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Abstract—In the Floating Content application, mobile nodes
collectively store and disseminate messages relevant to a certain
area by using the principles of opportunistic networking. The
system operates in best effort fashion relying solely on the nodes
located in the area of interest, which is referred to as the anchor
zone of the message. Past work has focused on mobility models,
where the nodes are constantly moving and the messages are
exchanged “on-the-fly”. In this paper, we consider the case,
where messages can be exchanged only when two nodes are
stationary within each others’ transmission range. Our objective
is to characterize when the information floats, that is, when it
is likely to remain available for long periods of time. We find
that there exists a certain threshold for the mean node degree,
which we refer to as the permanence threshold, above which the
expected lifetime of the information increases very rapidly (in
a finite system) or the information becomes permanent (in an
infinite system). This threshold is about 1.3 for the basic case
(a single stop per visit), which is clearly below the percolation
threshold of about 4.5. Additional stops within the zone improve
the situation further.

I. INTRODUCTION

Several interesting spatial stochastic phenomena can be

identified in the context of (mobile) wireless networks. One

can study, e.g., the capacity of the network [1], [2], different

aspects of connectivity [3], [4], channel assignment [5], spatial

reuse [6], routing [7], [8], [9], [10], and a spatial distribution

of mobile nodes under different mobility patterns [11], [12].

Percolation theory offers one powerful tool to this end. Ba-

sically, it states that once the node density is sufficiently high,

a gigantic component (a connected component of the network)

emerges almost surely, which spans across the given area. The

numerical value for the percolation threshold of disks is about

φc ≈ 0.6763 [13], [14], which corresponds to the average

node degree of about 4.5 (assuming the Boolean connectivity

model). Above this threshold, connectivity increases rapidly

and a larger network forms. Conversely, under this threshold

a network comprises only small isolated islands, and, e.g.,

mobility is required to deliver messages in DTN fashion.

In this paper, instead of end-to-end communication, we

are interested in storing some information in a given area

relying solely on the cooperation between mobile nodes, which

arrive and depart dynamically. This leads to another quantity,

referred to as the criticality threshold for the permanence of

information (or the permanence threshold for short), above

which the expected lifetime of the information increases very

rapidly in a finite system. In an infinite system, the information

is preserved indefinitely long.

The motivation for studying the permanence of information

in this setting comes from the Floating Content application,

which was introduced in [15]. In the Floating Content, mobile

nodes collectively store a message at a certain area, e.g., a park

or a square, which is referred to as the anchor zone. More

specifically, whenever node A meets another node B within

an anchor zone of some message that only A has, it transmits

the message to B. Outside the anchor zone the nodes (are free

to) delete the message. Therefore, the information is bound

to eventually disappear due to the stochastic fluctuations. In

practice, each message also has some expiration time. This

type of information dissemination scheme can be motivated

as follows: i) it is robust as it does not rely on any fixed in-

frastructure, ii) it has favorable privacy properties (anonymity),

iii) spam is restricted as the content distribution is bounded to

a given anchor zone. For more details on Floating Content, we

refer to [15], [16], [17]. Other similar concepts have also been

proposed, see, e.g., Digital Graffiti [18], Hovering Information

[19], and Ad hoc Podcasting [20].

Past work [17], [16], [21] has focused on models, where the

nodes are constantly moving and the exchange of messages

occurs “on-the-fly”. Here we consider the other extreme,

where messages are exchanged only when two nodes are

stationary and within each other’s transmission range. In this

case, the system’s capability to store information depends

solely on one dimensionless quantity, the mean node degree

which should be above the permanence threshold. First we

give analytical approximations for this. Then, by means of

extensive simulations, we find that the numerical value for the

permanence threshold is approximately 1.3, which is clearly

below the percolation threshold of about 4.5.

The paper is organized as follows. In Section II, we in-

troduce the model. Analytical results are given in Section III,

and Section IV contains the numerical experiments. Section V

concludes the paper.

II. MODEL

We consider a situation where nodes arrive to anchor zone

A according to a Poisson process with rate λ. The initial

location is uniformly and independently distributed on A. The

neighborhood is defined by a fixed transmission range d, i.e.,

a node can communicate (directly) only with those nodes that

are within a distance of d from it (i.e., the so-called Boolean

or Gilbert model [22]). Each node having the information

transmits it to nodes not having it within their transmission

range (cf. epidemic spreading).



Each node remains still for a random duration of T1. After

that, a node leaves the area with probability (1 − p), and

otherwise, with probability p, it moves instantly to a new

randomly chosen location. Information is preserved during a

move within the anchor zone. A node remains stationary in

the new location again for a random time duration of T2. This

repeats until a node departs. The time durations Ti, referred to

as the stopping times, are assumed to be i.i.d., Ti ∼ T . Letting

k denote the mean number of stationary periods, k = 1/(1−p),
the mean duration of a visit is simply

E[T ∗] = k E[T ] =
E[T ]

1 − p
.

We further assume sufficiently long Ti that contact durations

can be neglected (i.e., instant transmissions).

Consequently, at a random time instant, we have a random

geometric graph [23] (or a random plane graph [22]) located in

the anchor zone A. However, instead of the static properties

such as connectivity, we are interested in gaining insight to

the transient behavior of the information carrying nodes in

an anchor zone. As our objective is to characterize when

information can be sustained, we assume that initially all

nodes in the anchor zone are tagged, i.e., they carry the

information. Alternatively, one could also study the probability

that a system, e.g., with a single information carrying node

survives a given time duration.

III. ANALYSIS

The mean number of stationary nodes is [24],

E[N ] = λ · E[T ]

1 − p
,

which corresponds to the average node density of n =
E[N ]/|A|. If n π d2 ≫ 1, then nodes cover a considerable

part of A (cf. percolation). Similarly, if transmission range d
is so large that every node in the anchor zone A hears each

other, the spatial dimension vanishes and one ends up with

an M/G/∞ system. We are interested in scenarios where the

information barely floats. In particular, we assume that d is

small compared to anchor zone, the mean population is large

E[N ] ≫ 1, and our objective is to find for which node density

n the information remains available for long periods of time.

The assumptions of instant mobility and instant transmis-

sions mean that at any time instant, each node in the an-

chor zone belongs to some cluster (connected-component), all

members of which either have or do not have the information.

If the node density is high and the network percolates within

the anchor zone, i.e., a large portion of nodes belong to the

same component, then it is likely that this component has the

information and the floating occurs.

A. Heuristic approximations for the permanence threshold

Here we consider the process in the special case p = 0,

i.e., each node exits the anchor zone immediately after the

stopping time. For simplicity, we further assume exponentially

distributed stopping times, T ∼ Exp(µ) and that A is an r-

disk. The objective is to derive simple approximations for the

criticality threshold of the system. Possible boundary effects

are neglected. We first consider the lower bound.

Instead of considering the original system, let us consider

a system where clusters possessing the information are imme-

diately divided to isolated nodes. In particular, we move the

corresponding nodes to such locations that the distance to the

nearest neighbor is at least 2d. The modified system can be

expected to have a better chances of upholding the information

available as it maximizes the “information covered area” at

each step. Thus its criticality threshold serves as a heuristic

lower bound for the actual system. Suppose that there are m
information carrying isolated nodes in A (on average). The

birth-rate of new information carrying nodes

m · λπd2

πr2
= m · λ(d/r)2.

At the same time, the number of information carrying nodes

decreases at death-rate m · µ. In order to avoid extinction,

λ(d/r)2 ≥ µ ⇒ n π d2 ≥ 1, (1)

where the left-hand side quantity is equal to E[ν], i.e., the con-

dition says that the mean number of neighbors E[ν] should be

higher than one. Eq. (1) can be seen as a necessary criticality

condition for the special case p = 0. In the derivation, we

have neglected the fact that nodes having the information may

overlap. Hence, the condition (1) is a lower bound for the

permanence threshold.

The effect of the overlapping can be taken into account

approximately as follows. The above assumed that the total

area where new contacts are possible is the sum of m complete

circles with radius d, i.e., the nodes are alone. Instead, let

us assume that at the criticality all nodes that have the

information are paired with another node. The total mean

area B that two connected nodes cover (i.e., the mean area

covered by a given node with one randomly located neighbor

inside the transmission radius d) can be easily derived and

gives B = d2(π + 3
√

3/4). There are m/2 such connected

pairs inside the area, and by similar reasoning as above, the

criticality condition reads

λ
m

2

B

πr2
≥ mµ ⇒ n π d

2 ≥ 8π

4π + 3
√

3
≈ 1.41. (2)

The above can be expected to be a conservative estimate for

the criticality threshold as in the actual system the total area

covered by the information carrying nodes also contains nodes

that are alone, as well as those that are pairs (and even higher

order connected components, but with decreasing probability).

The approach can be developed further. Let m1 and m2

denote the number of isolated and paired nodes possessing the

information, respectively. Neglecting the higher size clusters,

and assuming stationarity,1 one can write

λ
π d2

π r2
· m1 ≈ µ · m2,

which gives m2 ≈ n π d2 · m1. The left-hand side is the

birth-rate of size 2 clusters, and the right-hand side the

1In reality, a finite system is in transient towards extinction.
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Fig. 1. Mean time until an M/M/∞ system becomes empty when initially
in stationarity.

corresponding death-rate. The birth-rate of the total population

would be

λ(m1 · (d/r)2 + m2 · (1 + 3
√

3/(4π))(d/r)2)

=

(

n π d2 +

(

4π + 3
√

3

8π

)

(n π d2)2

)

· m1µ,

and the death-rate similarly, (m1+m2)µ = (1+n π d2) ·m1µ.

Combining these two then gives

n π d2 ≥ 2

√

2π

4π + 3
√

3
≈ 1.19. (3)

For n π d2 = 1, a node belongs to a cluster of size 3 or

more with a probability of about 0.39, while for n π d2 =
1.3 the same probability is about 0.52. In other words, the

fraction of larger clusters is not negligible and it is not clear

how accurate these, somewhat crude, estimates actually are.

However, in the numerical section, we show that the latter

two, albeit heuristic, indeed predict the criticality threshold of

the fluid limit surprisingly accurately.

B. Asymptotic results for p = 0

For the basic model with p = 0, two straightforward limits

are readily available. Suppose first that d = 0, i.e., a situation

where information is not exchanged. In this case, the survival

until time t depends solely on the sojourn time of the initial N
nodes. If at time t = 0, all existing nodes have the information,

then N ∼ Poisson(λ/µ), and the CDF of the lifetime is

P{Tlife < t} =

∞
∑

i=0

a

i!
e−a · (1 − e−µt)i = e−ae−µt

,

where a=λ/µ. For the median, P{Tlife < t} = 1/2, we obtain

E[N ] = λ/µ = ln 2 · eµt.

For example, µ = 1 and t = 10 gives λ ≈ 15268. This means

that for any fixed t, there exists a finite arrival rate λmin that

achieves the median lifetime of t, and thus nπd2 converges to

zero when d tends 0 as n ≤ (λmin/µ)/(πr2). This is illustrated

later in Figure 5 of the numerical examples.

Alternatively, when d is sufficiently large so that all nodes

are within each others’ transmission range, the system reduces

Fig. 2. Sample realizations from a stationary distribution: (left) d = 0.05
and 500 nodes on unit disk, (right) d = 0.10 and 150 nodes on unit disk.
Active links are illustrated with gray lines.

to a classical M/M/∞ queue. With the same initialization (at

time t = 0, all existing nodes obtain the information), the

lifetime is equivalent to the time from a random time instant

until the M/M/∞ system becomes empty. Hence, the mean

lifetime E[Tlife] is,

E[Tlife] = (1 − e−λ/µ) · E[R∗],

where (1 − e−λ/µ) is the probability that system has at least

one customer, and E[R∗] denotes the mean residual duration

of the busy period on condition that the system is not empty

(as seen by a random observer). The memoryless property of

Markov process facilitates an efficient recursive computation

of E[R∗]. Figure 1 illustrates the mean lifetime for systems

with a sufficiently large d as a function of E[N ] = λ/µ on

logarithmic scale. We observe that even with a modest mean

population sizes, the resulting performance in terms of mean

lifetime is very good, as expected.

IV. NUMERICAL EXPERIMENTS

A. Unit disk

Parameters in the first numerical examples are the following:

• Anchor zone is a unit disk with radius r = 1.

• Poisson arrivals with rate λ.

• Exponentially distributed stopping times with mean 1/µ.

• Initially, N0 ∼ Poisson(λ/µ) nodes are uniformly dis-

tributed in A, who all carry the information. Their

remaining stopping times obey the same exponential dis-

tribution with mean 1/µ (i.e., the stationary distribution).

1) First look: In the first experiments, we use fixed trans-

mission ranges: d = 0.05, 0.1. Two sample realizations of

the nodes and the corresponding active links are illustrated in

Figure 2. In the left figure, d = 0.05 and there are 500 nodes so

that n π d2 = 1.25, while on the right figure the transmission

range is d = 0.1 and the number of nodes is 150, yielding

n π d2 = 1.5. We can observe that both networks are indeed

rather sparse and multi-hop communication is not feasible.

Figure 3 depicts the simulation results with the trans-

mission range of d = 0.1. On x-axis is the arrival rate

λ, and the y-axis corresponds to the lifetime (time until

extinction). The three curves correspond to 25%, 50% and

75% quartiles. Mobility parameters (µ, p) are varied, (µ, p) ∈
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Fig. 3. Quartiles, P{Tlife < t} = x for x = 0.25, 0.5 and 0.75 on unit disk with transmission range d = 0.1.
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Fig. 4. Quartiles, P{Tlife < t} = x for x = 0.25, 0.5 and 0.75 on unit disk with transmission range d = 0.05.
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{(1, 0), (4, 1/2), (16, 3/4)}, so that the mean sojourn time

E[T ∗] decreases, E[T ∗] = 1, 1/2, 1/4. Recall also that the

mean population is E[N ] = λ E[T ∗]. Next we consider the

two times shorter transmission range of d = 0.05. In order

to compensate for the smaller range, the mean stop times

are quadrupled, and the mobility parameters are (µ, p) ∈
{(1/4, 0), (1, 1/2), (4, 3/4)}, so that the mean sojourn times

are E[T ∗] = 4, 2, 1. The numerical results are depicted in

Figure 4. General observation is that in all six cases there

seems to be a certain threshold above which the (expected)

lifetime skyrockets.

2) Criticality condition: Figure 5 (left) illustrates the mean

number of nodes needed to achieve a median lifetime of 10,

100, 1k, 10k and 100k for p = 0. As d → 0, the required

mean population increases very rapidly. The three cases, 1k,

10k and 100k, are indistinguishable in this scale.

In Figure 5 (middle), on the y-axis is the mean node degree

E[γ] = n π d2 (cf. Eqs. (1)–(3)). The five curves correspond

to the same target median lifetimes. Based on curves with

t ≥ 1k, there appears to be some value at the fluid limit when

d → 0 above which the target lifetime t can be arbitrary.

This critical mean node degree is the criticality threshold for

the permanence of information, and it appears to be about

1.3. When the mean node degree is above this threshold, the

(expected) lifetime of a large system tends to infinity.

From Figure 5 (middle) one can also observe what happens

when the target lifetime is small, e.g., t = 10. As discussed

earlier, all curves with a fixed t eventually converge to 0, which

is clearly visible here. We, however, are interested in what

happens when both t → ∞ and d → 0.

3) Several stops: Figure 5 (right) illustrates how the several

stops per visit with p > 0 improve the performance. Target
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median lifetime is 1000, mean visit time is k/µ = 1 and

transmission range is d = 0.1. Note that when k (or d) tends

to ∞, the spatial dimension disappears and one obtains an

M/G/∞ queue.

B. Unit Sphere

Let us next illustrate the same process on unit sphere, i.e.,

the nodes arrive according to a Poisson process with rate λ and

the sojourn time at each location is exponentially distributed

with mean 1/µ. The locations are uniformly and independently

distributed on the unit sphere. The distances are measured

along the surface of the sphere, which affects the coverage

of a given transmission range d,

A(d) = 2πr2(1 − cos
d

r
),

which for d = πr gives the full coverage A(πr) = 4πr2. For

a small d/r, A(d) ≈ πd2. The average node degree is

E[ν] = n A(d) =
λk

µ
· 1 − cos(d/r)

2r2
,

and for small d/r we have

E[ν] ≈ λk

µ
· d2

4r2
= n π d2.

The motivation for sphere topology is the fact that there are

no borders and thus it allows one to identify possible border

effects (which we neglected in the analysis of the unit disk).

When d is small, the situation is no different from the internal

points of unit disk.

Figure 6 illustrates the simulation results for target median

lifetimes of t = 10, 100, 1k, 10k, and 100k. Again, we can see

that for t ≫ 1, the criticality threshold appears to converge to

some value about n π d2 ≈ 1.3. In general, the results are very

similar to those of the unit disk. Note, however, that here the

surface area is four times larger and thus the same transmission

range d covers a smaller proportion of the total area than in

the previous case.

Figure 7 illustrates how several stops with p > 0 improve

the situation. Here we have chosen p = 1/2 and p = 2/3,

which correspond to the average stops of k = 2 and k = 3,

respectively. The mean stop time 1/µ was adjusted accordingly

so that k/µ = 1. We observe a significant drop in the required

average node degree between k = 1 and k = 2, whereas the

change from k = 2 to k = 3 is smaller. Point d = π on the

right graph corresponds to the transmission range that covers

the whole sphere and the system reduces to an M/G/∞ queue,

as mentioned earlier.

C. Comparison with a direct mobility model

In [17], we have considered an elementary mobility model

where each node moves directly with a constant speed to a

random direction in an infinite plane. The anchor zone is

again assumed to be a disk with radius r. By using a fluid

approximation that is valid when d ≪ r, we obtained for the

criticality condition

n d r > 0.407. (4)

The above model has some fundamental differences to the

stationary model considered in this paper. In particular, here

we explicitly assume that nodes are capable of transmission

only when they are still at some location. In contrast, in

[17], all transmissions occur on-the-fly. Moreover, for the

direct mobility model of [17], one also obtains a conditional

probability distribution for a node observed at r and moving

in direction θ having the information. For example, for nodes

entering the anchor zone this probability is zero.

Consequently, also the criticality conditions (cf. (1)–(3) vs.

(4)) have different forms. In particular, the transmission range

is a more critical parameter for stationary nodes than when

nodes move directly across the anchor zone. On the other hand,

the lack of mobility in the stationary model with p = 0 means

that either the information remains available “everywhere”,

or nowhere, i.e., extending the anchor zone beyond some

reasonable size has only a marginal effect to the (expected)

lifetime. Obviously, in reality, a larger anchor zone is likely

to correlate with parameter p of the stationary model.

V. CONCLUSIONS

We have analyzed under what circumstances a message

(e.g., a file or photo image) does not become extinct (sink)

in the Floating Content application when nodes are assumed

to be operational only when they are not moving. This led us

to analyze a variant of the Poisson point process, where each
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node is either active (has the information) or passive (does

not have the information). In this setting, we are interested

in understanding when and how long information remains

available in the region (transient behavior).

We found that as soon as the mean node degree, i.e., the

average number of neighbors, is higher than some threshold,

which we refer to as the criticality threshold for the perma-

nence of information (permanence threshold), the expected

lifetime of the information starts to increase very rapidly. In

an infinite system, the information is preserved indefinitely

long. The permanence threshold for the basic case (single stop)

at the fluid limit when transmission range d is very small is

about 1.3. In practice, in most situations the threshold appears

to be somewhere below 2, depending on the parameters of

the scenario. These values are clearly below the percolation

threshold, which corresponds to the mean node degree of about

4.5. Our future work includes a more detailed analysis of the

permanence threshold, the value of which we would like to

know more accurately also.
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[21] J. Ott, E. Hyytiä, P. Lassila, J. Kangasharju, and S. Santra, “Floating
content for probabilistic information sharing,” Pervasive and Mobile

Computing, vol. 7, no. 6, pp. 671–689, Dec. 2011.
[22] E. N. Gilbert, “Random plane networks,” Journal of the Society for

Industrial and Applied Mathematics, vol. 9, no. 4, pp. 533–543, 1961.
[23] M. Penrose, Random Geometric Graphs. Oxford University Press,

2003.
[24] J. D. C. Little, “A proof of the queueing formula L = λW ,” Operations

Research, vol. 9, no. 3, pp. 383–387, 1961.


