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ABSTRACT

Human mobility traces are increasingly used for more realistic eval-
uation of mobile (opportunistic) communication systems. Although
GPS traces yield the most detailed data sets, they are often limited
in scale and may be incomplete since they are captured using mo-
bile devices carried by volunteers. In this paper, we explore mecha-
nisms to improve completeness and connectivity patterns of sparse
GPS traces and assess their impact by means of the GeoLife data
set. We also outline insights into geographic propagation that can
be gained through these large-scale location measurements.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Wireless communica-
tion; C.4 [Performance of Systems]: Modeling techniques

Keywords

Mobility trace analytics, Contact evaluation, Data sparsity

1. INTRODUCTION

Establishing device-to-device networks in challenged environ-
ments strongly relies on (predicted) connection opportunities re-
sulting from two or more nodes colocated within radio range for
a sufficient period of time. In addition to or instead of synthetic
mobility models, researchers increasingly rely on real-world traces
as input for evaluating connectivity and communication protocols.
Such traces come usually in one of three flavors: 1) Contact traces
are obtained from mobile devices scanning for peers (e.g., using
Bluetooth). 2) In network traces WLAN access points, cellular
base stations, or fixed Bluetooth scanners record associated devices
and those connected to the same network element at the same time
are considered to be “in contact”—see, e.g., [2, 6, 8] for contact
studies based on contact and network traces. 3) (Assisted) GPS
traces are recorded by mobile devices as their owners move around.

The first two types of traces share the drawback that exact node
locations can hardly be derived and the observation granularity is
limited both spatially and temporally: While for pure contact traces
the locations of contacts are completely unknown, network traces

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions @acm.org.

HotPlanet’13, August 16, 2013, Hong Kong, China.

Copyright 2013 ACM 978-1-4503-2177-8/13/08 ...$15.00.

Jorg Ott
Aalto University, Comnet
jo@comnet.tkk.fi

contain at least IDs of the network infrastructure elements, such
as access points and cell towers, and occasionally also their geo-
graphic location. However, given the larger transmission ranges of
network elements, whether a short-range contact could take place
can only be approximated from the data. Evaluations assuming dif-
ferent radio ranges are not feasible at all. The temporal resolution
may be limited for (1) by the scanning intervals of the devices and
for (2), especially for WLAN access points, by the time it takes to
declare a mobile node dissociated after it was not seen anymore.
Both may yield fairly coarse results. Moreover, the observations
are often biased by the environment (e.g., university campus, theme
park), one particular event (e.g., a conference), and/or the commu-
nity to which devices or software is handed out (e.g., students).

GPS traces overcome spatial and temporal resolution limitations
and are not dependent on infrastructure nodes detecting the pres-
ence of mobile nodes. GPS trace data are planet-scale and provide
fine-grained movement trajectories — both in time (as sampling in-
terval can be set in the range of seconds) and space (as a position-
ing accuracy of 10m can be assumed). Their main caveat is that
positioning in indoor environments is not very accurate (or does
not work at all) — and, of course, GPS locations of nodes do not re-
veal any information about obstacles between them, so that possible
contacts remain estimates. Another limitation is that publicly avail-
able GPS traces are often collected in a sparse manner: experiments
are usually limited to “smaller” user bases, typically with no more
than one or two hundred participants; on top of this, the movements
are only traced when the GPS device is active; and the readings are
only useful when the device was carried by the person'. This often
implies that traces may exhibit lower node densities than would be
observable if traces from all people were available every day.

In this paper, we suggest two simple mechanisms for improving
node density and thus contact frequency of GPS traces, which cover
longer periods of time (at least several weeks): 1) We interpolate
missing trajectories of a user on a given day from observations of
the user on the same weekday of one or more other weeks. 2) We
introduce “virtual users” that serve as otherwise invisible relays and
allow us extrapolating contacts in space and time. We evaluate the
impact of those mechanisms using the GeoLife trace [18], which
was not explored before for direct mobile-to-mobile interactions.

We focus on GPS traces because they provide fine-grained loca-
tion information, which allows researchers to assess different short-
range radio technologies because contacts can be derived from the
mobility data as a function of radio range and scanning intervals
(but not vice versa). The availability of location data across longer
periods of time also allows “filling in” missing pieces, which is not

'This actually applies to all data gathered on mobile devices, ex-
ceptions are traces of GPS devices in vehicles, such as taxis, for
which richer data sets both in number and continuity exist.



possible starting from contact data. The fine granularity also allows
assessing node encounters “on the move”—while network traces
(or “check-in” data from social networks such as FourSquare) won’t
provide a sufficient spatial or temporal granularity, nor allow for
interpolating trajectories between successive data points. Finally,
GPS data provide trajectories independent of any local infrastruc-
ture or dedicated locations and thus allow tracking the reach of mo-
bile opportunistic networks, e.g., for information propagation.

2. RELATED WORK

A common approach for contact studies is to extract mobility
characteristics from mobility trace data and to then adjust the node
number in simulations (see, e.g., [6], [7], [9]). However, there have
been several approaches previously proposed for adapting node and
contact density directly. In [1], the authors present a connectivity
trace generator providing synthetic traces with varying connectiv-
ity patterns based on real-world WLAN session traces. Character-
istics, such as sojourn time at access points, colocation probability
for node pairs, and node degree, are extracted from real data, while
the connectivity variations are realized by scaling up and down the
given node degree distributions. By estimating mobility based on
contacts, the algorithm proposed in [15] enables the insertion of
additional contacts or new nodes in contact trace-based studies.
In [14], city-specific mobility profiles are derived from GPS tra-
jectories, which were traced in various cities during sport activi-
ties and made available through public sport track repositories. For
studying the connectivity in each city, the traces are densified by
randomly sampling the dataset under the assumption that the traces
are a representative subset of the overall traffic. W.r.t. spatial dis-
tribution analytics based on large-scale data, the study of WiFi data
collected planet-scale by an Android application described in [11]
is as well related to our work. Here, location cluster patterns for sin-
gle users are extracted for five large cities on four continents. The
GeoLife data set has previously been used for developing travel ap-
plications (location interestingness estimation [18] or travel paths
recommendation [16]) and location prediction models [5] [10].

3. EXTRAPOLATING CONTACTS

As noted above, GPS traces may be “incomplete” for various
reasons, yielding (a) trajectories for fewer users than could be ob-
served and (b) especially for traces of large geographic scale, fea-
turing fewer contacts than desirable for evaluating mobile oppor-
tunistic communication applications. We introduce mechanisms
to address these two orthogonal issues: For (a), we discuss three
mechanisms to “fill in” trajectories of users for which records do
not exist for a given day (3.1). Concerning (b), we explore two
complementary options to scale up contacts occurring in the traces
(3.2). Both classes of measures assist in scaling existing traces to
the limited extent: they lead to increased connectivity and thus im-
prove the value of a given traces in protocol evaluation.

We map user locations to cells of a given edge length (we use
100 m) and assume that users located inside the same cell are in
contact and thus able to communicate. We are aware that this is
a simplification as users close by in adjacent cells won’t be con-
sidered in contact while users in opposite corners of the same cell
will be. However, we consider this approximation sufficient for the
purpose of this paper, and the trace analysis as well as the extrapo-
lation mechanisms discussed below may be refined to smaller cell
sizes and/or different area shapes to produce more accurate results.

3.1 Trajectory projection

The first question we turn to is filling in trajectories for persons

for whom records are missing on a given day. Assume we look
at a given date D and a person A, who is active on other days,
but does not have any records for D. What would have the person
been doing? We assume that the person has a regular day job for
a five-day week and works Monday through Friday. In this case,
for a weekday, chances are that the behavior will roughly be the
same as for the same day in the previous or the next week. In
our considerations, we focus on weekdays because weekends with
leisurely activities will likely exhibit more diversity.

To project a person’s trajectories of several days onto one day,
we calculate a path that represents her typical movements for the
particular weekday. We account for temporal variations by con-
sidering weekday-dependent variations (i.e., only other Mondays
are used to fill in for a Monday) as well as seasonal variations (e.g.,
people commute differently in summer and winter, students’ sched-
ules vary each semester). To do so, the trajectories for each person
for a certain weekday in a moving time window covering n months
(e.g., current, previous, and subsequent month) are included. We
suggest three methods for computing a fill-in trajectory represen-
tative for a given day from trajectories of one or multiple days in
case no trajectory exists for a person on the day in question.

3.1.1 Nearest Trajectory (NT) projection

The Nearest Trajectory method (NT) selects the trajectory clos-
est in time. For example, if there are no movement traces for the
particular Monday, the algorithm searches for trajectories traced on
the previous Monday (first) and subsequent Monday (second). If
none are found on adjacent weeks either, we continue searching
two weeks before, two weeks after, and so on. The week count for
the search is expanded until either a Monday trajectory is found or
the time window limits are reached.

3.1.2 Medoid Location (ML) projection

The Medoid Location method (ML) composes the projected tra-
jectory from the spatially most central locations. To do so, the tra-
jectories for each person for one type of weekday within the entire
time window are clustered. The Euclidean distance-based medoid
location m of this cluster is then computed for every time step ¢ in
configurable intervals (e.g., of 30 seconds). We select the medoid
(data element closest to the cluster centroid) instead of the centroid
to prevent that trajectories embody “artificial” locations a person
never visited in reality (and where the person might not even be
able to get to). An example of a medoid path p,, resulting from
four traced paths is shown in Figure 1(a).

3.1.3 Most Frequent Location (FL) projection

As for the ML, one representative location is computed by the
(Most) Frequent Location method (FL) in every time step ¢. How-
ever, for FL, the locations visited most frequently in the time win-
dow of n months are selected here to build the frequent path py.

3.2 Temporal and spatial extrapolation

Even if we can reconstruct trajectories for all nodes for each
weekday in a trace, the observed node density may still be low:
when only a few hundred nodes move in a large area, the odds of
them getting in contact remain fairly low as we will show later in
our evaluation. Nodes may visit the same cells but at different times
or may be close to each other in neighboring cells. To overcome
this limitation, we introduce the notion of “virtual nodes”: they are
invisible in the traces but are capable of bridging contacts in time
(3.2.1) or space (3.2.2). We assume, not unreasonably at least in
urban environments, that further nodes exist that could relay data
between the nodes in the traces and thus extend connectivity.



pﬁ - Trajectory p;
[[] Medoid cells of Pm
P2
@ ‘ - :
® Node with known path
P3-- Virtual node
} {3 Possible relay node
P4t for N;
~
&
®
® @ ®
tia t tiaq
© ®

ds=0

Figure 1: Illustration of (a) trajectory (medoid location) projec-
tion, (b) temporal extrapolation for one cell in three time steps,
and (c) spatial extrapolation (without extrapolation d; = 0 and
with one cell extrapolation d; = 1).

3.2.1 Temporal interpolation

In this case, the virtual nodes passing through a cell would repli-
cate data received from one traced node A among each other so that
the data survive inside the cell until another traced node B appears
some time later. Such an assumption would thus extend the avail-
ability of a node in time and support one way information sharing
from a node A present earlier in a given cell to a node B entering
this cell later (Figure 1(b)). We limit the extension of contacts in
time to a period d¢ (e.g., d: € {1, 2, 3}h).

The concept of Floating Content has shown that geo-based infor-
mation sharing in constrained areas by replication among mobile
nodes is feasible for extended periods of time even under modest
node density [13]. A reliable alternative would be fixed relays (sim-
ilar to throwboxes [17]) to temporarily store data for relaying.

3.2.2  Spatial extrapolation

We can also extend the reach of our nodes in space: instead of
just counting nodes in the same cell as a node A to be in contact,
we also consider nodes such as B in adjacent cells within distance
ds (e.g., ds € {1,2,3}) as shown in Figure 1(c). In this case, one
or more virtual nodes would be assumed acting as relays between
the A and B and thus support establishing (instant) multi-hop paths
(possibly using MANET routing protocols) between the two. The
same approach can be used to model larger radio ranges.

Note that this approach is subtly different from just increasing
the edge length of our cells: in the latter case, nodes A and B
would not be considered in contact if the extended cell boundary
would happen to be along the line between A and B.

4. EVALUATION

The evaluation of our approach is based on the GeoLife GPS
dataset [18], which was mainly collected in China. Its latest ver-
sion [12] contains movement paths of 182 people for the time pe-
riod April 2007 to August 2012 in a sampling interval of about five
seconds. Since we are interested in the every-day behavior during
typical working days we filtered weekends and holidays out. For
studying contacts and local distribution we focus on a 10x 10 km
excerpt of Beijing with high trajectory density, while we select all

trajectories starting within Beijing (10469 out of 17 621 trajecto-
ries) for the large-scale spatial distribution study.

We believe that the data have been sparsely sampled for several
reasons, e.g., the participants might not want to carry GPS devices
or activate GPS on their phones continuously every day (due to the
power consumption and privacy concerns). The data set does not
contain paths to work or university of every workday though, yet
people go there largely on a daily basis. Moreover, we select an
excerpt of Beijing covering the Haidian District, which is an accu-
mulation zone home to 68 universities/colleges and 231 scientific
institutions [3]. This allows to assume a reasonable population den-
sity, which is as well indicated by the high trajectory density in the
data set. Thus, this area is suitable for contact extrapolation.

In the following, we study the effects of the projection and ex-
trapolation methods proposed along a set of contact and spatial
propagation metrics:

1. Node degree: The node degree gives the number of edges of
a vertex in the connectivity graph; i.e., the number of nodes
each node meets per day is calculated.

2. Number of contacts: The number of contacts gives the sum
of contacts between all nodes during a day.

3. Inter-contact time: The inter-contact time gives the time elaps-
ing between two consecutive contacts of a node pair.

4. Contact duration: The contact duration measures the time
two nodes stay continuously within communication range of
each other.

5. Disconnected islands: This metric gives the number of is-
lands consisting of visited cells in a grid, which are sur-
rounded only by unvisited cells.

6. Propagation speed: The propagation speed is here defined as
the fraction of visited cells over time.

7. Flight length and flight time: The flight length is the length
of the path traveled between two consecutive pauses (phases
without movement), while the flight time is the period be-
tween the two pauses.

8. Mobility range: The mobility range is the maximum distance
reached from the center of a rectangle covering the whole
trajectory.

9. Area coverage: The spatial coverage gives the fraction of
sub-areas that has been visited.

The first five metrics are indicators for the connectedness of the
network and the frequency of interactions among the nodes. They
yield insights into the possible information flow (using opportunis-
tic networking) among the nodes based upon pairwise contacts.
The last four metrics address the geographic coverage of the nodes
and provide insights on the achievable reach (over time), in terms
of density of coverage and distance.

4.1 Contact analysis

For the contact analysis, we choose one week for which the trace
data set shows a reasonable participant density for all five days: 20—
24 April 2009. Trajectories during this week are complemented by
the preceding and following weeks from a total time window of
three months as described in the previous section. Table 1 shows
the increase in the node density per projection method and the num-
ber of nodes in the connectivity graph (i.e., nodes meeting at least



one other node) per weekday. The node number is more than dou-
bled for the Nearest Trajectory method (from 5.6 to 13.8 nodes)
and about quadrupled for Frequent Location (to 24.4 nodes) and
Medoid Location method (to 22.2 nodes).

Mon Tue Wed Thu Fri | Avg.
Raw traces 9 6 5 4 4 5.6

NT proj. 13 9 21 16 10 | 13.8
ML proj. 19 21 27 21 23 | 222
FL proj. 21 26 27 23 25 | 244

Table 1: # nodes in connectivity graph per day and on average.

While the NT projection influences the connectivity to a lesser
extent, the FL and ML projections have a similar impact in terms of
node number, but improve contact number and node degree notably
(Figures 2 and 3(a)). One advantage of the FL over the ML method
with respect to large data processing is the faster computation of
frequency than of medoid. Therefore, we choose the FL method for
comparison to the raw trace results in the remainder of this paper.

4.1.1 Node degree and contact number

Figure 2 shows the average node degree for the trajectory pro-
jection as well as temporal and spatial extrapolation. The highest
values are achieved by the FL. method with temporal extrapolation.
For example, with d; = 1h the node degree grows from 2.73 (raw
traces) to 13.17 (FL), and without extrapolation from 2.49 (raw
traces) to 4.37 (FL). The spatial extrapolation leads to smaller as-
cents, e.g., with ds=1c from 2.6 (raw traces) to 7.74 (FL). The aver-
age number of contacts for all projection and extrapolation methods
is depicted in Figure 3(a). By applying FL the number of contacts
in the raw traces (221 contacts) is increased with temporal extrapo-
lation to 580 (d;=1h) or 907 (d;=3h), and with spatial extrapolation
to 400 (ds=1c) or 665 (ds=3c) contacts.
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Figure 2: Average node degree (with std.dev.).

Figures 2 and, especially, Figure 3(a) also indicate how many
connection opportunities (and thus connectivity) are gained over
the raw traces by applying trajectory projection. Looking at the
gain from adding the temporal extrapolation on top shows that peo-
ple follow frequent routes (also shown in our heatmaps discussed
below) but just pass at slightly different times. This suggests that
more people will likely follow similar (parts of the) trajectories so
that the basic idea of extrapolation via invisible users appears sen-
sible. This also hints that adding throwbox-style devices in some
places could substantially increase connectivity.

4.1.2 Inter-contact time and contact time

Figure 3(b) and 3(c) show the Complementary Cumulative Dis-
tribution Functions (CCDFs) for the inter-contact time and the con-
tact time. Overall, we observe that our projection and extrapolation
mechanism largely preserve the basic characteristics while making

the traces denser. The most significant shift is shown for the spa-
tial extrapolation, since shorter (inter-)contact times resulting from
changing to neighboring cells and back are eliminated.

Looking at the inter-contact times, we observe that applying the
temporal or spatial extrapolation to the raw trace does not alter the
nature of the distribution, whereas combining those with the FL
projection appears to yield a shift towards an exponential distribu-
tion. Understanding this aspect better requires further study and
experimentation with more traces.

4.2 Spatial analysis

Finally, we investigate spatial propagation characteristics in the
local area (4.2.1) and in a greater city and surrounding area (4.2.2).

4.2.1 10x10 km area analysis

Figure 4(a) and 4(b) show disconnected islands and visited cells—
100x100m cell grid—during the day (8:00 to 20:00). In both cases
the mean of the observed five weekdays is depicted. With respect to
disconnected islands, the diagram confirms that extrapolation leads
to faster connecting islands as one would expect (fewer islands with
higher d;). However, the figure shows that the raw traces do not ex-
hibit the expected decrease when more trips start. It seems that the
area segment connectivity does not improve during only one day
due to the sparsity. The curve for FL without (w/0) extrapolation
initially shows many islands, but after a peak around 10:00 those
become more connected over the day.

The curves for the fraction of visited cells show a continuous
growth over the day for all methods, but the visits during the first
hour indicate already the propagation speed differences. At this
daytime the visited fraction without extrapolation lies at 2.6% (raw
traces) and 4.6% (FL), while with extrapolation of ds=3c at 16.64%
(raw traces) and at 41.88% (FL). The maxima achieved at the end
of the day without extrapolation are 8.8% (raw traces) and 21.69%
(FL), with ds=3c 43.65% (raw traces) and 80.27% (FL). The heatmap
in Figure 4(c), depicting the number of days each cell is visited in
the observed week for the FL method, gives a deeper insight into
the propagation results. It can be seen, that some areas are not
reached by any trajectory, and only partly if one imagines extrapo-
lation with ds=1 to ds=3 on the given map. Further, the map indi-
cates that the large number of islands for FL without extrapolation
stems from “cell gaps”. Such gaps emerge when the most frequent
locations in two consecutive time steps are not in adjacent cells.

4.2.2 Large-scale spatial analysis

In this subsection, we look at characteristics of all trajectories
with the starting point in Beijing. These characteristics provide
valuable insights into how far (and how fast) a message can be
propagated. Figure 5(a) shows the average flight length along the
corresponding flight time. The flight length allows to deduce the
distance nodes travel while mobile (not staying at any location). On
average 90 km are reached after one hour, while the curve shows
then slightly faster ascents as only trajectories covering larger dis-
tances reach certain flight times—e.g., 318 km after three hours.

The CCDF for the mobility range is depicted in Figure 5(b).
9.94% of the trips show a mobility range smaller than 1 km, the ma-
jority of trips (68.14%) exhibit a range between 1 km and 10 km.
The largest range values, which are achieved in 1% of the trips,
lie between 450 and 980 km. The area coverage is exemplarily ob-
served for an area of 200200 km around Beijing. Figure 5(c) plots
the visit frequency for grid cells of size 1x 1 km. In total, 4 883 of
all 40000 cells are covered resulting in a coverage of 12.2%. The
heatmap shows that the number of visits per cell varies greatly in
a range of 1 to above 1000. The most frequently visited cells are
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Figure 4: (a) Number of disconnected islands and (b) propagation speed during the course of the day; (c) a heatmap showing number

of days each cell of the 10x10 km area is visited.

found in the Beijing city center, where 30 cells are visited more
than 1000 times. Outside Beijing the cell visits picture the course
of the road and railway network. When looking at the number of
visited cells per trajectory, we find that in about 50% of the trips
the participants visit less than 10 cells, whereas less than 10% of
the trips cover more than 40 cells. This corresponds to the high
fraction of trips showing a mobility range of less than 10 km and
supports the observation that most trips are short-range trips.

4.3 Preliminary validation

While the above results show promise, they do not capture the ac-
curacy of our proposed methods, since we lack ground truth: how
would the filled-in trajectories compare to reality? To provide at
least an initial validation of the projection results, we look at the 63
trajectories existing in the data set for the evaluated week and com-
pare them to the generated ones. First, we calculate the fraction of
each trajectory’s duration where visited cells match, which allows
temporal and spatial validation. Table 2 shows fraction of nodes at
certain cell distances for exactly the same time and with a two hour
tolerance. Known and projected trajectory show good agreement
for almost half of the path durations, i.e., nodes are in the same or
neighboring cells. These values increase with extended time frame,
indicating temporal shifts between similar paths on different days
(e.g., traveling earlier or later). In 31% of the durations (or 25%,
respectively), the known paths visit cells that are more than 10 cells
(1km) away from the projected paths.

Second, we compute the Modified Hausdorff Distance (MHD) [4],
a metric measuring the similarity between two point sets (without
considering time). The CDF for MHD in Figure 6 shows a high
fraction of paths with small MHD, i.e., high similarity. For ex-

Distance [cells]
0 1 2 3 4 5-10 >10
+0h | 3146 15.12 4.01 230 249 13.79 30.83
+2h | 42.62 1556 442 2.60 256 740 24.84

Table 2: Temporal/spatial matching: known vs. FL paths.
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Figure 6: Spatial similarity: MHD for known vs. FL paths.

ample, 25.4% of the trajectories have a MHD<2.99 Euclidean cell
distance” and 49.3% MHD<8.78, which also points to the regular-
ities in the daily paths.

4.4 Discussion

The above evaluation of our simple mechanisms to “repair” and
scale GPS traces shows some initial promise. However, the main
issue is still that we do have only limited ground truth to compare

2Euclidean distance means here the distance between the center
points of two cells measured in number of cells.
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cells in a grid with 1x1 km cell size for all trajectories starting in Beijing.

against: we simply do not know what a person really did on a given
day if we are lacking trace data. Our initial evaluation in Section
4.3 is limited to some 60 trajectories and so far we explored only
one GPS trace data set.

Another caveat are the fill nodes: we presently assume a uniform
availability of the fill nodes across the area. Given the otherwise
uneven distribution of nodes this would obviously not hold. Hence,
the temporal extrapolation would need to be adapted dynamically
based upon the typical node density in a given cell (at a given time).
This is subject to future work.

The extrapolated traces would yield three classes of connectiv-
ity: 1) The contacts observed in the raw data plus the projections
would be bidirectional as the nodes can interact directly with each
other. 2) Virtual nodes supporting spatial extrapolation would yield
multi-hop paths between two nodes and thus lead to increased com-
munication latency and/or lower data rate. 3) Assistance of virtual
nodes from temporal extrapolation, in contrast, would yield uni-
directional contacts during which a node visiting the cell earlier
would be able to send data to a node visiting later but not vice
versa. Extrapolated traces would need to make those differences
explicit so that they could be considered in simulations.

5. CONCLUSIONS

We have investigated two types of improvements for mobility
traces: filling in data points missing for certain nodes by projec-
tions from different weeks to “repair” parts of a trace and scal-
ing up connectivity between nodes. Both may increase the value
of traces for evaluating mobile opportunistic communication sce-
narios. We observe quite substantial increases in the number of
contacts. While the contact characteristics remain of similar na-
ture for our scaling mechanisms, they may exhibit some changes
for the projections, which requires further study. Currently, we are
working on ways to better understand the accuracy of the proposed
mechanisms. Both entails applying the proposed extrapolation ap-
proach to further sparse location trace data. Our future work will
use the resulting traces in DTN routing protocol evaluations.
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