
Voice Messaging for Mobile Delay-Tolerant Networks

Md. Tarikul Islam
Aalto University Comnet

mtislam@cc.hut.fi

Anssi Turkulainen
Aalto University Comnet

anssi.turkulainen@aalto.fi

Jörg Ott
Aalto University Comnet

jo@comnet.tkk.fi

Abstract—Mobile ad-hoc networks, especially when they are
sparse, are not well suited for ad-hoc voice communication
when using end-to-end real-time audio streams: as paths grow
in length, stability and forwarding performance suffer, and
sometimes paths may not exist at all. In this paper, we suggest
using asynchronous voice messaging built upon delay-tolerant
networking concepts with some degree of hop-by-hop reliability
to enable communication even in sparse environments and ensure
intelligible speech. We evaluate the resulting walkie-talkie-style
service in different synthetic and mobility-trace-driven settings
and report on our experience from interoperable implementations
on various mobile device platforms.

I. INTRODUCTION

Voice telephony is one key means of human interaction,
today complemented by other close-to-instant forms such as
chat and text messaging. Depending on the situation and the
information to be conveyed, speaking and listening may be
less distracting or more efficient than typing and reading.
However, synchronous voice conversations require users to be
available at the same time and can be more intrusive than,
e.g., messaging. This also applies to Push-to-talk (PTT), a
half duplex voice service that provides individual and group
communication in a walkie-talkie fashion. PTT is available
in mobile phones, with a single button to toggle between
voice transmission and reception. One version of PTT, called
Push-to-talk over cellular (PoC) [1], is based on 2.5G or 3G
packet-switched networks and thus requires cellular network
infrastructure to function (in contrast to amateur radio walkie-
talkies). Voice mail allows effectively circumventing both
restrictions above, at the cost of reduced interactivity.

The three above types of mobile voice communication
impose essentially no restrictions on the locations of the
communicating users, but all rely on infrastructure networks.
These need to be utilized even if the users are near each
other. This may prevent communication if 1) the cellular
access networks are congested, 2) the network is not accessible
because users are not authorized (e.g., due to missing roaming
agreements, restrictive tariffs, of empty prepaid calling cards)
or due to lack of network coverage, or 3) the cost is deemed
prohibitive for a (roaming) user.

Instead of relying on cellular infrastructure, it may be
desirable to bypass such networks for local conversations, as
has been widely discussed for data communication in mo-
bile delay-tolerant, pocket-switched, or opportunistic networks
(e.g., [2], [3], [4]), to circumvent the above limitations. As
ad-hoc networks formed by cooperating mobile users may be

sparse so that packet-based synchronous voice communication
(e.g., [5]) may often not be feasible, we turn to asynchronous
voice messaging only: such a voice conversation resembles
two-way-alternate walkie-talkie-style communication if the
nodes are well connected and messages can be delivered
virtually instantaneously, but degrades to asynchronous voice
messaging as delivery delays within mobile networks grow.

Several studies have explored the feasibility of voice mes-
saging as a primary means for interpersonal communication
[6], [7], [8] that emerged in parallel to our own earlier work
[9]. In this paper, we extend our past experimental work in two
ways: 1) We provide a comprehensive system and protocol
design and implementation that also addresses interoperability
aspects known from traditional telephony. 2) We quantify
the performance of asynchronous voice interactions in oppor-
tunistic mobile environments for different (urban) scenarios to
understand the feasibility for different types of interactions.

II. INTERACTIVE VOICE MESSAGING

We envision an application running on mobile devices
that offers asynchronous and interactive voice messaging in
scenarios where voice interaction is a more convenient way for
communication than using text communication (e.g., because
of ease to use [7] and requiring less attention); and where
infrastructure networks are not necessarily available.

We opt for asynchronous message-based communication
because this allows us to address two major issues of mobile
ad-hoc environments: 1) Network partitions and unstable or
non-existing end-to-end paths due to sparse node distributions
and mobility make packet-based end-to-end communication
unlikely to succeed [10], [11]. 2) Performance degradation
observed for wireless multihop communication may impede
packet-based voice even if an end-to-end path exists [12].

We overcome both issues by applying delay-tolerant net-
working [13] concepts based upon asynchronous store-carry-
and-forward messaging: voice statements are recorded locally
and packed into DTN messages to be forwarded as a whole.
We assume an underlying communication substrate following
the DTNRG architecture [14] and the bundle protocol [15]
that offers best-effort delivery of virtually arbitrarily sized
messages (bundles) to one or more destinations. Routing and
forwarding is based upon single-copy or multi-copy routing
protocols. DTN forwarding does not require instant end-to-end
paths and tolerates disconnections. It performs error control on
each hop so that messages are delivered completely and error-
free if they reach the destination. We thus accept an increase978-1-4244-8953-4/11/$26.00 c© 2011 IEEE



in delay to improve reachability and voice quality.
We consider target scenarios that can be generalized to

three classes as depicted in figure 1 where device A sends
voice messages destined for device B. In the simplest case
(a), device A and B are within radio range of each other
(directly or indirectly via, e.g., WLAN infrastructure). In
a more complex case, mobile devices form larger ad-hoc
networks and one or more nodes forward the voice messages
opportunistically towards the recipient: in a connected (b) or
(partly) disconnected (c) network. In the latter case, senders
and forwarders may store the messages in persistent memory
until the forwarding opportunities become available, e.g., when
the mobile device C moves physically towards the destination.

We assume that, in some scenarios, similar to voice mail,
voice communication does not always need to be highly
interactive and that delays are permissible. The delay D
obviously varies with the connectivity between the involved
peers as depicted in figure 1 and the message size S (the
latter of which is turn a function of the audio encoding).
The lower bound on delay is implied from the length of the
statement or talkspurt Ts since this needs to be fully recorded
first. If two nodes are in direct contact with each other (a),
the additional delay is minimal and only depends on the net
channel capacity C (in bit/s): D = Ts + S/C. In a connected
multihop network with n hops (b) with a mean capacity C per
hop, the store-and-forward nature of the network yields a delay
of D = Ts +n×S/C in case of an otherwise empty network;
queuing delays due to other messages add further to this. In a
disconnected network (c), the time that passes between a node
receiving a message and meeting the next hop to forward it
to needs to be factored in; such inter-contact times depend on
the node density and mobility characteristics.

For voice messaging, we expect mouth-to-ear delays in the
order of seconds—compared to some hundred milliseconds or
less for real-time interactive voice—when sender and receiver
are close to each other, increasing with topological and gen-
erally with geographic distance. As message delivery delays
grow (to minutes or even hours), interactive voice messaging
converges to traditional voice mail-style communication, but
bypassing the infrastructure networks. Latency limits interac-
tivity and thus the applicability of voice messaging. Com-
munication may further be constrained to limited geographic
distance between sender and receiver(s) as the probability that
a message is delivered at all is expected to decrease with
network size and distance.

We expect voice messaging to provide a suitable commu-
nication means among peers in geographical proximity. This
yields different potential real-world usage scenarios: In sports
events, concerts, festivals, and similar events groups of people
may seek to coordinate or find each other; when cycling,
rollerblading, or hiking (especially in large events) groups
of people may stay in contact even if they are somewhat
apart; inside convention centers or large hotel facilities, people
may interact for appointments without depending on cellular
networks (that may be costly or whose coverage may be
limited, e.g., in underground facilities), but possibly leveraging

Fig. 1. Different delivery modes for voice messaging

local WLAN infrastructure; and in remote or disaster areas,
voice messaging may offer the only option for communication.

III. DT-TALKIE DESIGN

A. System Operation

The general processing steps of the DT-Talkie are depicted
in figure 2. If user A wants to send a voice message to user B
in a one-to-one communication scenario, she manually starts
and stops recording the message, e.g., using a button. The
voice message is captured from the audio source (e.g., the
microphone) of user A and encoded using at least one codec.

Audio 

Encoding

Application Level 

Framing
Bundling

Bundle Protocol 

Service

PCM 

Voice 

Headers

MIME Message

Optional 

Contents

Voice
Headers

DTN Bundle

MIME 

Message

Encoded 

Voice 

DTN

Fig. 2. General processing steps of the DT-Talkie

Message Encapsulation: After encoding, all pieces of a
voice message are aggregated into a DTN bundle. In the sim-
plest case, the message just comprises one audio segment; in
more complex ones, multiple audio segments (e.g., talkspurts
identified by voice activity detection). In the latter case, the
relative timing between individual message segments must be
preserved so that a header with timing information is added
per segment as is a sequence number to detect losses.

To allow adding these headers, including multiple mes-
sage segments, and sending auxiliary information along with
voice, we use MIME as an extensible, recursive encapsula-
tion scheme. MIME can also provide security mechanisms
for message secrecy, authentication, and integrity protection
(S/MIME). We define several headers: X-Bundle-Destination
to distinguish one-to-one and group conversations; X-Bundle-
TS and X-Bundle-SeqNo to include a timestamp and a per-
sender message sequence number; and X-Bundle-Type to indi-
cate if voice messages are sent in full-length or as fragments.

We define two auxiliary pieces of content to be included
in the MIME message: a digital business card (vCard)1 to

1http://www.icm.org/pdi/vcard-21.txt



provide information about the sender (display name) and an
image—either a user’s profile picture or instant snapshot from
the device’s camera—to offer further context.

Bundle Delivery: Finally, the MIME message is encap-
sulated into a bundle and sent using the Bundle Protocol
services. When user B receives the bundle, the MIME message
is decapsulated and its contents extracted, the headers being
used to ensure ordering and proper rendering. The DT-Talkie
decodes the voice message and starts playback to the audio
sink (e.g., speaker) of user B. Any optional auxiliary contents
is displayed (e.g., the originator name and the image are shown
in the GUI). It might happen that user B does not support
the necessary codec(s) to decode and playback received voice
messages, in which case an error message is returned to A to
negotiate codecs. We will return to this in section III-C.

Bundle Addressing: All the endpoints in the DTN domain
are identified by a URI-like endpoint identifier (EID) [15]
for which we use the dtn: scheme. Every node has a unique
singleton EID but can register for any number of multicast
EIDs. An EID takes the form: dtn://node-id/application-id. In
DT-Talkie, <host>.dtn is used as the node-id and dttalkie is
used as application-id (e.g., dtn://nokia-n900.dtn/dttalkie). For
mobile phones equipped with a SIM card, a suitable default
address would be the corresponding E.164 number as <host>.

Group Communication uses the same concepts as one-
to-one communication, the main difference being that voice
messages are destined to a multicast EID. The structure of a
multicast EID is defined as dtn://<group-name>.dtn/dttalkie.
If users want to receive voice messages from a particular
group, they register with the corresponding multicast EID.

Since group conversations may have multiple senders, we
apply a simple variant of causal ordering [16]: The sender
includes the bundle identifiers2 of the last k messages received
before this message in the present message, text-encoded as
a comma-separated list in an optional X-Preceding-Messages
header. This allows the receiver to wait with playback until
the messages triggering the last one have arrived. Optionally,
especially if messages are small, the sender may include the
entire previous message(s) so that the context of a statement
is always provided and no extra waiting delay is added. The
previous messages are included using the MIME multipart
mechanisms (multipart/related) and are each labeled using
the X-Bundle-Source header to denote the original sender.
Further studies are required to determine how many message
identifiers or messages should be included. Using a dynamic
timeout accounting for past delivery delays inside the group
and accordingly limiting the age of the messages to be
considered could be a suitable means to determine which
recent messages are included.

Voice Sessions: DT-Talkie implicitly sets up and manages
“conversations” between users. A node is idle upon startup and
when it has not received a voice message for some time. When
a message comes in (from user A or belonging to group G)

2A bundle is identified by its originating node’s singleton EID, the DTN
timestamp, the payload length, and the fragment offset.

user B is alerted. If B plays the message, a session is implicitly
set up: messages from B will by default be directed to A (or
G) and incoming messages from A (or for G) will be played
back without further user intervention as long as they arrive
within a time window of the previous one sent or received in
this session. If a message arrives from a different user C while
B is in session with A, the message is queued and the user
alerted; user controls are provided to toggle between sessions.

B. Voice Message Fragmentation

Sending large voice messages in a single bundle might not
be feasible in some scenarios. For example, contact durations
in opportunistic DTN environments may be too short to suc-
cessfully transmit a large message. This suggests fragmenting
a large message into smaller pieces to enable communica-
tion over short-lived links. In addition, when users are well
connected to each other (e.g., low end-to-end delay) during
an ongoing DT-Talkie session, delivering voice messages as
fragments could help improving session interactivity.

Since bundle layer fragmentation may negatively impact
message delivery [17], we apply fragmentation at the applica-
tion layer following the concept of application layer framing
[18]. Basically, each voice message contains a sequence of
talkspurts (sentences) and silence periods. DT-Talkie separates
the talkspurts from the silence periods, considers the talk-
spurts as segments, and maps each segment to an individual
fragment. The fragments are then sent as different bundles.
This approach may significantly reduce latency and thus
increase the interactivity of a voice session.

We encapsulate voice fragments in individual MIME mes-
sages. Each MIME message carries two further headers: X-
Frag-No and X-Last-Frag. X-Frag-No counts the fragment
number within the message (starting from 0 for each message),
X-Last-Frag indicates if a fragment is the last one of a
particular message.3 Including this metadata in a message
allows the recipient to play back the voice fragments in the
correct order and wait for all (or most) fragments to arrive.

For now, we keep fragmentation static: voice activity detec-
tion is used to identify talk spurts and fragments are generated
and handed to the bundle layer for transmission as soon as they
are recorded. It is up to the bundle layer to buffer messages
when no (suitable) next hop is available and send out frag-
ments in bursts as soon as an opportunity arises, knowing that
this incurs additional per-message overhead (as we evaluate
below). Future work will investigate dynamic adaptation of
fragmentation to the observed network connectivity.

C. Codec Interoperability Issues

We expect endpoints participating in a DT-Talkie sessions
to be heterogeneous and so their respectively supported codecs
are likely to differ.4 In regular interactive voice communication
as well as in PoC, codecs are negotiate during session setup;
this takes at least one extra RTT. As one-way delays in
DTN scenarios may be significant, we have to avoid such

3The sender knows this as the user presses a button to start/end a message.
4E.g., codecs requiring licensing may not be available on some platforms.



extra round-trips and yet provide some basic facilities for
interoperable codec selection. We suggest using a combination
of three simple mechanisms:

Baseline Encoding: We choose 8-bit G.711 PCM encoding
at 8 kHz sampling rate as a baseline as this is most likely
to be supported by most nodes since there is virtually no
computational overhead for encoding or decoding besides a
table lookup for A- or µ-law encoding. We recognize that PCM
is about one order of magnitude more expensive in bandwidth
consumption than other VoIP codecs. Therefore, we consider
additional means for interoperability discussed below.

Multiple Encodings: A node A sending to another B for
the first time has no knowledge about the codecs supported by
B. For this first transmission, A could encode a voice message
separately using all of its supported codecs and send them in
one compound message. Recursive multipart MIME encoding
(using multipart/alternative) allows for this. However, A may
support many codecs and using all of them may not be a
good idea because the resulting large message may experience
poorer delivery performance. Hence, we need to use a minimal
number of codecs so that we achieve an acceptable probability
of interoperability.

Assuming two devices A and B choose from a set C =
C1, ..., Cn of codecs, n = |C|; A and B each support k codecs,
CA, CB ⊂ C; and they pick their codecs independently. We
are interested in the probability pn(k) that CA ∩ CB 6= ∅.
With n codecs, there are a Ns =

(
n
k

)
different sets and Nd =(

n−k
k

)
disjoint sets, yielding pn(k) = 1 − Nd

Ns
. For example,

for n = 20,5 p20(4) = 0.62, p20(5) = 0.81, p20(6) = 0.92,
p20(7) = 0.978, p20(8) = 0.996, and p20(9) > 0.999. We find
for k >

√
n, pn(k) quickly approaches 1 with larger k and

verified that pn(d
√

ne) > 0.67 for up to n = 100. This effect
is even more pronounced with a non-uniform distribution (as
one would expect for codecs).

To illustrate the impact of the number of codecs on the
delivery performance, we conduct some simulations using the
simple random waypoint (RWP) mobility model and epidemic
routing (for the other parameters, see section IV). The results
are plotted in figure 3. The message size grows with the
number of codecs.6 For up to 3 codecs, the impact on message
delivery rate and delay is small: 5% drop in delivery rate
and 10 min increase in delay. For 4–6 codecs, the impact
becomes more noticeable. Even though the chances for success
increase with non-uniform distributions for 3 codecs or less, a
mechanism is needed to ensure interoperability after the first
message exchange.

Implicit negotiation: We introduce an additional MIME ex-
tension header, borrowed from HTTP, Supported:, to indicate
the (audio) codecs supported by an endpoint using a comma-
separated list of audio MIME types. A DT-Talkie sender A
includes its supported codecs (in the order of preference) in
each message sent to a peer. The peers store the list and

5Various sources, e.g., http://www.voip-info.org/wiki/view/Codecs list some
15–20 codecs used in VoIP systems, so 20 appears reasonably conservative.

6We choose the commonly used VoIP codecs including G.723.1, G.726,
G.728, G.729, GSM, iLBC to model the message sizes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6
 0

 20

 40

 60

 80

m
e
s
s
a
g
e
 d

e
liv

e
ry

 p
ro

b
a
b
ili

ty

a
v
e
ra

g
e
 d

e
liv

e
ry

 d
e
la

y
 (

m
in

)

no. of codecs

message delivery probability
average delivery delay

Fig. 3. Message delivery probability and average delay

remember it for future messages for the same and future
conversations.7 An error message is sent if a node B has
received only encodings that it does not support; this message
includes a Supported header so that the originator learns
about B’s capabilities. This mechanism is also usable in group
conversations: nodes then pick the minimal number of codecs
so that all recipients can decode the message.

In the resulting operation, users can agree upon a common
(set of) codec(s) in the first message exchange. If a baseline
codec C1 supported by many platforms exists, the voice
messages can be encoded in the baseline format C1 and sent
to B along with A’s supported codecs. B may use a common
codec from A’s list for its reply in which it includes its own
capabilities, using C1 if no other common ones are available.

In the absence of a common baseline, assuming that node
A supports codecs C1, C2, .... Ck, A chooses, e.g., j = 3
codecs out of these to encode a voice message m for the
first interaction with B (likely including the most widespread
codecs) and generates a compound message {C1(m), C2(m),
C3(m)}. In addition, the node stores m locally. After receiving
the compound message, node B checks if the message includes
an encoding it supports and, if so, plays back the message.
Otherwise B returns an error message with its supported
codecs; A can then use the previously stored message and
resend it in an encoding understood by B. In this worst
case, both nodes will require once an additional round-trip,
assuming that they have any codec in common.

D. Protocol Overhead

Using MIME encoding provides flexibility but also intro-
duces overhead as does the bundle protocol. While we could
be more efficient by combining fields or shortening header
names, we leave these optimizations for further study. At this
point, we are only interested in a rough overhead assessment.

Per MIME message, we use six message-level headers, two
per segment, and two per fragment. One additional per-source
or per-message header is added when using group communi-
cation. We assume based upon our implementation: 32-byte
DTN EIDs and 24-byte MIME separators, some 12 bytes per
audio MIME type (e.g., audio/G729 plus separator), 10-byte
timestamps, and 2-byte fragment and sequence numbers, for

7It may be advisable to include a device identifier so that the same user
may be associated with different capability sets depending on the device she
is using at a given point in time; we leave this for further study.



two-party sessions. This yields an overhead of some 400 bytes
per-message (indicating support for 10 codecs), another 80
bytes per segment, and (optionally) 32 bytes per fragment,
including all CRLF header and body separators.

Format Len # Payload Headers MIME Total
Statement 5 s 1 5 kB 401 B 8.0% 31%
Statement 15 s 1 15 kB 401 B 2.7% 14%
Segments 5 s 2 4 kB 480 B 12.0% 40%
Segments 15 s 5 11 kB 717 B 6.5% 20%
Fragments 5 s 2 4 kB 866 B 21.7% 68%
Fragments 15 s 5 11 kB 2165 B 19.7% 61%

TABLE I
PROTOCOL OVERHEAD FOR G.729-ENCODED VOICE

Table I summarizes the overhead for two different statement
lengths (5 and 15 s) assuming a single encoding (G.729
at 8 kbit/s) when sent as a continuous statement and as a
sequence of talkspurts (#: 2 or 5), either in segments within a
single message or fragments spread across multiple messages.
For the latter cases, we assume talkspurt length of 2–3 s and
silence periods of 1 s (leading to less audio data). On top,
the bundle protocol adds some 100 bytes headers per message
and, when assuming TCP/IP, the TCP convergence layers adds
minimal header overhead per bundle, but causes an extra
exchange for setup and teardown as does TCP, and finally
TCP and IP headers (including typical options) need to be
considered. The table shows the approximate overhead for
MIME and in total, assuming one bundle being exchanged
per TCP and convergence layer connection (worst case).

We see that the overhead can vary a lot and become
quite significant for short statements and when using voice
activity detection and possibly fragmentation. For comparison,
an interactive VoIP call using G.729 would, using a packeti-
zation of 20–100 ms generate 20–100 bytes payload plus 40
bytes headers (RTP/UDP/IP) per packet, yielding 40–200%
overhead. Hence, the overhead appears acceptable. Overall,
the above suggests that fragmentation be avoided unless nodes
are close by and communication capacity is sufficient so that
they can benefit from better interactivity.

IV. EVALUATION

To evaluate DT-Talkie, we use the Opportunistic Network
Environment (ONE) simulator [19]. We run simulations using
different mobility patterns: three synthetic models—Random
Waypoint (RWP), the Manhattan-grid-style Helsinki City Sce-
nario (HCS) [19], and the Working Day Movement model
(WDM) [20] approximating some aspects of daily routines
in urban areas—and a real-world mobility trace (TaxiTrace)
that tracks cabs in San Francisco [21].

We choose two classes of multi-copy routing: epidemic
[22] that performs flooding without any limitation on message
replication, and binary Spray-and-Wait (SW) [23] that limits
the number of copies to a fixed maximum (we use 16 copies).
The mobile devices have up to 100 MB free buffer space
for storing and forwarding messages. Communication takes
place using bidirectional links at 2 Mbit/s. We conduct 10

simulation runs for each combination of parameters and report
on the mean results; we calculated 95% confidence intervals,
but those would be barely visible in the plots.

Traffic Generator: We implement a traffic generator for
ONE assuming a G.729 codec to produce DT-Talkie style
voice messages. They can be full-length voice messages
(message mode) or fragments thereof (fragmentation mode).
Talkspurt and silence periods are generated so that their
durations follow a Pareto distribution as suggested in [24]. We
choose voice message, fragment and silence durations in the
range of 5–15 s, 2–3 s and 1–2 s respectively, that are drawn
from the Pareto distribution. Each node generates a new voice
message every 5 simulation minutes.

Destination Node Selection: Generally, the destinations are
chosen randomly from anywhere in the simulation area. In
addition, we are interested in the DT-Talkie performance if
the two nodes are within some shorter distance—assuming
that users will utilize voice messaging when they assume
their peers to be “within reach”. We define the geographical
distance d for a particular node (e.g., 200 m) and then limit
the choice of a random target to other nodes within d.

Codec diversity: We carry out most of our simulations as-
suming a common baseline codec. In addition, one simulation
series investigates the performance impact when facing het-
erogeneous nodes. In this setup, each node randomly chooses
support for k = 6 out of n = 20 codecs8 uniformly distributed.
For each voice message, a node picks a random destination
from within d = 200m and chooses to encode the message
in j = 1, ..., 6 different codecs. Nodes do not learn codecs
supported by other nodes from previous interactions which
gives us a worst case assessment. We simulate codec diversity
only for the message mode.

Performance Metrics: We consider mainly two perfor-
mance metrics to assess the DT-Talkie operation in the
message and fragmentation modes: the delivery probability
p is measured as the number of unique messages received
divided by the total number of messages sent; delivery delay
is calculated as the interval between message generation at
the source and its reception at the destination. A message
comprising n fragments is considered delivered as soon as
n − 1 fragments are received. Both metrics are reported for
unidirectional voice messages.

Finally, we analyze the performance of sessions comprising
multiple voice messages exchanged in a conversation between
two peers. We define the session completion rate calculated as
a number of sessions completed (i.e., all messages sent in this
session were received) over the number of sessions created and
the session completion time as the time to complete a session.
These metrics are studied only in the message mode.

8AMR (7.4kbps), BroadVoice Codec (16kbps), CELP (4.8kbps), GIPS
Family (13.3kbps), GSM (13kbps), iLBC (15kbps), G.711 (64kbps), G.722
(48kbps), G.722.1 (24kbps), G.722.1C (32kbps), G.722.2 (6kbps), G.723.1
(5.3kbps), G.726 (16kbps), G.726 (24kbps), G.726 (32, 40kbps), G.728
(16kbps), G.729 (8kbps), LPC10 (2.5kbps), and Speex (2.2kbps).



A. Simulation Scenarios

We use mostly sparse scenarios approximating different
types of users and activities during a day for 6 hours simulation
time, with 2 hours warmup time for the node buffers to reach
steady state, and 2 hours cooldown time to allow for the
delivery of already sent messages. The communication range
of each mobile node in the simulation environment is 10 m
(Bluetooth), except for the taxi trace using 100 m (WLAN).

RWP: We use RWP with 100 nodes moving as pedestri-
ans in an area of 1×1 km (sparse) and 100×100 m (dense),
approximating some outdoor and indoor convention space,
respectively. The nodes move at random speeds of 0.5–1.5 m/s
with pause times of 0–120 s, both uniformly distributed.

HCS: We simulate 126 mobile nodes moving as eager
tourists in downtown Helsinki: 80 by foot, 40 by car, and
6 by tram. Each node moves with respectively realistic speed
along the shortest paths between different points of interest
(POIs) and random locations. The nodes are divided into four
different groups, each with different POIs and probabilities to
choose a next POI or a random place.

WDM: We model 543 persons in Helsinki following their
daily sleep, work, and leisure routines, shown to approximate
real-world contact characteristics. The scenario is based on
section 5 in [20], with the number of nodes reduced from
1029 to 543 by shrinking all the group sizes about evenly so
that the basic contact characteristics remain the same.

TaxiTrace: We finally choose a real-world scenario with
detailed position information: a GPS-based mobility trace of
the taxi cabs in San Francisco. The main data set contains
GPS coordinates of approximately 500 taxis collected over 30
days in the San Francisco Bay Area. For the purpose of our
studies, we pick 317 cabs tracked over a period of 6 hours.

B. Simulation Observations

Our simulations are divided into six groups: delivery prob-
ability and mean delivery delay are analyzed in the first four,
session completion rate and the mean session completion time
in the fifth group, all for sparse scenarios. The sixth scenario
investigates all metrics for the dense scenario.

Group 1: We select destination nodes randomly from
anywhere in the simulation area and set the hop-count limit to
10. The results are plotted in figure 4 as a function of the time-
to-live (ttl). We see that delay tolerance pays off but delays of
60 min or more to achieve p > 0.5 may limit the use of voice
messaging. WDM (not shown) yields p < 0.05 as most nodes
do not leave their offices for most of the day.

Across all ttl values, Epidemic and SW routing protocols
perform best in the HCS scenario (featuring best connectivity)
for both delivery probability and delay; expectedly, perfor-
mance improves with connectivity and SW routing performs
better for both metrics than Epidemic in most scenarios due to
lower overhead. The only exception is the high mobility taxi
trace for messaging (especially for short ttl): the larger radio
ranges and motion patterns seem to support quick and broad
spreading which helps delivery of full messages. Fragments, in

contrast, may easily get dispersed into different directions as
nodes move faster making recovery of n−1 of them difficult.

Full-length messages have better chances of delivery and
experience lower delays than fragmented ones across all mo-
bility scenarios and routing protocols. This holds consistently
across the first three groups and is in line with [17].

Group 2: Destination nodes are chosen as above, ttl is fixed
at 120 min, and the hop count is varied (see figure 5). When
using binary SW with 16 copies, forwarding is de-facto limited
to 4 hops. While SW behaves as expected, a higher hop-count
limit improves Epidemic routing performance for messages
across all scenarios: the load is low enough and contacts are
sufficiently short so that broader flooding helps delivery. For
fragments, the gain in p is less pronounced and delays barely
improve. Overall, a hop-count limit seems advisable: with SW,
4 hops yield reasonable performance and, for Epidemic, the
marginal gain (in p) starts diminishing above 6 hops.

Group 3: Figure 6 shows the results of varying the maxi-
mum distance d between source and sink. While RWP shows
virtually no changes (presumably due to the truly random
movement), the other (more structured) mobility models ex-
hibit a slight dependency on d, albeit less pronounced than
one might expect. We observed the most significant impact
for WDM, with p(50m)=0.5 and p(200m)=0.3: in both cases,
destinations were more frequently picked from with the same
or nearby offices, suggesting that localized communication is
well workable—which we will explore further in group 6.

Group 4: Figure 7 summarizes the impact of heterogeneous
nodes supporting each k = 6 different codecs and choosing a
subset of j codecs to send messages. Messages are sent with
ttl=120 min and a hop-count limit of 10. In this figure, the
delivery delay indicates the mean time passed from the initial
message generation to the reception of a codec understood by
the recipient; this includes possibly returning an error message
and subsequent retransmission with a suitable codec. The
figure clearly shows that the delivery rate increases with the
number of codecs included and that the mean delay decreases.
For scenarios with random short contacts as observed in RWP,
the gain diminishes (for j ≥ 4) as the message size becomes
a limiting factor for successful forwarding during a contact.

Since voice messaging may succeed or fail at different
stages, we further investigate the success rate for the first
message, the returned error messages, and the success rate
for the retransmitted messages. Note that all three messages
may get lost. Table II summarizes our findings, showing for
different j across all scenarios the fraction of voice messages
successfully received after the first transmission (1) and after
retransmission (2) as well as the fraction of messages that lead
to returning errors (E).

As expected, with increasing number of codecs sent in the
first message, the value of retransmissions diminishes and,
for more than five codecs, nothing is gained anymore in our
scenarios as either error messages or retransmissions are lost.
We can also see that often less than half of the error messages
(overall some 20–70%, except for j = 6 when this virtually
only occurs for nodes supporting disjoint codec sets) lead to



RWP HCS TaxiTrace

 0

 0.2

 0.4

 0.6

 0.8

 1

 20  40  60  80  100  120

d
e
liv

e
ry

 p
ro

b
a
b
ili

ty

time-to-live (min)

Message, Epidemic
Message, SW

Fragment, Epidemic
Fragment, SW

 0

 0.2

 0.4

 0.6

 0.8

 1

 20  40  60  80  100  120

d
e
liv

e
ry

 p
ro

b
a
b
ili

ty

time-to-live (min)

Message, Epidemic
Message, SW

Fragment, Epidemic
Fragment, SW

 0

 0.2

 0.4

 0.6

 0.8

 1

 20  40  60  80  100  120

d
e
liv

e
ry

 p
ro

b
a
b
ili

ty

time-to-live (min)

Message, Epidemic
Message, SW

Fragment, Epidemic
Fragment, SW

 0

 20

 40

 60

 80

 20  40  60  80  100  120

a
v
e
ra

g
e
 d

e
liv

e
ry

 d
e
la

y
 (

m
in

)

time-to-live (min)

Message, Epidemic
Message, SW

Fragment, Epidemic
Fragment, SW

 0

 20

 40

 60

 80

 20  40  60  80  100  120
a
v
e
ra

g
e
 d

e
liv

e
ry

 d
e
la

y
 (

m
in

)
time-to-live (min)

Message, Epidemic
Message, SW

Fragment, Epidemic
Fragment, SW

 0

 20

 40

 60

 80

 20  40  60  80  100  120

a
v
e
ra

g
e
 d

e
liv

e
ry

 d
e
la

y
 (

m
in

)

time-to-live (min)

Message, Epidemic
Message, SW

Fragment, Epidemic
Fragment, SW

Fig. 4. Delivery probability and average delivery delay as a function of time-to-live (hop-count limit=10)

RWP HCS TaxiTrace

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10

d
e
liv

e
ry

 p
ro

b
a
b
ili

ty

hop-count limit

Message, Epidemic
Message, SW

Fragment, Epidemic
Fragment, SW

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10

d
e
liv

e
ry

 p
ro

b
a
b
ili

ty

hop-count limit

Message, Epidemic
Message, SW

Fragment, Epidemic
Fragment, SW

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10

d
e
liv

e
ry

 p
ro

b
a
b
ili

ty

hop-count limit

Message, Epidemic
Message, SW

Fragment, Epidemic
Fragment, SW

 0

 20

 40

 60

 80

 2  4  6  8  10

a
v
e
ra

g
e
 d

e
liv

e
ry

 d
e
la

y
 (

m
in

)

hop-count limit

Message, Epidemic
Message, SW

Fragment, Epidemic
Fragment, SW

 0

 20

 40

 60

 80

 2  4  6  8  10

a
v
e
ra

g
e
 d

e
liv

e
ry

 d
e
la

y
 (

m
in

)

hop-count limit

Message, Epidemic
Message, SW

Fragment, Epidemic
Fragment, SW

 0

 20

 40

 60

 80

 2  4  6  8  10

a
v
e
ra

g
e
 d

e
liv

e
ry

 d
e
la

y
 (

m
in

)

hop-count limit

Message, Epidemic
Message, SW

Fragment, Epidemic
Fragment, SW

Fig. 5. Delivery probability and average delivery delay as a function of hop-count limit (ttl=120 min)

RWP HCS TaxiTrace

 0

 0.2

 0.4

 0.6

 0.8

 1

 200  300  400  500  600

d
e
liv

e
ry

 p
ro

b
a
b
ili

ty

geographical distance (m)

Message, Epidemic
Message, SW

Fragment, Epidemic
Fragment, SW

 0

 0.2

 0.4

 0.6

 0.8

 1

 200  300  400  500  600

d
e
liv

e
ry

 p
ro

b
a
b
ili

ty

geographical distance (m)

Message, Epidemic
Message, SW

Fragment, Epidemic
Fragment, SW

 0

 0.2

 0.4

 0.6

 0.8

 1

 200  300  400  500  600

d
e
liv

e
ry

 p
ro

b
a
b
ili

ty

geographical distance (m)

Message, Epidemic
Message, SW

Fragment, Epidemic
Fragment, SW

 0

 20

 40

 60

 80

 200  300  400  500  600

a
v
e
ra

g
e
 d

e
liv

e
ry

 d
e
la

y
 (

m
in

)

geographical distance (m)

Message, Epidemic
Message, SW

Fragment, Epidemic
Fragment, SW

 0

 20

 40

 60

 80

 200  300  400  500  600

a
v
e
ra

g
e
 d

e
liv

e
ry

 d
e
la

y
 (

m
in

)

geographical distance (m)

Message, Epidemic
Message, SW

Fragment, Epidemic
Fragment, SW

 0

 20

 40

 60

 80

 200  300  400  500  600

a
v
e
ra

g
e
 d

e
liv

e
ry

 d
e
la

y
 (

m
in

)

geographical distance (m)

Message, Epidemic
Message, SW

Fragment, Epidemic
Fragment, SW

Fig. 6. Delivery probability and average delivery delay as a function of d (hop-count limit=10, ttl=120 min)



 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6
 0

 20

 40

 60

 80

m
e
s
s
a
g
e
 d

e
li
v
e
ry

 p
ro

b
a
b
il
it
y

a
v
e
ra

g
e
 m

e
s
s
a
g
e
 d

e
la

y
 (

m
in

)

no. of codecs

RWP

msg. delivery prob., Epidemic
msg. delivery prob., SW

avg. delivery delay, Epidemic
avg. delivery delay, SW

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6
 0

 20

 40

 60

 80

m
e
s
s
a
g
e
 d

e
li
v
e
ry

 p
ro

b
a
b
il
it
y

a
v
e
ra

g
e
 m

e
s
s
a
g
e
 d

e
la

y
 (

m
in

)

no. of codecs

HCS

msg. delivery prob., Epidemic
msg. delivery prob., SW

avg. delivery delay, Epidemic
avg. delivery delay, SW

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6
 0

 20

 40

 60

 80

m
e
s
s
a
g
e
 d

e
li
v
e
ry

 p
ro

b
a
b
il
it
y

a
v
e
ra

g
e
 m

e
s
s
a
g
e
 d

e
la

y
 (

m
in

)

no. of codecs

TaxiTrace

msg. delivery prob., Epidemic
msg. delivery prob., SW

avg. delivery delay, Epidemic
avg. delivery delay, SW

Fig. 7. Message delivery rate and delay as a function of the number of codecs included (hop-count limit=10, ttl = 120 min, d = 200 m)

success after retransmission. Moreover, in most cases, the joint
success rate of the first and second transmission with j codecs
is less than or about equal to the success rate of the first
transmission only with j + 1 codecs. RWP with short random
contacts using SW is borderline for j ≥ 3. This suggests that
a reasonable strategy would be to include a modest number of
codecs (j = 5 in our scenarios) and revert to retransmissions
only as last resort—which seems intuitive anyway given the
potential delays. Given that nodes would store capabilities of
their peers after the first message exchange, also scenarios
with short contact durations could be served well.

Comparing these results to figure 6, we find that heterogene-
ity clearly has an impact on the success rate of voice message
exchanges, but also that the proposed approach is capable of
mitigating the impact to a large extent across all scenarios.

No. of codecs 1 2 3 4 5 6
1 20.2 36.4 46.8 54.3 58.0 60.0

RWP, Epidemic 2 14.0 10.8 7.3 4.0 1.7 0.0
E 47.4 33.2 22.6 14.2 8.7 5.2
1 25.7 46.9 62.3 71.6 75.1 75.9

RWP, SW 2 19.4 15.8 10.7 6.0 2.1 0.0
E 60.3 43.2 28.9 18.6 11.0 6.4
1 17.7 34.4 49.2 60.7 69.2 75.7

HCS, Epidemic 2 24.9 19.1 13.0 7.7 3.2 0.0
E 41.7 31.8 22.9 15.9 10.5 6.4
1 19.6 37.5 54.6 69.0 80.4 88.3

HCS, SW 2 28.6 22.7 16.2 9.7 4.3 0.0
E 45.1 34.9 25.5 18.0 11.9 7.6
1 16.4 34.8 51.9 63.9 73.8 80.3

TaxiTrace, Epidemic 2 25.3 19.3 13.0 7.7 3.3 0.0
E 40.9 31.9 23.0 16.5 10.3 6.3
1 17.6 36.3 54.3 68.9 81.0 90.0

TaxiTrace, SW 2 28.6 22.3 15.5 9.4 4.2 0.0
E 41.9 33.0 24.5 17.5 11.5 7.2

TABLE II
SUCCESS RATES (%) OF VOICE MESSAGES AFTER THE FIRST (1) AND
SECOND (2) TRANSMISSION AND FRACTION (%) OF MESSAGES FOR

WHICH CODEC MISMATCH ERRORS (E) WERE GENERATED.

Group 5: In figure 8, we compare session completion rates
and average times as a function of the number of interactions
between a pair of close-by nodes. We find that p decreases
steadily with a growing number of interactions for most
mobility scenarios, the structured ones (HCS and TaxiTrace)
performing better than RWP and the TaxiTrace with higher
mobility better than the less dynamic HCS. Epidemic routing
is significantly inferior in all cases. Despite the short distances,

only short conversations (4–5 messages) have a chance of
completing with p > 0.8, and a mean session completion time
of some 50 min does not yield much interactivity.

Group 6: The above findings motivate investigating a dense
scenario such as an exhibition hall, with many people moving
around in somewhat randomly, e.g., in a break, for which we
provide a crude first approximation by RWP. Figure 9 confirms
that acceptable performance is achievable for sufficiently co-
located nodes: About 99% of the messages are delivered via 3
hops maximum for ttl=10 min using both (Epidemic and SW);
SW yields shorter delivery delays (∼1.5 min) than Epidemic
(∼3.4 min). We use ttl=10 min and hop-count limit 3 for
simulating sessions with multiple interactions. SW achieves a
session completion rate of more than 95% across all numbers
of interactions, while Epidemic (due to more overhead) shows
decreasing performance (from 92% for 2 interactions to 70%
for 6). For SW, the sessions are reasonably interactive with
four message exchanges completing within 5 min whereas
Epidemic takes about three times as long.

Overall, we find voice messaging workable under different
conditions if the nodes are sufficiently close to one another
relative to a scenario’s node mobility and density. Especially
for reasonably reliable sessions involving multiple interactions,
users should be within a confined space with sufficient mes-
sage carriers around—in line with our use cases. Our findings
suggest using Spray-and-Wait routing with a limited total
number of messages over epidemic routing with hop-count
limit. We expect that, when targeting short delivery delays,
more sophisticated history-based routing protocols may not
provide much extra gain; but this remains for further study.

V. IMPLEMENTATION

We have implemented DT-Talkie for the Maemo and Sym-
bian mobile software platforms. For both, we use platform-
specific Bundle Protocol and TCP convergence layer imple-
mentations on top of IP for inter-device communication. As
mobile devices have different screen sizes and input methods
even if they run on a same mobile OS platform, the DT-
Talkie code is split into the application logic (engine) and UI
components so that the implementations are portable beneath
the UI layer. Only the latter needs to be adapted to different-
sized touchscreen and non-touchscreen devices. Figure 10
depicts the component model of implementation architecture.



RWP HCS TaxiTrace

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  3  4  5  6
 0

 50

 100

 150

 200

 250

s
e
s
s
io

n
 c

o
m

p
le

ti
o
n
 r

a
te

a
v
g
. 
s
e
s
s
. 
c
o
m

p
le

ti
o
n
 t
im

e
 (

m
in

)

no. of interactions

session completion rate, Epidemic
session completion rate, SW

avg. sess. completion time, Epidemic
avg. sess. completion time, SW

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  3  4  5  6
 0

 50

 100

 150

 200

 250

s
e
s
s
io

n
 c

o
m

p
le

ti
o
n
 r

a
te

a
v
g
. 
s
e
s
s
. 
c
o
m

p
le

ti
o
n
 t
im

e
 (

m
in

)

no. of interactions

session completion rate, Epidemic
session completion rate, SW

avg. sess. completion time, Epidemic
avg. sess. completion time, SW

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  3  4  5  6
 0

 50

 100

 150

 200

 250

s
e
s
s
io

n
 c

o
m

p
le

ti
o
n
 r

a
te

a
v
g
. 
s
e
s
s
. 
c
o
m

p
le

ti
o
n
 t
im

e
 (

m
in

)

no. of interactions

session completion rate, Epidemic
session completion rate, SW

avg. sess. completion time, Epidemic
avg. sess. completion time, SW

Fig. 8. Session completion performance as a function of # interactions (hop-count limit=10, ttl = 120 min, d=200 m)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5

m
e
s
s
a
g
e
 d

e
liv

e
ry

 p
ro

b
a
b
ili

ty

hop-count limit

Epidemic, ttl = 5 min
Epidemic, ttl = 10 min
Epidemic, ttl = 15 min

SW, ttl = 5 min
SW, ttl = 10 min
SW, ttl = 15 min

 0

 2

 4

 6

 8

 10

 1  2  3  4  5

a
v
g
. 
m

e
s
s
a
g
e
 d

e
liv

e
ry

 d
e
la

y
 (

m
in

)

hop-count limit

Epidemic, ttl = 5 min
Epidemic, ttl = 10 min
Epidemic, ttl = 15 min

SW, ttl = 5 min
SW, ttl = 10 min
SW, ttl = 15 min

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  3  4  5  6
 0

 5

 10

 15

 20

 25

s
e

s
s
io

n
 c

o
m

p
le

ti
o

n
 r

a
te

a
v
g

. 
s
e

s
s
. 

c
o

m
p

le
ti
o

n
 t

im
e

 (
m

in
)

no. of interactions

session completion rate, Epidemic
session completion rate, SW

avg. sess. completion time, Epidemic
avg. sess. completion time, SW

Fig. 9. RWP scenario (area size: 100 m × 100 m)

A. Maemo implementation

On the Maemo platform, we use the DTN2 reference imple-
mentation for Bundle Protocol services, the GTK+ framework
for implementing user interface components, the GStreamer
framework for audio recording and playback, and the GMIME
framework for creating and parsing MIME messages.9 The
target devices of the Maemo implementation are Nokia N810
and N900 Internet tablets (with touchscreen). Figure 11 shows
a screen shot of the UI. As Linux-based implementation, DT-
Talkie is also portable to Linux PCs, Openmoko, MacOS X.

Mobile device

«executable»

DTNServer

«library»

DT-Talkie Engine

«executable»

DT-Talkie GUI

Mobile OS

Fig. 10. Architecture of DT-Talkie

B. Symbian implementation

We have developed a native Symbian C++ bundle imple-
mentation (DTNS60) of RFC5050 [15] and the TCP conver-
gence layer. To provide a robust system architecture, DTNS60
has been implemented using the client-server framework of-
fered by Symbian OS. It conforms to the microkernel archi-
tecture and enables multitasking of applications, i.e., multiple

9http://www.dtnrg.org/Code, http://www.gtk.org. http://www.gstreamer.net,
and http://spruce.sourceforge.net/gmime, respectively.

delay-tolerant applications can run in parallel (and along with
other applications) on the device using the same daemon
process as asynchronous service provider.

DT-Talkie runs as one application, originally designed for
the S60-based Nokia N95 and E90 mobile phones (no touch-
screen). The user interface of the Symbian-specific DT-Talkie
uses the Avkon GUI framework [25]. We use active objects
for concurrent processing and event-driven programming for
energy-efficient operations. We incorporated the multimedia
framework10 for audio recording and playback, but wrote the
MIME functionality ourselves.

Fig. 11. UI of DT-Talkie for Maemo

C. Experimental Validation

As experimental validation of the voice messaging for
mobile DTNs, we use Maemo and Symbian implementations
to deliver voice messages between heterogeneous devices
(E90 and N95 smartphones, and N810 and N900 Internet

10http://forum.nokia.com



tablets), optionally with a Linux laptop (running only DTN2)
as a bundle forwarder. This validation targets heterogeneous
devices instead of complex routing setups. To simulate DTN
behavior at the link layer, we create artificial disruptions by
walking with a device out of the communication range of the
other or turning off one device for some time.

We use static or epidemic routing due to present limitations
of DTN2, and pre-configured PCM, MP3 and G.729 audio
codecs for encoding voice messages. Bluetooth or WLAN are
used as link layer technologies; devices running DTN2 use
the Bluetooth and Bonjour node discovery mechanisms. The
clocks of the devices need to be synchronized in the order
of minutes (which is easy to achieve using operator time or
occasional NTP) and use a message timeout of one hour. This
requirement is an artifact of the Bundle Protocol’s use of time.

The DT-Talkie operation follows the steps described in sec-
tion 3.1. Voice messages are sent by choosing an individual or
group contact in the UI (figure 11) and using the touchscreen
or hardware buttons to start and stop recording, after which
the message is sent automatically. The receiver sees the sender
of an incoming message and, after listening, may reply using
the session mode or choose a different party to talk to.

We experimented with two party and group communication
scenarios using all four device types as senders and receivers,
demonstrated on various occasions (e.g., [9]). While commu-
nication between peers was mostly direct, we also carried out
simple multihop experiments with a single forwarder. We also
validated the implementations in more complex multihop set-
tings by connecting them to the ONE simulator’s convergence
layer interface as well as to our internal DTN testbed.

VI. RELATED WORK

Since DT-Talkie offers a PTT-style communication service,
we mainly discuss the previous works related to PTT.

Wu et al. [26] have described a design and implementation
of an OMA-specified PoC client for mobile users in cellular
network or WLAN. Parthasarathy [27] presents a prototype
implementation of a Push-to-talk server in the Internet. Kim
et al. [28] have provided an OMA-compliant PoC solution
for packet-switched networks accessed via GPRS/UMTS or
WLAN technology. Raktale [29] proposes and evaluates a
3GPP architecture for an efficient implementation of the PoC
services in a 3G packet-switched network. Cruz et al. [30]
describes a PTT over IMS solution designed with a Talk
Burst Control Protocol based on SIP messages for call session
control, and test their solution with a high bandwidth LAN
and a CDMA2000 wireless network. Blum et al. [31] presents
a concept of extending PTT to Push-to-MultiMedia (PTM)
to allow other media types (e.g., video) and integrating this
PTT/PTM functionality in community-based services using the
IMS architecture. Hsu et al. [32] design a context-aware PTT
service with the combination of the PTT features and context-
aware service. O’Regan et al. [33] implement and evaluate
a SIP-based PTT service for a 3G network using the 3GPP
UMTS Release 5/6 IMS specification.

Ronnholm [34] presents an outline for a push-to-talk system
over Bluetooth, which is independent of the cellular networks.
Lin et al. [35] have proposed a peer-to-peer PTT service over
distributed operator-independent network environments that
does not rely on the functionality provided by the underlying
mobile networks. Gan et al. [36] propose a distributed PTT
system for the Intelligent Transportation Systems environment.
Chang et al. [37] have designed and implemented the PTT
mechanism in an ad-hoc VoIP network, in which the PTT
server and the user agent combined with the pseudo SIP server
provide the PTT service without the support of the standalone
SIP server. Hafslund et al. [38] have implemented and tested
a solution for PTT voice group communication in mobile ad-
hoc networks, which reuses the optimized flooding techniques
from the OLSR protocol (relying on a connected network).

Furthermore, DTN-based asynchronous voice communica-
tion has also been subject to recent research. Honicky et al. [6]
propose the idea of using a mobile phone primarily as a voice
message device focusing on asynchronous communication,
and they outline the potential benefits of switching to an
asynchronous model, even with infrastructure. Heimerl et al.
[7] extend the previous idea [6] by developing a prototype
cellphone system with voice messaging and explore its value
for Ugandan users via trial deployments. Scholl et al. [8]
present issues related to the development of store-and-forward
VoIP based rural Telemedicine networks, and advocate to build
such networks on the basis of DTN.

VII. CONCLUSION

In this paper, we have presented asynchronous voice mes-
saging as a mechanism for interaction in opportunistic net-
works between heterogeneous devices and its cross-platform
implementation DT-Talkie. We have seen that message-based
communication following the DTN paradigms can offer a fea-
sible communication platform as long as the usage scenarios
and users are sufficiently delay-tolerant or the user populations
are dense enough. The latter is likely to be the case for many of
the scenarios introduced in section II; also, connectivity may
be assisted by WLAN access points inside a given facility
and even across a city [39] which we will explore further.
In any case, using voice messaging, while introducing extra
delay, decouples sender and receivers, eliminates the need for
a (stable) end-to-end path, and improves voice fidelity in the
presence of packet losses by means of hop-by-hop reliability.

Our quantitative findings indicate that it seems preferable
not to fragment messages unless the nodes are reasonably
well connected to each other and reducing latency brings
benefits in interactivity. It is advisable to include a small
number of codecs in a message to maximize the delivery rate
and minimize delay. In our simulation scenarios, we find that
Binary Spray-and-Wait with a fixed message count (e.g., 16)
provides a suitable and simple routing scheme for DT-Talkie
when distances between nodes are limited and messages can be
short-lived. Our future work includes investigating a broader
range of scenarios (including more realistic indoor models)
and more diverse conversation settings (including groups).



User requirements and acceptance probably constitute the
biggest issues. While our research prototypes provide an initial
user interface design, usability and user expectation studies
will be needed to determine how to offer the functionality to
users to gain acceptance. At least, a seamless integration of
the DT-Talkie interface with the address book, call history,
and call control functions of a mobile phone will be required
to offer a coherent presentation to the user and minimize
usage efforts. Providing hints when to choose which mode of
operation may be another interesting step. Besides improving
the user interface integration, we are working on DT-Talkie
implementations for the Android and iPhone platforms.

ACKNOWLEDGMENTS

The authors would like to thank Philip Ginzboorg for
contributing his insights on the codec matching analysis.

This work was supported by TEKES as part of the Future
Internet program of TIVIT (Finnish Strategic Centre for Sci-
ence, Technology and Innovation in the field of ICT) and by
Teknologiateollisuus ry within the REDI project.

REFERENCES

[1] Open Mobile Alliance, “Push to talk over Cellular (PoC) Architecture,”
OMA-AD-PoC-V1 0-20060609-A, 2006.

[2] James Scott, Pan Hui, Jon Crowcroft, and Christophe Diot, “Haggle: A
Networking Architecture Designed Around Mobile Users,” in Proceed-
ings of the IFIP WONS, 2006.

[3] Omar Mukhtar and Jörg Ott, “Backup and Bypass: Introducing DTN-
based Ad-hoc Networking to Mobile Phones,” in Proceedings of the
ACM REALMAN, 2006.

[4] Avri Doria, Maria Uden, and Durga Prasad Pandey, “Providing connec-
tivity to the Saami nomadic community,” in Proc. 2nd Int’l Conference
on Open Collaborative Design for Sustainable Development, 2002.

[5] Simone Leggio, A Decentralized Session Management Framework for
Heterogeneous Ad-Hoc and Fixed Networks, Ph.D. thesis, University of
Helsinki, Finland, 2007.

[6] R.J. Honicky, Omar Bakr, Michael Demmer, and Eric Brewer, “A
message oriented phone system for low cost connectivity,” in Proc.
6th Workshop on Hot Topics in Networks, 2007.

[7] Kurtis Heimerl, RJ Honicky, Eric Brewer, and Tapan Parikh, “Message
Phone: A User Study and Analysis of Asynchronous Messaging in Rural
Uganda,” in Proc. ACM Workshop on Networked Systems for Developing
Regions, 2009.

[8] Jeremiah Scholl, Lambros Lambrinos, and Anders Lindgren, “Rural
telemedicine networks using store-and-forward Voice-over-IP,” Stud
Health Technol. Inform., vol. 150, pp. 448–452, 2009.

[9] Md. Tarikul Islam, Anssi Turkulainen, Teemu Kärkkäinen, Mikko
Pitkänen, and Jörg Ott, “Practical Voice Communications in Challenged
Networks,” in Proceedings of the ExtremeCom workshop, 2009.

[10] Jörg Ott, Dirk Kutscher, and Christoph Dwertmann, “Integrating
DTN and MANET Routing,” in Proceedings of the ACM SIGCOMM
Workshop on Challenged Networks, 2006.

[11] John Whitbeck and Vania Conan, “HYMAD: Hybrid DTN-MANET
Routing for Dense and Highly Dynamic Wireless Networks,” in
Proceedings of the 3rd IEEE WoWMoM Workshop on Autonomic and
Opportunistic Communications, 2009.

[12] Marina Petrova, Lili Wu, Matthias Wellens, and Petri Mähnen, “Hop of
No Return: Practical Limitations of Wireless Multi-Hop Networking,”
in Proceedings of the ACM REALMAN, 2005.

[13] Kevin Fall, “A Delay-Tolerant Network Architecture for Challenged
Internets,” in Proceedings of the ACM SIGCOMM, 2003.

[14] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall,
and H.Weiss, “Delay-Tolerant Network Architecture,” RFC 4838, 2007.

[15] Keith Scott and Scott Burleigh, “Bundle Protocol Specification,” RFC
5050, November 2007.

[16] Kenneth P. Birman and Thomas A. Joseph, “Reliable communication
in the presence of failures,” ACM Transactions on Computer Systems,
vol. 5, no. 1, pp. 47–76, February 1987.

[17] Mikko Juhani Pitkänen, Ari Keränen, and Jörg Ott, “Message Fragmen-
tation in Opportunistic DTNs,” in Proc. 2nd WoWMoM Workshop on
Autonomic and Opportunistic Communications, 2008.

[18] David D. Clark and David L. Tennenhouse, “Architectural Considera-
tions for a new Generation of Protocols,” in Proceedings of the ACM
SIGCOMM, 1990.

[19] Ari Keränen, Jörg Ott, and Teemu Kärkkäinen, “The ONE Simulator
for DTN Protocol Evaluation,” in Proc. 2nd International Conference
on Simulation Tools and Techniques. 2009, ICST.

[20] Frans Ekman, Ari Keranen, Jouni Karvo, and Jörg Ott, “Working Day
Movement Model,” in Proc. 1st SIGMOBILE Workshop on Mobility
Models for Networking Research, 2008.

[21] Michal Piorkowski, Natasa Sarafijanovic-Djukic, and Matthias Gross-
glauser, “CRAWDAD data set epfl/mobility (v. 2009-02-24),” Down-
loaded from http://crawdad.cs.dartmouth.edu/epfl/mobility, Feb. 2009.

[22] A. Vahdat and D. Becker, “Epidemic routing for partially connected
ad hoc networks,” Technical Report CS-200006, Duke University, April
2000.

[23] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S.
Raghavendra, “Spray and wait: an efficient routing scheme for in-
termittently connected mobile networks,” in Proceeding of the ACM
SIGCOMM workshop on Delay-tolerant networking, 2005.

[24] Trang Dinh Dang, Balazs Sonkoly, and Sandor Molnar, “Fractal Analysis
and Modeling of VoIP Traffic,” in Proceedings of Networks, 2004.

[25] Leigh Edwards, Richard Barker, and Staff, Developing Series 60
Applications: A Guide for Symbian OS C++ Developers (Nokia Mobile
Developer Series), Addison-Wesley Professional, March 2004.

[26] Lin-Yi Wu, Meng-Hsun Tsai, Yi-Bing Lin, and Jen-Shun Yang, “A
client-side design and implementation for push to talk over cellular
service,” Wireless Communications and Mobile Computing, vol. 7, no.
5, pp. 539–552, 2007.

[27] A. Parthasarathy, “Push to talk over cellular (PoC) server,” in Proceed-
ings of the IEEE International Conference on Networking, Sensing and
Control, 2005.

[28] P. Kim, A. Balazs, E. van den Brock, G. Kieselinann, and W. Bohm,
“IMS-based push-to-talk over GPRS/UMTS,” in Proceedings of the
IEEE Wireless Communications and Networking Conference, 2005.

[29] S.K. Raktale, “3PoC: an architecture for enabling push to talk services
in 3GPP networks,” in Proc. IEEE International Conference on Personal
Wireless Communications, 2005.

[30] Rui Santos Cruz, Mario Serafim Nunes, Guido Varatojo, and Luis Reis,
“Push-to-Talk in IMS Mobile Environment.,” in ICNS, Jaime Lloret
Mauri, Vicente Casares Giner, Rafael Tomas, Tomeu Serra, and Oana
Dini, Eds. 2009, pp. 389–395, IEEE Computer Society.

[31] N. Blum and T. Magedanz, “PTT + IMS = PTM - towards
community/presence-based IMS multimedia services,” in Proc. 7th IEEE
International Symp. on Multimedia, 2005.

[32] Jenq-Muh Hsu, Wei-Bin Lain, and Jui-Chih Liang, “A Context-
Aware Push-to-Talk Service,” in Proc. 2nd International Conference
on Multimedia and Ubiquitous Engineering, 2008.

[33] Eoin O’Regan and Dirk Pesch, “Performance Estimation of a SIP
based Push-to-Talk Service for 3G Networks,” in Proceedings of the
5th European Wireless Conference, 2004.

[34] V. Ronnholm, “Push-to-Talk over Bluetooth,” in Proceedings of the 39th
Annual Hawaii International Conference on System Sciences, 2006.

[35] Jiun-Ren Lin, Ai-Chun Pang, and Yung-Chi Wang, “iPTT: peer-to-
peer push-to-talk for VoIP,” Wireless Communications and Mobile
Computing, vol. 8, no. 10, pp. 1331–1343, 2008.

[36] Chai-Hien Gan and Yi-Bing Lin, “Push-to-Talk Service for Intelligent
Transportation Systems,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 8, no. 3, pp. 391–399, 2007.

[37] L.-H. Chang, C.-H. Sung, H.-C. Chu, and J.-J. Liaw, “Design and
implementation of the push-to-talk service in ad hoc VoIP network,”
IET Communications, vol. 3, no. 5, pp. 740–751, 2009.

[38] A. Hafslund, Toan Tuan Hoang, and O. Kure, “Push-to-talk applications
in mobile ad hoc networks,” in Proceedings of the 61st IEEE Vehicular
Technology Conference, 2005.

[39] Mikko Pitkänen, Teemu Kärkkäinen, and Jörg Ott, “Opportunistic Web
Access via WLAN Hotspots,” in Proceedings of IEEE PerCom, March
2010.


