Data to the People

Arseny Kurnikov
Aalto University, Comnet
Espoo, Finland
arseny.kurnikov@aalto.fi

ABSTRACT

Delay Tolerant Networking (DTN) and Information Centric Net-
working (ICN) bear numerous similarities. In particular, both may
operate on larger information units than packets that can be identi-
fied by means of metadata. Caching, searching, and content-based
routing have been explored individually in both areas. In this paper,
we combine the two techniques and extend the traditional caching
and data retrieval approaches (“read”) to support changing data in
caches (“write”) in order to allow local content copies to evolve
through modifications during network partitions.

Categories and Subject Descriptors

C.2 [Computer-Communication Networks]: Network Architec-
ture and Design; Network Protocols

Keywords
DTN; Content-Based Processing; Data Sharing Application

1. INTRODUCTION

Delay-tolerant Networking (DTN) [5] relaxes several of the as-
sumptions on the underlying connectivity inherent to the Internet.
In particular, DTN does not assume low RTTs between communi-
cating nodes nor an end-to-end path at any single instant in time.
Routing decisions may be deferred if no suitable next hop is found
when a message is received, and the message may be stored for an
extended period of time until a path is found. DTN messages may
be of arbitrary size [2, 12] which allows conveying self-contained
application data units that include, e.g., context, metadata, security
credentials, etc. along with the data. Thereby, the number of round
trips to carry out protocol operations can be minimized [7].

An important feature of self-contained messages is that nodes
along the path have all necessary information at hand to provide
supportive functions without having to manage flow states or gather
content as in the Internet. Suggestions for such support are man-
ifold but, in particular, information-centric networking (ICN) con-
cepts were devised early on for DTN, including intentional nam-
ing [4] or content-based routing (e.g., [4, 3], opportunistic caching

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).

CHANTS’13, September 30, 2013, Miami, Florida, USA.

ACM 978-1-4503-2363-5/13/09.

http://dx.doi.org/10.1145/2505494.2505505.

Teemu Karkkainen
Aalto University, Comnet
Espoo, Finland
teemuk@netlab.tkk.fi

Jorg Ott
Aalto University, Comnet
Espoo, Finland

jo@netlab.tkk.fi

[9], and searching for content [8, 6]. Recent research has begun
merging the highly related ideas of DTN and ICN concepts: e.g.,
running DTN protocols as a robust network layer services in NetInf
or building inclusive lowest common denominator networks [10].
ICN/DTN functions retrieving cached content copies may alter a
request message or metadata en route, but they are mostly read op-
erations concerning the actual message content, with the exception
of creating transcoded message copies to serve specific devices.

In this paper, we seek broadening the ICN/DTN concepts and ex-
plore write operations on content inside the network. We consider
a self-contained message carrying a content item that represents an
instance of an application object in flight. With basic caching, an
exact copy is created to serve further requests, which keeps content
available even when the origin server is unreachable. Going be-
yond passive retrieval allows for more sophisticated operations in
the absence of connectivity.

We start by looking at the specific case of Network-based dis-
tributed applications: A cached copy of a message becomes mu-
table. Instead of retrieving an object and then uploading a modified
copy, we allow its modification. The cached object is updated ac-
cording to the modification information carried in the update mes-
sage and the message is forwarded towards the origin server and
possibly to other nodes holding copies of the object.

2. SYSTEM DESCRIPTION

We design our bundle processing framework based upon the bun-
dle protocol query extension and provide an initial implementation
for the IBR-DTN router. Its modular structure supports our two
extensions well: one routing extension to support Bundle Protocol
Queries and one API extension to provide an application access to
the added functionality.

2.1 Bundle Protocol Queries

The Bundle Protocol Query (BPQ) extension block allows ex-
plicitly identifying the requested resource name in a header when
a node requests the resource from the destination. The extension
block comprises three fields: 1) a BPQ kind describing if the bun-
dle is a request or a response; 2) a BPQ value containing the name
of the requested resource in case of a querying bundle and the name
for the resource in the payload for responses; and 3) an original
timestamp of the bundle creation.

When a bundle with a request BPQ extension arrives at a BPQ-
aware node, the node checks its storage for BPQ responses with the
matching BPQ values. If a response is found a copy of the response
bundle is sent back to the requesting node and the request bundle
can be dropped. Otherwise, the request is queued for forwarding.
Incoming responses are checked against queued requests, enqueued
for forwarding and possibly inserted into a separate cache.



Sharlng
/ domain

Figure 1: Basic operation of router—based object modifications

Figure 1 depicts a scenario for enabling document modification
in the router cache, where 0 is the origin server, RA is the caching
router and A’s are clients. To support “write” operations, we define
a new BPQ kind: update. When a node makes modifications to
the document it generates a bundle containing the changes to the
document, sets BPQ-kind to “update” and modifies the BPQ-value
to include the new revision number of the original document and a
URI parameter indicating the patch operation type. When receiving
such an update, a BPQ-aware node searches for an older response
with the corresponding BPQ value and applies the patch to keep it
up-to-date. The update messages are forwarded towards the con-
tent origin. Incoming updates are processed in an FCFS order and
identifiable conflicts lead to a BPQ “error” message returned to the
initiator of the conflicting operation.

2.2 Document sharing

This framework offers the mechanisms for building document
sharing applications. We are moving the user documents managed
in the cloud topologically closer to those parts of the network with
nodes that want to access and modify the documents, taking the
data closer to the people, which is especially useful when the cloud
access is intermittent and subject to delays.

The origin keeps the main copy of the document with a BPQ-
value assigned (name, version). Thus, it can be retrieved by other
nodes of a sharing group and cached within those as well as along
the path. Any group node can make modifications to its local copy.
The changes are then propagated towards the origin node, from

which the modified document is retrieved by the participating nodes.

Access control: To grant access to the document, we suggest
using proxy signatures [1] to enable group members to apply mod-
ifications to content items stored in the network [11]. The origin
distributes the proxy signing capability to the group members dur-
ing an initial phase and sign those with its own private key. Caching
nodes know or retrieve the corresponding public key securely (or it
comes protected with the object). This enables them to validate
modifications signed by authorized clients; they could also build a
modification history that can be validated by others.

The proxy signing mechanism includes the steps to generate a
warrant @ and the proxy certificate by the main server for all pre-
viously authenticated clients. Then the warrant and the certificate
are distributed to the clients that makes them capable of signing the
document. The cache can verify the signature based on the public
keys of the main server and the client.

Read and write: Read operations utilize the BPQ requests and
responses. The write operation is based on the new BPQ type value:
update. When a new client requests a document from the cache, it
generates a BPQ request with the initial name of the resource. The
cache replies with the most recent version of the resource.

Then the client makes some modifications to the documents. It
results in generating a patch file that includes the difference be-
tween the most recent cached version and the local client version.

The client sends the patch in the BPQ “write” bundle, that includes
the initial name of the document and the timestamp of the modifi-
cations. The cache applies the patch and replies to the client with
the updated version of the document.

2.3 Preliminary Evaluation

Our initial evaluation of the framework implementation in a non-
optimized system shows that the overhead for the framework itself—
i.e., the hooks for the bundle content processing—is neglible. Search-
ing the cache for available BPQ-resources naturally grows with the
number of bundles in the cache depending on the indexing data
structures used. Measured in CPU cycles, the BPQ-aware node re-
quires some 10% more time per bundle in case of cache miss with
1,000 bundles in the cache using a simple linear search.

As for the document sharing application, where the bundles rep-
resent the mutations that will be rather small compared to the whole
document and the number of parts will be about 1 to 10, the pro-
cessing overhead is about 25%, scaling linearly with content size
and modifications—but this obviously depends on the complexity
of the operations.

3. CONCLUSION

In this paper, we take a first step towards mutable content in
DTN/ICN environments and outline one application built on top
of a general framework for content-based operations in DTNs. We
deliberately focus on a simple scenario and leave parallel edits and
conflict resolution in larger scale setups with multiple caches for
future work. Yet, even the simple solution is able to preserve oper-
ations in subnets poorly connected to the Internet. The solution is
feasible because the introduced overhead is minimal. Our future di-
rections also include leveraging a more sophisticated key manage-
ment schemes to provide Content-Based Information Security at
diverse granularities, which gains importance for cooperative edit-
ing processes in larger groups.

4 REFERENCES

] A. Boldyreva, A. Palacio, and B. Warinschi. Secure proxy signature
schemes for delegation of signing rights. Journal of Cryptology,
25:57-115, 2012.

V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott,

K. Fall, and H. Weiss. Delay-tolerant networking architecture. RFC
4838, Apr. 2007.

P. Costa, M. Musolesi, C. Mascolo, and G. P. Picco. Adaptive
Content-based Routing for Delay-tolerant Mobile Ad Hoc Networks.
Research Note 06-08, University College London, 2008.

R. K. et al. The SPINDLE Disruption-Tolerant Networking System.
In Proc. IEEE MILCOM, 2007.

K. Fall. A Delay-Tolerant Network Architecture for Challenged
Internets. In Proc. of ACM SIGCOMM, 2003.

[6] S. Farrell, A. Lynch, D. Kutscher, and A. Lindgren. Bundle protocol
query extension block. Internet Draft draft-irtf-dtnrg-bpq-01, Work in
progres, 2012.

[7] J. Ott. Delay Tolerance and the Future Internet. In //th International
Symposium on Wireless Personal Multimedia Communications, 2008.

[8] M. Pitkdnen, T. Kirkkéinen, J. Greifenberg, and J. Ott. Searching for
Content in Mobile DTNSs. In Proc. of PerCom, 3 2009.

[9] M. Pitkdnen and J. Ott. Enabling Opportunistic Storage for Mobile
DTNs. Journal on Pervasive and Mobile Computing, 4(5):579-594,
October 2008.

[10] A. Sathiaseelan and J. Crowcroft. Lcd-net: lowest cost denominator
networking. SIGCOMM Comput. Commun. Rev., 43(2), April 2013.

[11] D. Schiirmann, J. Ott, and L. Wolf. Authenticated resource
mangement in delay-tolerant networks using proxy signatures. In
Proceedings of IEEE/IFIP WONS, volume 1, 2013.

[12] K. Scott and S. Burleigh. Bundle Protocol Specification. RFC 5050,
November 2007.

[2

—

3

—

[4

=

[5

—



