure 5: Number of expired interests (a) with FIFO style scheduling on the left, (b) with LIFO style scheduling in the middle, (c)
with time scheduled queues.

more thorough performance evaluation and further development of
scheduling algorithms for information-centric networks.

Acknowledgments
This research was partially funded by the EU FP7 PURSUIT project
(FP7-INFSO-ICT-257217).

6. REFERENCES
[1] S. Arianfar, L. Eggert, P. Nikander, J. Ott, and W. Wong.

Contug: A receiver-driven transport protocol for
content-centric networks. Technical report, PURSUIT
publish-subscribe project, 2011.

[2] S. Arianfar, P. Nikander, and J. Ott. On content-centric router
design and implications. In Proceedings of the
Re-Architecting the Internet Workshop, ReARCH ’10, pages
5:1–5:6, New York, NY, USA, 2010. ACM.

[3] S. Arianfar, P. Sarolahti, and J. Ott. Reducing server and
network load with shared buffering. In Proceedings of the
2012 ACM workshop on Capacity sharing, CSWS ’12, pages
33–38, New York, NY, USA, 2012. ACM.

[4] G. Carofiglio, M. Gallo, and L. Muscariello. ICP: Design and
evaluation of an interest control protocol for content-centric
networking. In IEEE NOMEN (INFOCOM WKSHPS), 2012.

[5] G. Carofiglio, M. Gallo, and L. Muscariello. Joint
hop-by-hop and receiver-driven interest control protocol for
content-centric networks. In Proc. of ACM SIGCOMM
workshop on Information-Centric Networks (ICN), 2012.

[6] N. Dukkipati. Rate Control Protocol (RCP): congestion
control to make flows complete quickly. PhD thesis, Stanford,
CA, USA, 2008.

[7] K. Fall. A Delay-Tolerant Network Architecture for
Challenged Internets. In Proc. of ACM SIGCOMM 2003,
pages 27–34, Karlsruhe, Germany, Aug. 2003.

[8] S. Golestani. A self-clocked fair queueing scheme for
broadband applications. In INFOCOM ’94. IEEE, pages
636–646 vol.2, 1994.

[9] A. Gurtov and R. Ludwig. Lifetime packet discard for
efficient real-time transport over cellular links. SIGMOBILE
Mob. Comput. Commun. Rev., 7(4):32–45, Oct. 2003.

[10] M. Harchol-Balter, B. Schroeder, N. Bansal, and
M. Agrawal. Size-based scheduling to improve web
performance. ACM Transactions on Computer Systems,
21(2):207–233, May 2003.

[11] V. Jacobson. Congestion avoidance and control. In Proc. of
ACM SIGCOMM, Stanford, CA, USA, 1988.

[12] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass,
N. H. Briggs, and R. L. Braynard. Networking Named
Content. In Proc. ACM CoNEXT, 2009.

[13] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson.
Netalyzr: illuminating the edge network. In Proc. of ACM
Internet Measurement Conference (IMC) ’10, IMC ’10,
pages 246–259, Melbourne, Australia, 2010. ACM.

[14] D. Mills, J. Martin, J. Burbank, and W. Kasch. Network
Time Protocol Version 4: Protocol and Algorithms
Specification. RFC 5905, June 2010.

[15] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling
TCP throughput: a simple model and its empirical validation.
In Proc. of ACM SIGCOMM ’98, pages 303–314, Vancouver,
Canada, September 1998.

[16] A. K. Parekh and R. G. Gallager. A generalized processor
sharing approach to flow control in integrated services
networks: the single-node case. IEEE/ACM Trans. Netw.,
1(3):344–357, June 1993.

[17] J. Postel. Internet Protocol. RFC 791, Sept. 1981.
[18] N. Rozhnova and S. Fdida. An effective hop-by-hop interest

shaping mechanism for ccn communications. In IEEE
NOMEN’12 Workshop, pages 322–327, 2012.

