
Practical Voice Communications in Challenged Networks
Md. Tarikul Islam1, Anssi Turkulainen1, Teemu Kärkkäinen1, Mikko Pitkänen2, and Jörg Ott1

1Helsinki University of Technology, Department of Communications and Networking
2Helsinki Institute of Physics, Technology Programme

Abstract— Today’s Push-to-talk (PTT) services are infrastructure based
and require stable end-to-end paths for successful communication.
However, users with PTT enabled mobile devices may roam in challenged
environments where infrastructure is not available. In such cases the
traditional PTT services may exhibit poor performance or even fail
completely. Delay-Tolerant Networking (DTN) is a research area which
addresses the communication requirements specific to challenged net-
works. In this paper, we apply the DTN concept of asynchronous message
forwarding to transmit voice messages. We present an implementation
of the DT-Talkie for heterogeneous clients such as Maemo, Symbian and
Android based personal handheld devices. We also demonstrate the use
of a DTN throwbox with large storage capacity to improve message
forwarding.

I. INTRODUCTION

Push-to-talk (PTT) is a half duplex voice service which provides
individual and group communications in "walkie-talkie" fashion.
PTT services have become increasingly popular due to proliferation
of personal handheld devices (e.g., PDA, Smartphone) around the
world. PTT is commonly employed in mobile phones, which use a
single button to switch between voice transmission mode and voice
reception mode. One popular implementation of PTT is called Push-
to-talk over cellular (PoC), which is based on 2.5G or 3G packet-
switched networks. The Open Mobile Alliance (OMA) has developed
an open standard for PoC [2].

PoC service has been suggested for operator independent wireless
networks (e.g., WLAN, Bluetooth). Lin-Yi Wu et al. [7] have
proposed a client architecture for the PoC service based on the
OMA specification and implemented it in the WLAN environment.
The service relies on infrastructure for its operation. However, the
PoC enabled mobile devices may be used in environments where
infrastructure is not available.

Rönnholm [5] presents an outline for a push-to-talk system over
Bluetooth, which allows users to communicate in peer-to-peer fash-
ion. The system requires sufficient node density to establish end-to-
end path and eventually fails to communicate in sparse mobile ad-
hoc environments. All of the PoC solutions discussed above depend
on the traditional Internet protocols which require stable end-to-end
paths for successful protocol operations.

Delay-Tolerant Networking (DTN) attempts to overcome the prob-
lems associated with frequent disconnection, intermittent connec-
tivity, long or variable delays, and asymmetric data rates between
the source and the destination. DTN allows communication in the
sparse mobile ad-hoc and other extreme environments without the
requirement of end-to-end path at any point in time. The Internet
Research Task Force (IRTF) Delay Tolerant Networking Research
Group (DTNRG) has been developing the DTN architecture [3] and
the Bundle Protocol (BP) [6] in order to enable communications
in challenged environments. BP provides common overlay service
to interoperate among the wide range of network types, while
the convergence layers (CL) perform mapping between the bundle
protocol and network-specific lower layers. The DTN architecture,
BP and the TCP convergence layer [4] serve as a basis for our
demonstration.

In this paper we describe a system called DT-Talkie which
enables both one-to-one and one-to-many communications over
infrastructure-less and challenged environments in the walkie-talkie
fashion. Complete voice messages are captured at the source and
encapsulated in bundles. The voice bundles are then sent over DTN
where they are transmitted using the store-carry-forward mechanism.
The voice message is played back when it reaches the destination
node. In addition, DT-Talkie includes an application level framing
mechanism that allows other information, such as images, to be sent
along with the voice messages.

We demonstrate an implementation of DT-Talkie for a diverse
set of mobile user devices. The DT-Talkie is implemented for
Maemo based Nokia Internet Tablet. We have ported the DT-Talkie
application to OpenMoko based smartphone, Linux and Mac. Fur-
thermore, we are developing cross-platform support for DT-Talkie
with Symbian and Android based smartphones. We also present a
mobile throwbox with message repository as an auxiliary DTN node,
which is used to relay voice messages between mobile nodes.

The rest of this paper is structured as follows: Section II describes
the DT-Talkie architecture. The DT-Talkie implementation is pre-
sented in Section III, followed by a description of the demonstration
setup in Section IV.

II. SYSTEM ARCHITECTURE

The general processing steps of DT-Talkie application are shown
in Figure 1. We describe the architecture with the aid of a one-
to-one communication scenario. Suppose user A intends to send
a voice message to user B and both have DTN communication
capabilities. First, DT-Talkie captures voice from the audio source
(e.g., microphone) of user A and encodes the voice using an audio
coding technique. DT-Talkie also includes an image along with the
voice message. The image can be either user A’s profile picture or
instant snapshot from the device’s camera.

Audio 

Encoding

Application Level 

Framing
Bundling

Bundle Protocol 

Service

Fig. 1. DT-Talkie General Processing Steps

Second, application layer framing mechanism is used to create
a combined message of the voice and image data. We use MIME
encapsulation for this purpose. A MIME message consists of HTTP-
style headers and body which holds the actual content. A multipart
MIME message provides boundary delimiters for various types of
content items. Finally, the MIME message is encapsulated in a bundle
and handed to the DTN layer for delivery to user B.

When the bundle is received by user B, DT-Talkie de-capsulates the
bundle payload. Then the MIME message is parsed to get the encoded
audio data and the image. Finally, DT-Talkie decodes the audio data
and starts playback in the audio sink (e.g., speaker). Appropriate
action is taken with the image (e.g., shown in DT-Talkie GUI) and
other content.



All the nodes in the DTN communication are identified by a URI
endpoint identifiers (EID). Every node has a unique singleton EID
but can also register to any number of multicast EIDs. The general
structure of an EID is: <scheme name>:<Scheme-Specific Part, or
"SSP">. BP defines "dtn:" EID scheme with an arbitrary SSP. When
an application wishes to receive bundles destined to a particular EID,
it registers the corresponding EID with its local DTN node.

One-to-many, or group communications work the same way as one-
to-one communications, but the messages are destined to a multicast
EID. Any nodes wishing to receive messages to that group can
register with the corresponding EID.

In extremely sparse scenarios direct contacts between nodes can be
so infrequent that even store-carry-forward type message delivery is
not feasible. However, even if the nodes do not come to direct contact
with each other, they may pass the same location. We have developed
a stationary throwbox that can be placed in such location. A throwbox
is a BP agent but does not have any DT-Talkie specific functionality.
This allows it to pick up and store messages from passing nodes and
forward them to other nodes.

III. IMPLEMENTATION

We use DTN2 [1] as the Bundle Protocol agent in our imple-
mentation of DT-Talkie in Linxux platform. DTN2 is the reference
implementation of the Bundle Protocol developed by DTNRG. DTN2
supports TCP, UDP, Bluetooth, Ethernet and Sneakernet convergence
layers. It also includes support for several link types such as always-
on links, on-demand links, opportunistic and scheduled links. We are
currently developing inter-communication between DTN2, Symbian
and Android BP implementations.

In DTN2, an EID takes the canonical form: "dtn://<node iden-
tifier>/<application tag>", where router identifier is a DNS-style
hostname string and application tag is any string of URI-valid
characters. In our implementation, "<host>.dtn" is used as node
identifier and "dttalkie" is used as application tag (e.g. dtn://Nokia-
N810.dtn/dttalkie) to identify the endpoints.

S60 smartphone

«executable»

DTNServer

«library»

DT-Talkie Engine

«executable»

DT-Talkie GUI

Symbian 

OS

Fig. 2. DT-Talkie Application Architecture for Symbian

In the GUI module of DT-Talkie we use platform-specific GUI
framework, such as GTK+ and Hildon framework in Maemo and
GUI framework in Symbian, to draw the main window and other
widgets. We use also platform-specific audio framework to capture
and playback voice messages. MP3 codec is used to encode the
captured voice from audio source and decode to playback audio in the
sink. BP service API is used for sending, receiving and forwarding
bundles over DTN architecture. We use DTN2 API for Linux based
DT-Talkie and platform-specific DTN API for Symbian and Android
based DT-Talkie to use the bundle protocol services.

The application architecture of DT-Talkie in Symbian is shown
in Figure 2. The Maemo implementation follows a similar pattern
but DTN2 is used instead of using a custom made DTNServer. The

Android implementation is otherwise similar but does not use an
external DTNServer, instead using an embedded TCP CL.

IV. DEMONSTRATION SETUP

In the demonstration setup, we use a throwbox, three Nokia Internet
Tablets, one laptop and two smartphones. The latest release of DTN2
(version 2.6.0, released in July 2008) is ported to Linux based Nokia
Internet Tablets. We also use our own DTN implementation for
Symbian and Android based smartphones. We use epidemic routing
to spread voice messages. For persistent storage service, we use local
file system to store the bundles.

In Figure 3, DT-Talkie and dtnd (DTN2 routing daemon) are
running in the devices of User A, B, C, D and E. Only dtnd is
running in the forwarder node Q and the throwbox R, which is a
fixed message repository with enough storage capacity. We create
disruptions to get the DTN experience through disconnecting the link
between the node R and User B. The disconnection can be created
artificially or by moving outside local wireless communication range.

User C

User A Forwarder Q User B

User E

User D

Throwbox R

WLAN / Bluetooth

Fig. 3. Demonstration Setup

When User A sends a voice message destined to User B, the
message is queued in the node R. After a while, we enable the
connection between the node R and User B. The node R then forwards
the message to User B as soon as the link becomes available between
itself and User B. In the same setup, we also demonstrate the scenario
of group communication through sending voice message from User
A to User B, C and D.

REFERENCES

[1] DTN Reference Implementation. http://www.dtnrg.org/ wiki/Code, May
2006.

[2] Open Mobile Alliance. Push to talk over Cellular (PoC) Architecture.
OMA-AD-PoC-V1 0-20060609-A, June 2006.

[3] Vinton Cerf, Scott Burleigh, Adrian Hooke, Leigh Torgerson, Robert
Durst, Keith Scott, Kevin Fall, and Howard Weiss. Delay-tolerant
networking architecture. RFC 4838, April 2007.

[4] Mike Demmer and Jörg Ott. TCP Convergence Layer. Internet Draft
draft-demmer-irtf-tcp-clayer-02.txt, November 2008.

[5] Valter Rönnholm. Push-to-Talk over Bluetooth. Hawaii International
Conference on System Sciences, January 2006.

[6] Keith L. Scott and Scott C. Burleigh. Bundle Protocol Specification.
RFC5050, November 2007.

[7] Lin-Yi Wu, Meng-Hsun Tsai, Yi-Bing Lin, and Jen-Shun Yang. A Client-
Side Design and Implementation for Push to Talk over Cellular Service.
Wireless Communications and Mobile Computing, June 2007.


