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ABSTRACT
Opportunistic networking between mobile devices relies on the ca-
pabilities of those devices to establish ad-hoc communication among
each other. While the two dominant wireless interface technolo-
gies, IEEE 802.11 wireless LAN and Bluetooth, offer such capa-
bilities in theory, limitations of the protocol specification, chipsets,
and operating systems in mobile devices render those features largely
unusable in practice. Researchers have recognized these short-
comings and devised mechanisms in which mobile devices act as
WLAN access points to simulate WLAN infrastructure-based op-
eration. In this paper, we complement these approaches by instru-
menting commercial WLAN APs that do not employ L2 security
to serve as link layer packet relays without requiring the mobile
nodes to authenticate with the WLAN hot-spot. We present differ-
ent mechanisms for peer discovery, evaluate their feasibility for a
set of commercial hot-spots, and discuss operational considerations
for fair use of commercial access points.

Categories and Subject Descriptors
C.2.2 [Computer Communication Networks]: Network Proto-
cols

General Terms
Algorithms, Design, Experimentation

Keywords
Delay-tolerant Networking; DTN; WLAN; Hot-spot; Ad-hoc Net-
working

1. INTRODUCTION
Delay-tolerant networking between mobile nodes exploiting op-

portunistic contacts between the devices as their users move around
has been a research topic for many years, yielding diverse com-
munication and software architectures [23, 4, 21, 14], a myriad of
routing protocols, and a diverse set of applications [1, 20, 7, 6, 13,
8, 9], to name just a few.
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Yet, none of this has seen true deployment in practice. While
there may be many “soft” reasons such as lacking incentives for
altruistic cooperation between users (fearing for their device bat-
tery life) and one could argue about legal implications [12], we are
still missing some of the basic technical enablers. Mobile devices
are equipped with diverse wireless interfaces that would in princi-
ple be capable of supporting opportunistic communications. But,
in practice, mobile device vendors don’t really seem to appreci-
ate those technologies and leave their capabilities often crippled by
their hardware, operating system, and/or API designs, even though
we are seeing some modest improvements (see section 2).

WLAN appears as the most promising technology due to its data
rate and reach but it is de-facto bound to operation in infrastruc-
ture mode, in which access points support efficient network discov-
ery and node autoconfiguration. Exploiting WLAN nevertheless
for mobile opportunistic communication leaves two complemen-
tary routes: 1) turning mobile nodes into (ephemeral) access points
and 2) utilizing existing nearby access points. Some rather static
variant of (1) is inherently supported by many mobile phones and
tablets that can act as a manually configured WLAN AP to share
cellular Internet connectivity with other devices. Recent research
has gone further and suggested that mobile devices should dynam-
ically become APs to establish ad-hoc connectivity (see below). In
addition, (2) has been discussed mostly for open access points but
not yet addressed commercial hot-spots.

In this paper, we take a stab at exploiting the vast number of
available commercial hot-spots that use web-based authentication
portals (see section 3). In particular, we believe that two key issues
need to be tackled:

1. We devise a number of complementary mechanisms for peer
discovery that do not require authentication with the respec-
tive hot-spots in section 4 and evaluate their effectiveness in
the real world in section 5.

2. We discuss fairness issues for using commercial WLAN APs
for local communication and suggest using a less-than-best-
effort transport mechanism to minimize the impact of ad-hoc
communication on the commercial operation in section 6;
this is important so that vendors and hot-spot providers do
not see a need to close down the present communication op-
portunities.

2. BACKGROUND AND RELATED WORK
Various studies have explored (the limitations of) ad-hoc com-

munication for one-hop DTN forwarding in practice. Researchers
found limitations for Bluetooth pairing in that pairing takes time
and quite a few of the pairing attempts do not succeed [19]. More-
over, basic Bluetooth is not very energy-efficient in terms of en-



ergy per bit transmitted [18] and mobile operating systems such as
Android did not provide support for establishing ad-hoc networks.
These two limitations are about to change with Bluetooth Low En-
ergy1 and recent Android extensions2. At least three issues remain,
however: the short communication range that limits contacts to
less than a minute at walking speeds; the low bitrate (compared
to WLAN); and the perceived insecurity of Bluetooth that makes
people turn off their mobile’s Bluetooth interfaces to begin with.
Therefore, we put our emphasis on WLAN.

The IEEE 802.11 WLAN specifications define an ad-hoc mode
that allows hosts (precisely: station adapters) to communicate di-
rectly with one another, i.e., without the need for an access point
(AP) as is the case in the commonly used infrastructure mode.
However, ad-hoc mode has suffered from being specified only for
the link layer, lacking conventions on how to run higher layer pro-
tocols such as IP on top. In effect, ad-hoc mode is not really sup-
ported by most operating systems. While a recent specification by
the WiFi Alliance, WiFi Direct [5], aims at addressing the short-
comings and provides a complete solution for ad-hoc interoper-
ability between devices, mobile device operating systems and APIs
have yet to support this mode of operation.

Recent research [26, 27] suggests turning mobile nodes oppor-
tunistically into access points to address the lack of ad-hoc net-
working support. The authors of MA-Fi [27] focus on mobility
considerations for the APs and maintaining multihop connectivity.
In contrast, WiFi-Opp [26] aims at opportunistic communications
for which the authors suggest several modes of operation: Mobile
nodes scan the environment for usable access points and associate
with those for some time, optionally taking turns between APs. If
no AP can be found, a mobile becomes an AP itself for some time
to facilitate communication for other nodes. This also works for
fixed APs, i.e., access points not created by other mobiles but run
as hot-spots. In their paper, the authors investigate the impact of
various parameters (e.g., beacon time, scanning interval, connec-
tion time) by means of simulations, but they do not discuss how to
exploit the fixed APs in practice.

We extend WiFi-Opp in exactly this point: we investigate suit-
able mechanisms to instrument potentially restrictive commercial
hot-spots for ad-hoc communication. We use the APs only to assist
local communication and therefore do not need to perform authen-
tication, e.g., in an automated fashion as in [16] or as implemented
lately in various WLAN connectivity assistants. Not being authen-
ticated may impose diverse constraints on communication between
two mobile nodes, depending on the hot-spot configuration, for
which we develop mechanisms to systematically probe each AP.
We validate such mechanisms in real-world hot-spots.

3. COMMERCIAL WLAN HOT-SPOTS
We define the essence of a commercial WLAN hotspot as fol-

lows: A combination of a WLAN access point and a gateway (GW)
as shown in Figure 1—both of which may or may not be integrated
in the same physical box—that serve the mobile devices of typi-
cally stationary users to obtain Internet access.3 The AP function
provides wireless connectivity, including address autoconfiguration
(using DHCP); the WLAN operates without any cryptographic pro-
tection so that any host can associate with the AP.
1Bluetooth Core Version 4
https://www.bluetooth.org/Technical/Specifications/adopted.htm
2http://developer.android.com/sdk/android-2.3.3.html#bluetooth
3Multiple APs might be connected via Ethernet or other L2 tech-
nologies to form an extended service set and support handover of
mobile nodes using the same SSID. APs may also support multiple
SSIDs and/or serve multiple service providers.
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Figure 1: Commercial Hotspot Setup

The GW function is responsible for filtering traffic to the Internet
so that only authenticated clients gain access. The latter is achieved
using a captive portal that answers DNS requests on behalf of the
mobile nodes and/or terminates and redirects HTTP connections
targeted to a node on the Internet to a local HTTPS authentication
server, using 30x or 511 [11] HTTP response codes. The authen-
tication server then prompts the user to enter her credentials. All
other traffic is simply dropped until the user has been authenticated
(using a local database or some backend service).

While the GW filters most traffic to the Internet (in some cases,
DNS may be the only exception), communication between differ-
ent hosts attached to the AP prior to authentication is possible to
different extents depending on the architecture.4 At the very least,
broadcasts of the address resolution protocol (ARP) must be possi-
ble because otherwise the duplicate address detection required by
DHCP would not work. In the following section, we discuss the
different degrees of connectivity and explore how to utilize those
for peer discovery.

4. PEER AND SERVICE DISCOVERY
Assuming that two nodes are associated to the same WLAN AP

as nodes A and B in Figure 1, they need to become aware of each
other and the respective capabilities to support opportunistic com-
munication and they need to determine if and how they can com-
municate with one another.

Ideally, peer and service discovery occur in a single step: A
straightforward approach uses multicast discovery as is defined
for mDNS [2] or UPnP [3] for generic service discovery. For ex-
ample, a DTN node would simply respond to a query for a certain
DNS service record. But also per-protocol discovery mechanisms
could be applied, using protocol-specific multicast addresses, port
numbers, and message formats for discovery. Nodes can send bea-
cons indicating their available services or send/react to inquiries for
services.

Preliminary experiments carried out by the authors have shown,
however, that multicasting between mobile nodes is often blocked,
at least prior to authentication.5 A simple recipe to circumvent this
restriction would be reverting to IP broadcast discovery but IP
layer broadcasting may be disabled as well. For link layer broad-
cast discovery, port numbers for demultiplexing are no longer avail-
able so that different conventions for service discovery using L2
frames would be needed (and not be blocked).

As a more promising fallback, we suggest to decouple the steps
of peer and service discovery and utilize, in a first step, ARP re-
quests and replies to find out about other potential peers. ARP mes-
sages are broadcast as L2 frames and, as noted above, they cannot
be blocked since otherwise DHCP would stop working properly.

4Note that, even after authentication, some hotspot architectures
limit direct peer-to-peer communication between hosts.
5And it may be so even after authentication since multicasting takes
up an undue share of channel capacity.



We define two parts of ARP-based discovery: 1) Each node pas-
sively listens to ARP requests and replies (it does so anyway) and
populates a table of known peers with this information. 2) Each
node regularly broadcasts an ARP reply packet (using some “bea-
con interval”) to make others aware of its existence. This will en-
sure that new nodes associating with the AP will be made known
and learn about nodes associated with the AP.

ARP does not provide information beyond a peer’s IP address so
that a secondary step for service discovery is needed—which then
blends in seamlessly with determining if direct communication be-
tween the two nodes is possible.6

To check for ad-hoc connectivity, a node A simply attempts to
reach its peer B at a known port number using TCP or UDP. This
could be done using an explicit service discovery step by means of
point-to-point communication for one of the service discovery pro-
tocols mentioned above to exchange capabilities. Or, if a port num-
ber is reserved for the opportunistic communication protocol (such
as port 4556 for the TCP and UDP convergence layers of the DTN
bundle protocol [24]), node A attempts establishing a connection to
the sought service at B right away. If the connection succeeds, the
two nodes can use it to exchange service-specific information, e.g.,
buffer space, routing tables or contact history, and to (optionally)
authenticate each other, before they begin exchanging messages. If
it fails, A knows that B either does not support the service or that
the AP does not let the traffic pass—which are equivalent in their
outcome.

Finally, if (mobile) operating system constraints do not allow
sending or receiving ARP packets (an operation that requires raw
sockets so that access is usually restricted), a node might perform
unicast discovery. From its DHCP lease, it learns also the netmask
for the subnetwork and thus the address space assigned to this sub-
net, typically in the order of /24. With such a limited address space,
a node can then simply scan all addresses at a reasonable rate to
find available peers. However, this should be used as last resort as
it is most expensive in terms of energy consumption (and may even
conflict with the terms of usage of the hotspot).

If connectivity checks or peer discovery fail on a given port num-
ber, one option could be trying other ports and possibly tunnelling
a protocol inside another (such as HTTP). However, such an ap-
proach is unlikely to succeed in the long run as it would just cause
a similar arms race as observed between firewall vendors imple-
menting deep packet inspection and application protocol design-
ers attempting to make their traffic and messages look like HTTP.
Nevertheless, in our subsequent evaluation we also investigate if
hotspot APs allow connection on certain port numbers between
hosts to pass while blocking others.

Table 1 summarizes the above collection of peer discovery mech-
anisms. Connectivity verification is always done by attempting to
establish a TCP connection or exchanging UDP datagrams between
the peers.

Note that nodes connected to different WLAN APs forming an
extended service set may experience different connectivity, but the
mechanisms described above will discover peer-to-peer connectiv-
ity when it exists.

5. EVALUATION
To evaluate peer-to-peer connectivity between nodes that are as-

sociated to the same open AP, we built a testing framework to be

6One could apply proprietary extensions to ARP and, e.g., pad the
ARP message with additional information, but such an approach
could easily clash with similar extensions devised by others so that
we refrain from pursuing this idea further.

Mechanism Peer discovery Service discovery
Multicast request/response included

beaconing included
Broadcast request/response separate

beaconing separate
ARP-based passive listening separate

unsolicited response separate
Unicast request/response partly implied

one-by-one scanning separate

Table 1: Overview of available discovery mechanisms

Figure 2: Approximate area of AP scans in Helsinki. c© Open-
StreetMap contributors, CC BY-SA

run on two mobile devices. One of the devices acts as a test master
and the other as a slave. The master scans available open APs, asso-
ciates to one and then instructs the slave to connect to the same AP.
After both devices are associated and have acquired IP addresses
through DHCP, the master initiates a suite of connectivity tests.
Control traffic, e.g., commands and address information, between
the master and the slave is transmitted over Bluetooth.

The connectivity checks include IPv4/IPv6 multicast with vari-
ous scopes, IPv4/IPv6 broadcast to both network and subnet broad-
cast addresses, mDNS/DNS-SD (Bonjour), ARP request with TCP
echo, direct TCP to various ports (with traffic appearing to be HTTP).

We ran the test suite for a random sample of 50 open access
points. The access points were picked from an approximately 1
km2 area in central Helsinki (as shown in Figure 2, which has a high
amount of pedestrian traffic and a high density of hotels, restaurants
and businesses that provide open access points. Most of the mea-
surements were performed from the street with a few measurements
inside shopping centres, all publicly accessible to pedestrians. Only
traffic directly between the two devices was tested and no attempt



Mechanism Success
ARP + TCP echo 30%
mDNS + DNS-SD 30%
IPv4 local broadcast 30%
IPv4 subnet broadcast 32%
IPv4 multicast - local subnet 30%
IPv4 multicast - Internetwork Control Block 28%
IPv4 multicast - AD-HOC block 30%
IPv4 multicast - Administrative scope 28%
IPv6 multicast - link-local 40%
IPv6 multicast - IPv4 local scope 40%
IPv6 multicast - administrative-local 40%
IPv6 multicast - site-local 40%
IPv6 multicast - organization-local 40%
IPv6 multicast - global 38%
Captive portal - port 80 28%
Captive portal - port 443 4%
Captive portal - port 4556 2%
Captive portal - port 8080 12%
TCP - port 8080 30%
TCP - port 4556 26%
Any communication 48%
IPND + TCPCL 20%
Completely open 16%

Table 2: Test results for 50 open access points.

was made to connect to the public Internet or interact in any way
with captive portals. The results are shown in Table 2.

The IPv4/IPv6 multicast tests worked by having both test devices
subscribe to the same multicast address, after which the slave sent a
beacon to the multicast address every second. The master listened
for the beacons for a few minutes (to account for possible delays to
multicast delivery due to 802.11 power-saving mode) and recorded
which beacons it received. The IPv4/IPv6 broadcast tests worked
similarly (except for the multicast group membership).

The tests show that IPv4 multicast and broadcast works in roughly
30% of the APs. The success rate of mDNS, which is based on IPv4
multicast delivery, is also 30%. However, in many APs that block
IPv4 multicast, IPv6 multicast packets will still go through. IPv6
multicast works in 40% of the APs (for all scopes except global),
giving it the highest success rate of any single test. This is likely
to be due to technical issues (e.g., filtering software not support-
ing IPv6 or the administrators failing to configure their systems
properly) rather than a policy decision since there is no qualitative
difference between IPv4 and IPv6 multicast traffic. Furthermore,
among the tested APs we found almost every possible permutation
for multicast and broadcast filtering rules, including APs that fil-
tered mDNS but allowed all other tested IPv4 multicast traffic (and
vice versa), APs that filtered all IPv4 multicast traffic and some
but not all IPv6 multicast scopes and APs that filtered local net-
work broadcast (255.255.255.255) but not subnet broadcast. This
indicates that any discovery mechanisms cannot rely on a single
multicast or broadcast address, but must use multiple in order to
maximize the success probability.

While IP multicast is typically used for peer discovery, direct
TCP is used for actual data transfer. We tested direct TCP commu-
nication between the nodes for ports 8080 and 4556 (TCPCL). In
order to detect captive portals we further tested opening a TCP con-
nection to ports 80 and 443 even though the test devices were not
listening those ports. All TCP traffic was made to look like HTTP

requests with the test master sending out an HTTP GET request
and the slave sending an HTTP 200 OK response.

The tests showed that 30% of the APs allowed direct TCP con-
nections between peers on port 8080 and 26% on port 4556. The
APs employed various strategies for blocking the TCP connections.
Some simply dropped the packets leading to the handshake timing
out, some replied with ICMP Destination Unreachable, while yet
others allowed the initial TCP handshake to succeed but did not
allow any user data. In a few occasions TCP connections failed
because the AP assigned IP addresses from different subnets to the
two test devices.

The TCP test suite was capable of detecting captive portals by
examining the headers in the HTTP responses. Even though the
tests did not include any attempt to connect to the public Inter-
net, only to the other local device, we still found that 28% of the
APs had a captive portal intercepting HTTP requests to the port 80.
Ports other than 80 had significantly lower interception rates with
12% of traffic to port 8080 and 4% to port 443 being intercepted.
Only one AP had a captive portal intercepting traffic to a non-HTTP
port (4556), likely through deep packet inspection to identify HTTP
traffic. We observed captive portals using the HTTP status codes
302, 307 and 404, but not the 511 code that is supposed to be used
to indicate the presence of a captive portal [11].

Out of the tested APs, 16% appeared to allow completely open
communication between local devices without any blocking or fil-
tering, enabling any kind of peer-to-peer communication to take
place. Roughly half of these were APs operated by businesses for
their customers, while the other half seemed based on their names
to be privately owned APs that had been accidentally left open.

Typical peer-to-peer communication requires two elements, dis-
covery and transport. We found that such combined interaction will
succeed for 20% of the APs for the DTN protocols (IP Neighbor
Discovery + TCP CL). Of the failed attempts, 80% failed because
both discovery and transport failed, 12.5% because transport failed,
and 7.5% because discovery failed.

Towards Practical Application
While the previous results seemingly mean that peer-to-peer com-
munication will fail in 80% of the open APs, we found out that
when combining all the methods of data delivery between the de-
vices we could find at least one mechanism to transfer packets be-
tween the two devices 48% for of the time. From the results in
Table 2 we can see that just by directly scanning for open port 4556
instead of relying on multicast based discovery, we can increase the
success rates from 20% to 26%. Using a known HTTP port 8080
we can further increase this to 30%. In order to reach the full 48%
success rate, multicast/broadcast based transport is needed.

These results show that no single mechanism is clearly supe-
rior, nor reliable enough to depend on solely for peer discovery and
contact establishment. Furthermore, different mechanisms place
different strain on the network. For example, broadcast/multicast
packets are processed by multiple nodes (and may be rate lim-
ited by the AP) and therefore can be used for peer discovery, but
should be avoided for message transmission. Therefore a proto-
col is needed for systematically applying the various mechanisms
for peer discovery and contact establishment in a way that guaran-
tees the best possible chance of success while avoiding unnecessary
strain on the network. While the detailed design of such protocol
is outside of scope for this paper, we can postulate some general
rules for efficient peer discovery and contact establishment: 1) the
nodes should listen for transport connection on multiple ports, in-
cluding well known HTTP ports (such as 8080) if possible, 2) stan-
dard mDNS/DNS-SD discovery should be attempted first, 3) cus-



tom multicast/broadcast based peer discovery should be tried with
different scopes, including IPv6 multicast, 4) direct port scanning
can be attempted if all other attempts failed.

Another practical consideration is ensuring that nodes connect
to the same AP when multiple open APs are detected at the same
time. There are at least two approaches to solve this: 1) passive,
distributed choice, or 2) active, coordinated choice.

The first approach relies on all clients making the AP choice
locally based on some set of rules which result in all the clients
choosing the same AP. The simplest of such algorithms is to pick
based on the numerical order of the BSSID (every client connects
to the AP with the lowest value for BSSID). The downside of such
static rule is that the traffic load is likely to concentrate on the same
APs. This can be rectified by including some time-varying, but
shared information in the decision making. For example, the clients
may append the current time with a resolution of an hour to the
BSSID, calculate a hash over the concatenation and use that value
for selection. This would then shift the load around APs over time.

The second approach would require active probing to discover
nodes connected to an AP and then making a coordinated decision
to join a specific AP or to change APs in order to spread the load.
Such approaches are likely to be more complex but can potentially
be more robust.

6. DISCUSSION

6.1 Scaling
For opportunistic ad-hoc operation, we would expect a mobile

device to have at most a few neighbors at any point in time; in fact,
quite often in DTN research, wireless interference and other aspects
of multiparty interaction are discounted because sparse networks
are assumed.7 Leaving physical and link layer aspects aside, at the
very least, using hot-spots will enhance the reach of mobile nodes:
because using infrastructure mode is likely to increase the number
of devices that can communicate to begin with, because APs act as
a relay and increase the coverage area, and because multiple APs
may form an extended service set.

This means that DTN nodes must exercise care when executing
neighbor discovery mechanisms. Of the ones described earlier, pas-
sive discovery by observing other traffic (such as ARP or DHCP)
would cause only minimal additional traffic whereas active unicast
scanning would be most expensive. Multicast-based discovery is
somewhere in-between, but multicasting uses lower transmission
rates for transmission and therefore consumes more channel capac-
ity. To maintain the channel share used by multicast-based discov-
ery mechanisms, adaptive probing should be used that limits the
total amount of discovery traffic within a hot-spot, similar to the
restrictions defined for RTCP [22] or Mbus [17].

In an infrastructure WLAN with a large number of nodes associ-
ated to it, a mobile node faces a larger choice of peers to communi-
cate with. For exchanging data, a node has to attempt connecting to
its peer, exchange DTN metadata (e.g., contact and routing infor-
mation), determine the messages to relay, and exchange them. A
node should limit the number of peers it attempts to communicate
with in parallel in order to limit its own resource usage within the
hot-spot (see also next subsection). Once a node has scheduled set
of messages for transmission to a peer, it should finish this set be-
fore choosing a new peer to connect to, so that also messages in the
end of the (priority) queue will be replicated; otherwise, the contact

7With Bluetooth, some such simplifications may indeed hold be-
cause connecting to more than one device may not be possible.
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Figure 3: Simple Measurement Setup

durations would be artificially cut short. Investigating this in detail
is a topic for further study.

6.2 Transport Protocol Considerations for
Friendly Hot-Spot Usage

Two mobile nodes leveraging a hot-spot AP for their interac-
tion obviously utilize resources intended for a different—usually
commercial—purpose and thus may affect the regular (paying) users
connected to the hot-spot for Internet access. Since it is easily pos-
sible for an AP to block node-to-node communication (as our ex-
periments confirmed), mobile nodes seeking to “borrow” hot-spot
capacity should ideally not disturb the hot-spot operation for reg-
ular users—otherwise future hot-spot systems might simply elimi-
nate this opportunity to protect their customers’ interests.8

Not disturbing traffic essentially means for a node to restrict it-
self to only using spare capacity so that the additional load does not
lead to packet losses and the increased network load yield at most
minimal increases in transmission latency.9 To this end, the oppor-
tunistic traffic appears similar in nature to scavenging residual path
capacity in the Internet as suggested for background applications
such as software updates or file sharing, except that it is link-local.
This suggests mechanisms similar to the Low Extra Delay Back-
ground Transport (LEDBAT) congestion control schemes devised
for the Internet and implemented in, e.g., BitTorrent [10], might be
applicable.

LEDBAT is designed to utilize the available capacity while main-
taining low queuing delay when no other traffic is present; add only
minimal queuing delay to other flows, and yield to flows employ-
ing TCP congestion control regimes [25]. To achieve this, LED-
BAT closely monitors one-way delay and cuts back its sending rate
upon slight increases, thus giving way before TCP congestion con-
trol would act.

Initial Experiments
While exploring such alternative transport protocols for peer-to-
peer operation in depth is well beyond the scope of this paper, we
carry out an initial set of experiments to obtain some first qualita-
tive indication about the basic feasibility of this idea. We build the
setup depicted in figure 3 comprising five nodes: a WPA-protected
802.11g WLAN is provided by a D-Link DWL2100AP access point
to which three nodes are associated: (A) an IBM ThinkPad laptop
computer running Ubuntu Linux 11.04 (kernel 2.6.38-15) and (B)
a Nokia N900 Maemo phone serve as the two peer nodes gener-
ating the potentially interfering traffic for the regular client. (C) a
MacBook running MacOS 10.7.4 serves as the stationary client in
the commercial hotspots and also orchestrates the execution of the
8This is particularly important because the traffic between two mo-
bile nodes hits the WLAN twice, yielding a stronger effect.
9Additional traffic also requires more energy to forward packets,
but we consider this aspect to be minor.



measurements. For simplistic stationary traffic C interacts with a
local Linux server (S1, local) and a remote one (S2, remote) in the
Aalto University network. The local network is connected to the
Internet via a commercial ISP using DSL access (supposedly 24/1
Mbit/s, but effectively rather some 16/1 Mbit/s); the mean RTT to
S1 is 2–3 ms and to S2 some 25 ms.

We choose four different setups: as primary traffic, the client C
uploads or downloads data from a local or a remote server for 90 s
and logs each transferred segment. We combine these with three
different types of peer-to-peer cross traffic between A and B: none
(to obtain a baseline), TCP, and LEDBAT. We use tcpx [15] to gen-
erate TCP upload and download traffic between C and S1/S2 as
well as TCP-based cross-traffic between A and B. For LEDBAT-
based cross traffic between A and B, we employ the BitTorrent
libutp library10, specifically we instrument the tools utp_send and
utp_recv to transfer 8 MB files. For both TCP and LEDBAT cross-
traffic, A is the sender and B the receiver. The cross-traffic is started
10 s after the primary TCP traffic.

We analyze the goodput of the client-server and the peer-to-peer
connections only from a qualitative perspective because, obviously,
our measurements are biased by the implementations of the station-
ary and mobile nodes and the specific access point design and the
setup is subject to external influences. For the local server, we find
that the mean client (C) bit rate achievable with TCP cross traffic
is some 5–20% below the rate without cross traffic, whereas it re-
mains largely unaffected when using LEDBAT cross-traffic. For
the remote server, the impact is less noticeable. Here, the capacity
limitations of the DSL link clearly constrains the upload rate: none,
TCP, and LEDBAT cross traffic yield similar results. For the down-
load, TCP and LEDBAT yield roughly similar performance, some
5–10% below the rate achieved without cross traffic. However, with
the unknown impact of the involved Internet, these numbers should
be treated with care.

Looking at the bit rate for the cross traffic, we find that LED-
BAT indeed makes room for the primary TCP traffic and picks up
after the primary TCP connection has finished. In contrast, TCP
attains a higher share of the WLAN capacity. The effect is more
pronounced the stronger the primary TCP traffic is: for communi-
cation with the local server, the primary TCP rate is higher so that
latency grows, which is interpreted by LEDBAT as a signal to cut
back. Communication with the remote server, in contrast, does not
fill up the WLAN so that the cues for LEDBAT are not as strong,
yielding less cut-back by LEDBAT, whose performance is closer to
TCP.11

Overall, this simple experiment provides some initial hints that
(for WLANs under load) it could be desirable for mobile peer-to-
peer traffic to utilize a transport protocol that yields to traffic of
paying customers. LEDBAT appears as a reasonable starting point
for such a scavenging adaptive transport mechanism, but will likely
require tuning to become more sensitive to early delay cues. We
leave exploring those ideas further as a topic for further study.

6.3 Private WLANs
The mechanisms described above to support direct peer-to-peer

communication between mobile nodes in commercial hot-spots could
equally be applied to access points in private households or busi-
nesses. Similar to commercial hot-spots, a key point is that local
users are not disturbed by the traffic load caused by the mobile ad-

10https://github.com/bittorrent/libutp/
11Interestingly, we also find that the TCP connection for the cross
traffic occasionally stalls for several seconds whereas LEDBAT
traffic continues at a low rate.

hoc users. Using scavenging transport protocols along the lines
discussed above would be applicable as well.

While commercial hot-spots do provide authentication mecha-
nisms and prevent unauthorized access to the Internet by means of
captive portals on top of unsecured WLANs, private and business
access points usually employ L2 security (WPA2), possibly in con-
junction with 802.1x to protect their network. In such cases, an
access point would need to host a second SSID for mobile users
that is open at the link layer and isolated from the SSID used for
internal communications. This could, for example, be achieved us-
ing virtual SSIDs (as is done for some WLAN sharing services such
as FON12) in conjunction with VLANs13.

A suitably designed access point could also easily limit the through-
put on the VLAN assisting mobile peer-to-peer communication when-
ever local traffic is present and thereby prevent (malicious) mobiles
from undue resource utilization. In a simple case, all mobile-to-
mobile traffic would be treated jointly as a separate traffic class with
traffic shaping applied as a whole. Since mobile users will usually
be only associated with the AP for a short period of time, their
individual impact on stationary users may be limited so that such
a data rate cap could be imposed only after a grace period (e.g.,
60 s). More complex algorithms, determining the cap and grace
period dynamically as a function of the total load incurred my the
mobile users (over time) and the demand of stationary users, are
also conceivable.

7. CONCLUSION
Our experimentation supports that WLAN access points can be

used in practice to learn about other co-located mobile devices in
urban areas. However, observations from running complex connec-
tivity scanner show that any single scanning method and address
combination does not outperform all others. This calls for using
combination of scanning methods and providing appropriate ad-
dresses (IPv4/IPv6, unicast/multicast/broadcast) for each method.
While the present evaluation shows a need for combination of scan-
ning schemes, efficient semantics for choosing such combinations
will be a topic for future work.

A further observation is that discovering device co-location is
more widely supported than data transfer between devices via an
access point by using a known transport such as the TCP conver-
gence layer for DTNs. This hints that using WLAN based discov-
ery can serve as a signal to start using peer-to-peer communica-
tions, such as WiFi-Opp or Wi-Fi Direct, that enable using chosen
convergence layers upon discovering device co-location. In con-
trast, while Wi-Fi Direct provides its own discovery methods, using
it all the time would render traditional WLAN access unusable as
current devices do not support its use simultaneously to infrastruc-
ture mode.

Measurements show that choosing a specific protocol (e.g., the
TCP convergence layer) may lead to poor success in data trans-
fer; this calls for future work on additional transport mechanisms,
for example, UDP (multicast) based convergence layers. Such fu-
ture convergence layers also need to avoid interfering with paying
customer traffic in hot-spots so that service providers do not block
ad-hoc traffic. Exploring a bandwidth scavenging protocol such as
LEDBAT appears as a promising first step into this direction, but
refinements to capture the delay properties of WLANs may be re-
quired.

As a general conclusion we see that using WLAN access points
for enabling opportunistic peer discovery and communication can

12http://www.fon.com/
13See, e.g., http://www.dd-wrt.com/wiki/index.php/Multiple_WLANs



work in practice for urban pedestrians, but requires careful de-
sign to achieve high discovery and communication success rates.
Our future work includes exploring the capabilities of commercial
WLAN hot-spots at larger scale, devising an algorithmic approach
to efficient connectivity establishment between mobiles, and ex-
ploring the design of a scavenging transport protocol in more de-
tail.
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