
DTN-based Content Storage and Retrieval

Jörg Ott
Helsinki University of Technology (TKK)

Networking Laboratory
jo@netlab.tkk.fi

Mikko Juhani Pitkänen
Helsinki Institute of Physics

Technology Programme
pitkanen@mail.cern.ch

Abstract
Delay-tolerant networking (DTN) enables nodes to com-

municate by means of asynchronous messaging without the
need for an end-to-end path. Suitably designed application
protocols may operate in DTNs by minimizing end-to-end
interactions and using self-contained messages for commu-
nication. The store-carry-and-forward operation and mes-
sage replication of many DTN routing protocols may yield
multiple copies of messages spread across many nodes for
an extended period of time. We leverage these properties
for application support in (mobile) intermediate DTN nodes
which act as ad-hoc routers. We add explicit application
hints to messages that are visible to each node, allowing
them, e.g., to cache content, act as distributed storage, or
perform application-specific forwarding.

1 Introduction
Powerful personal devices enable information access

(mostly web), interpersonal communication (email, mes-
saging), and content generation (photos, videos, blogs) for
mobile users. They offer rich storage capacity and several
wireless interfaces (WLAN, Bluetooth, cellular) to commu-
nicate via infrastructure networks but also directly with one
another. Nevertheless, communication is focused on infras-
tructure access which imposes several limitations: 1) While
the devices can be used anywhere, infrastructure networks
are not ubiquitous so that communication may be disrupted
for some time. 2) If infrastructure is available, its utilization
may be suboptimal (and costly): as each user interacts indi-
vidually, the same information may cross the wireless link
repeatedly. 3) With the Internet as the hub for information
exchange, proximity of nodes cannot be exploited to favor
direct communication between “adjacent” nodes. This lim-
its the effective communication capacity and may prevent
obtaining the desired service.

Issue 1 can be addressed by ad-hoc networking
among mobile nodes using Delay-tolerant networking [4]
with message-based asynchronous store-carry-and-forward
communication which does not require end-to-end paths be-
tween peers. This may allow communication even in envi-
ronments with low node density [13], provided that appli-

cation protocols are adapted accordingly [11]. Cooperative
caching [26] may help mitigating issue 2; grid storage and
peer-to-peer technology have been used to replace central-
ized systems by distributed approaches, (partly) addressing
issue 3. However, they maintain their own infrastructure
nodes (even if built up from peers) and require a certain de-
gree of connectivity and stability—conditions which may
not hold in sparse ad-hoc networks.

In this paper, we assume DTN-based messaging as the
basis for communication. With DTN, application protocols
do not rely on interactive protocol exchanges so that proto-
col messages are assumed to be semantically self-contained.
Each application data unit (ADU), e.g., an email or the con-
tents of a web page, is carried in one message. This means
that both mobile and stationary intermediate nodes—which
we refer to as bundle routers—will typically operate only
on complete ADUs rather than individual IP packets. Be-
cause of the store-carry-and-forward nature of DTNs, these
ADUs may remain stored within a DTN router’s queue for
an extended period of time. Moreover, copies of the ADU
may be replicated across several nodes—depending on the
routing protocol is use.

These observations motivate using (mobile) DTN nodes
for temporary storage and retrieval of application data
[14]. In this paper, we explore using the bundles (=ADUs)
queued in DTN routers for caching and for distributed stor-
age, leaving further application support for further study. In
section 2, we briefly review related work. We introduce ap-
plication scenarios in section 3, outline application support
in DTN routers and in the bundle protocol [20] in section
4, and present simulation results for data caching and stor-
age in section 5. We discuss open issues and conclude this
paper in sections 6 and 7.

2 Related Work
Delay-tolerant Networking has been applied to vari-

ous challenging networking environments, including space
communications, sparse sensornets, and opportunistic mo-
bile ad-hoc networks. The DTN architecture [1] proposes a
bundle layer to span different (inter)networks. Messages—
bundles—of arbitrary size are forwarded hop-by-hop be-
tween DTN nodes (bundle routers) as best-effort traffic.

1



They have a finite TTL. Custody transfer provides reli-
able transmission through persistent hop-by-hop forward-
ing. Control messages are used to inform a sender or cus-
tody router about message forwarding progress, end-to-end
delivery, or failures [20].

Numerous DTN routing schemes have been proposed,
such as simple message replication (not just) for mobile en-
vironments and the use of multiple paths to increase deliv-
ery probability [6] [10]. Various algorithms for creating,
forwarding, and purging copies of messages have been in-
vestigated. Furthermore, erasure and network coding tech-
niques have been suggested [24] [25] [5] to reduce traffic.
The DTN queuing/forwarding properties and the resulting
propagation delays have been studied for multicasting [27]
and exploited for broadcasting [7], with messages spreading
hop-by-hop using DTN as the basis for content distribution.
Management of queued DTN bundles has been studied for
congestion control with custody transfer [21].

Besides web caching, distributed data storage has been
dealt with in peer-to-peer systems which store data across
client nodes (with or without replication) and enable dis-
tributed location and retrieval (e.g., [22] [18]). Grid sys-
tems have been used to create distributed storage space [8],
also using erasure coding-based for scalable storage [16].
However, in most cases, individual nodes are assumed to
be well connected. OceanStore [3] has investigated storage
access for weakly connected nodes and others (e.g., [2])
have studied applying peer-to-peer overlays in mobile ad-
hoc networks.

In contrast to the approaches above, we assume DTN-
based communication, allowing to tolerate disconnections
and operating on large data bundles identical to ADUs. We
embed application hints in each bundle to leverage the stor-
age and propagation properties of DTNs to support applica-
tions. These hints may even be used to actively influence
bundle queuing and forwarding. This somewhat resem-
bles the integration of forwarding and (limited) application-
specific processing by means of mobile code in Active Net-
works [23]. However, the typically larger bundle size re-
duces the frequency at which processing needs to be per-
formed and the overhead of carrying the hints (active net-
works: code) [14]. Moreover, as bundles usually contain
entire ADUs (rather than just fragments as packets often
do), application-specific operations are simplified: all the
data is available at once and decisions whether and which
supportive operations to perform can be based upon more
complete context. This also allows more complex opera-
tions than QoS forwarding. In the following, we look at re-
questing, retrieving, and caching self-contained ADUs, but
also support their (temporary) distributed storage.

3 Application Scenarios
We assume application protocols designed or adapted for

use with DTNs (as proposed for HTTP [12] or email [15]),

that the contents is of relevance to several users as (e.g.,
web pages, newsgroups), and that protocol operations fol-
low a request-response (like HTTP) or publish-subscribe
(like NetNews) paradigm. We look at two partly overlap-
ping scenarios: resource retrieval with caching and dis-
tributed resource storage in conjunction with retrieval. We
derive common requirements for DTN support, focusing on
the protocol functionality and deferring security aspects to
future work (see also section 7).

3.1 Content Retrieval and Caching
A mobile user wants to retrieve resources available on

the Internet which are represented as web pages. A web
page request from a requester R1 contains an HTTP GET
message in which the Request-URI and possibly the Host:
header field identify the resource U sought. The request
req1(U) travels from R1 via intermediate nodes Ni and an
access link to the fixed Internet and finally reaches the ori-
gin server. The latter returns a response rsp1(U) containing
the complete resource U plus a set of headers describing at-
tributes of the resource (e.g., modification date, cache con-
trol, lifetime)—or an error.

Depending on the routing algorithm, both req1(U) and
rsp1(U) may be replicated repeatedly and traverse several
nodes Ni along different paths so that multiple copies may
exist and reach server and client. A copy is kept on a DTN
router until forwarding requirements by the routing algo-
rithm are satisfied, their respective DTN TTL expires, or a
queue replacement algorithm decides to drop a bundle.

If, at a later point in time, another client R2 also issues
a request req2(U) for U , req2(U) may traverse a node Nj

that still has a copy of rsp1(U) queued.1 In this case, Nj

acts as an implicit cache, creates rsp2(U) from its queued
rsp1(U), and replies to R2 The prerequisites are that Nj

is able to identify the resource U to match req2(U) and
rsp1(U) and to determine whether the freshness require-
ments from the request are satisfied. If response bundles are
stored even longer than necessary for DTN delivery (e.g.,
for their application lifetime as opposed to their DTN TTL),
a cooperative cache can be built among mobile users from
DTN queuing mechanisms.

3.2 Content Storage and Retrieval
We extend this scenario to also cover store operations.

Assume another mobile user S who wants to create web-
based resources, e.g., to maintain a blog about her trip and
archive her digital pictures, making the blog and a subset of
the pictures also available to other travelers in the area. S
uses DTN to reach a server in the fixed Internet that accepts

1This depends on many factors including the proximity of R1 and R2,
the motion of nodes Ni, the routing protocol, the delay between req1 and
req2, and the bundle TTL. Given the positive experience with web caching
experience for co-located nodes and assuming that DTN bundles will first
spread locally, these dependencies appear acceptable.

2



the contents, generates blog entries, and archives images;
contents stored by the server are acknowledged end-to-end
so that the traveler knows she can delete the data locally.

The storage request srq(U) containing the resource U
propagates towards the fixed Internet, again, being stored,
forwarded, and replicated along multiple paths on nodes
Ni. While queued in Nj , this intermediate node can make
U available to a requester R who is interested in U and is-
sues a request req(U). Nj has to identify the local copy of
U (which is embedded in srq(U)) and generate the corre-
sponding response rsp(U) for R from srq(U).

Effectively, all nodes Ni maintaining a copy of U at a
given point in time form a distributed storage in a DTN.
Setting the DTN TTL equal to the application lifetime of
U or the desired period of local availability (instead of the
expected time to reach the fixed server) and assuming suf-
ficient queue capacity, allows the resource to be kept avail-
able among the mobile nodes until its expiry and thus en-
ables retrieval by other (co-located) nodes R without having
to contact the infrastructure network. This can also assist in
sharing resources even if no infrastructure is available at all:
rather than addressing ADUs to a fixed target, a new address
type could be used to keep the resources around (e.g., some
variant of multicast or anycast).

With R = S, the above mechanism may also serve as a
distributed backup storage for S if multiple copies (or other
forms of redundancy) of the bundle srq(U) are generated so
that its contents can likely be retrieved later and help prevent
information loss in case of hardware loss or failure.2

In all cases, queuing is more relied upon which moti-
vates resource versioning and explicit cleanup bundles for
purging contents outdated or no longer needed.

3.3 Common Requirements
In the above scenarios, intermediate DTN nodes per-

form application-supportive processing in addition to the
usual store-carry-and-forward operation. This may include
matching requests and responses, generating responses, and
modifying their routing and buffer management. For such
processing, bundles need to provide additional information:

Application protocol: Needed to perform proper re-
source matching, to allow for selective support (e.g., if a
node only wants to or can support certain protocols), and to
generate proper responses to retrieval requests. Processing
steps requiring further details can parse the ADU contents
and react accordingly, e.g., interpret conditional requests as
known from HTTP.

Resource: The resource carried in a bundle or asked for
needs to be identifiable for matching operations. For more
advanced processing, the resource’s content type and encod-
ing and possibly other parameters might be provided.

2Temporarily moving custody bundles to another node if local buffer
space is scarce has been suggested for buffer management at the DTN layer
[21].

Operation type: Independent of the application protocol,
the general class of operation should be indicated to allow
for minimal support even if the application details are not
understood: is this a request for retrieving a resource, an er-
ror message, or a bundle containing a resource? This allows
different processing, storage, and routing policies.

Lifetime: If a resource is contained in the message, its
application layer lifetime should be made explicit, so that
keeping and discarding bundle may be adapted accordingly
and the DTN TTL does not need to be overloaded.

We suggest an additional bundle protocol block [20],
Application-Hints, to indicate that a bundle seeks advanced
treatment and to convey: the resource URI (and thus the
application protocol), the operation indicator, the resource
lifetime, and optional resource-specific parameters. Such a
block can be encoded in a few bytes plus the URI and op-
tionally the media type and thus will not increase the bun-
dle size significantly. In case of bundle fragmentation, this
block needs to be copied into every fragment.

4 Application-aware DTN Routers
Figure 1 shows a simplified diagram of an intermediate

DTN node (=router) in an ad-hoc environment. A bundle
comprising a DTN header “H” and a payload arrives on an
incoming interface on the left. After some validity checking
(e.g., authentication, TTL) it is put into a queue, subject
to the local queue management policy which may discard
the bundle itself or cause other bundles to be dropped (e.g.,
based upon drop-tail, RED, oldest bundle, first expiry).

In an opportunistic routing environment like an ad-hoc
DTN, forwarding decisions are not taken upon arrival but
rather when one or more contacts become available via the
outgoing interface(s). Each contact provides information to
the routing logic: that the contact is now available and pos-
sibly other routing metrics. The updated routing informa-
tion is then used for forwarding (which bundles to transmit
to the contact) and scheduling (in which order) decisions.

Incoming
processing

Routing logic

Queuing
H H H HH H

Incoming
interface

Outgoing
Interface(s)

Forwarding
Scheduling

Figure 1. Simplified view of a DTN router

The routing scheme determines if (and for how long) the
transmitted bundles are kept in the queue for further contact
opportunities or are discarded (which happens latest when
their DTN TTL expires). The forwarding algorithm may
use partial or full replication of bundles at different stages
to increase their delivery probability: for example, only the
sender may create copies, only n copies in total may be

3



created, or bundles may be forwarded only a finite number
of times (before the respective destination node is met).

Routing, forwarding, and queue management use bundle
headers. They indicate parameters for transmission from
the source to the destination—but do not necessarily re-
flect properties of the bundle contents. In the following,
we introduce two extension steps to bundle routers based
upon the Application-Hints header proposed above: the pas-
sive mode of operation only uses hints for locating contents
and generating replies while the active mode also influences
bundle routing, forwarding and/or queuing decisions.

4.1 Passive Operation
Passive support does not alter the basic bundle process-

ing functions of a DTN router. As depicted in figure 2a, an
application-aware processing (AAP) module gathers infor-
mation upon every bundle event occurring in the router: it
obtains information about newly arriving bundles (info) that
contain an Application-Hints header “A” and learns when
these bundles get added to and deleted from queues. By in-
specting the information in the Application-Hints, the mod-
ule obtains an overview of all presently queued bundles
from an application perspective. This allows the AAP mod-
ule to match a local copy of a resource to an incoming re-
quest (or an incoming resource to a queued request) and re-
trieve the resource from a queue3. If the stored resource has
the form of a valid reply (e.g., an HTTP 200 OK response),
a copy of it may be retargeted to the requester. If a response
to a retrieve request needs to be adapted or a resource needs
to be extracted from a store request, an application-specific
component is used to generate a reply bundle and enqueue
it for delivery to the requester.

Incoming
processing

Routing logic

Queuing
H H H HH H

Incoming
interface

Outgoing
Interface

Forwarding
Scheduling

Incoming
processing

Routing logic

Queuing
H H H HH HForwarding

Scheduling

Incoming
interface

Outgoing
Interface

Application-aware processing + local contexta)

info reply retrieveadd
delete

Application-aware processing + local context
(+ optional application state)b)

info reply
discard

retrieve
discard
control

add
delete

info

info control

A

A A A

A A

A

A

Figure 2. Passive (a) and active (b) support
for applications integrated in a DTN router

3In principle, an AAP module could also duplicate selected bundles
in some local storage (rather than operating on the DTN router queues);
but sharing one copy of the potentially large bundles reduces the memory
requirements.

4.2 Active Operation
In the passive mode, the AAP module cannot influence

decisions of the local router4 which has the benefit of min-
imizing interference with the “underlying” routing proto-
cols. There are, however, circumstances under which such
influence may be desirable: In a simple case, an AAP mod-
ule serving repeated requests for a resource from the local
queue may want to prevent the corresponding bundle from
being purged and instead keep it until its application-level
lifetime expires. Similarly, an AAP module may speed up
deletion of bundles no longer needed or may treat bundles
differently depending on their operation type. It may also
supply routing or forwarding hints per application proto-
col and thus enable different routing schemes in parallel—
which could be used to construct overlays as part of the
regular routing mechanisms. Finally, a mobile node may
exercise better control of its local capacity by selectively
forwarding bundles for some applications (which the user
is interested in) while not accepting them for others.

To realize this active control, further interfaces are added
(figure 2b): in addition to those discussed above, the AAP
module may discard incoming bundles right away and
queued ones at a later time. It may also modify bundle
attributes relevant to queue management (control) to influ-
ence local buffer management. Finally, the AAP module
interacts directly with the routing logic: it receives infor-
mation (info) about contacts and routing updates and is able
to supply routing, forwarding, and scheduling preferences
via the control interface.5

These operations allow an AAP module to speed up
spreading of some bundles while delaying or preventing fur-
ther dissemination of others. Effectively, the AAP module
can thus control the degree of replication, the choice of con-
tacts for forwarding, or the amount of erasure coding being
applied to a particular bundle to match application needs.
For example, if DTN nodes serve as storage for certain re-
sources according to scenario 2 above, a higher degree of
replication and a longer lifetime are desirable than for sim-
ple retrieval requests. However, the active AAP modules
need to be conservative in their influence to avoid unex-
pected feature interactions with DTN layer routing or other
application functions.

5 Some Simulation Results
In this section, we investigate the performance implica-

tions when applying mostly passive router support to con-
tent retrieval with caching and distributed content storage.
We have carried out simulations for 1) a challenging artifi-
cial setup with fixed dense nodes and highly dynamic links
yielding frequent contacts and disruptions and 2) a sparse

4Which also prevents deleting a request bundle that was just replied to.
5The dtnd of the DTN reference implementation provides an external

router control interface used, e.g., for prototyping routing protocols.

4



mobile environment based upon real-world traces with rare
contacts.

We have extended a Java-based DTN simulator [6] to
include bundle transfers with duplicate detection based on
bundle fingerprints, URIs for bundle content identification,
and caching/retrieval mechanisms with a configurable prob-
ability. We do not use fragmentation: incomplete trans-
fers are considered failed. We use a variant of flooding for
forwarding which is less aggressive than epidemic routing:
bundles are stored in a FIFO queue and are forwarded to all
contacts available at the same time. Messages are deleted
from the queue if at least one forwarding was successful
and are kept otherwise to be retried until their TTL expires.

5.1 Challenging Artificial Scenario
Figure 3 depicts the network topology used in the first

two simulations. A simple topology was chosen to avoid
biases and very fast link state transitions were employed to
create a challenging environment. The clients (C) reside
on one edge of a 10x10 network and the servers (S) on the
opposite side. Nodes connect to their neighbors by 802.11
WLAN links at 11 Mbit/s with delays of 100 ms. The link
behavior follows a pattern with the up- and downtime expo-
nentially distributed with a 16 s and 4 s mean, respectively.
These times are shorter than likely seen in reality but al-
low us to observe protocol behavior with highly intermit-
tent connectivity and frequent bundle transmission failures
(which we expect to be common).

C C

src

snk

snk

src
Background traffic

… …

SS

Figure 3. Simple simulation grid topology

The clients send requests independently every 3 minutes:
70% of the requested resources are chosen from 4 URIs of
core interest, the remaining 30% from a pool of 400 URIs.
Requests and responses time out after 20 s, but the interme-
diate nodes may cache responses for 20 min if cache space
is available. Each node has a DTN queue size of 500 MB
and additional 100 MB for caching. We run simulations
over 27 hours of time with background traffic (randomly
sized messages between two node pairs, src to snk) causing
frequent overflows in the forwarding buffers. All simula-
tions are repeated 3 times with different random seeds of
which we plot the mean values.

Figure 4a illustrates the effect of caching bundles in
nodes even after successful forwarding. The caching de-

cision is taken independently for each message with the
probability p (X axis). On the Y axis, the response fraction
shows the likelihood that a client receives the response from
a cache at most n hops away. With increasing p the fraction
of such response grows, particularly for small n and p. This
underlines the positive impact of caching. Despite the short
bundle TTL, up to 10% of the responses are returned from
the nodes’ DTN queue, the remaining 90% from the cache
part with longer storage time. We also plot the total traf-
fic relative to the amount without caching: There is a slight
increase as requests get fanned out and multiple responses
are returned which is offset with increasing p by the shorter
distances that requests (and responses) travel. Overall, we
observe that already small p lead to significant performance
improvements.

Figure 4b shows how different ways of caching perform
if contents is stored (srq) by some mobile nodes and re-
trieved (req, rsp) by others: With no caching, all storage
and retrieval requests and responses have to travel to the
server and back. For caching rsp only, responses may be
cached, and caching srq and rsp also caches store requests
heading towards the servers. If caching is enabled we use
p = 0.1 from figure 4a and the same parameters as above
except that now the clients issue store requests in 50% of the
cases. The first bar plots the fraction of retrieval requests
for a bundle that reach the server; values larger than 1.0
indicate duplicates. The second bar indicates the fraction
of requests for which the clients receive a response. The
third bar shows the mean time until a response for the re-
quested resource is received (in 10 s units). Across all three
setups (not shown), 60% of all srq bundles make it to the
server—the upper bound for infrastructure-based retrieval
of contents originated by mobile users.

We can clearly see how the caching for rsp bundles re-
duces the number of reqs forwarded to the servers and the
response time because many requests are already responded
by the intermediate nodes and not forwarded further. Both
decrease further when intermediate nodes also cache srq
messages and use them reply to requests. At the same time,
the fraction of successful requests increases from some 60%
without caching to more than 80% when using active dis-
tributed storage. Hence, with DTN-based caching and stor-
age, the proximity of nodes providing and retrieving con-
tents may be exploited to increase efficiency–and even help
fulfilling requests that would fail when relying on infras-
tructure servers.

5.2 Sparse Mobile Scenario: Haggle
We have also investigated the effect of caching using

realistic contact traces as obtained from an experiment in
the Haggle project [9] using the same node implementa-
tion as above. From the Haggle trace, we include only
those nodes for which at least 30 contacts are reported (a
total of 122 nodes) and use only iMotes or fixed nodes for

5



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0.250.200.150.10.050.040.030.020.010.00

R
es

po
ns

e 
fr

ac
tio

n 
/ r

el
at

iv
e 

ne
tw

or
k 

tr
af

fi
c

Caching probability (p) in intermediate nodes

<=16 hops
<=5 hops
<=3 hops

1 hop
total traffic in the network

 0

 0.5

 1

 1.5

 2

timerspreqtimerspreqtimerspreq

D
el

iv
er

y 
su

cc
es

s 
ra

tio
 / 

re
sp

on
se

 ti
m

e 
(1

0s
) 

 No caching Caching rsp only Caching srq and rsp

req
rsp

time

 1

 1.2

 1.4

 1.6

 1.8

 2

4.543.532.521.510.5

N
or

m
al

iz
ed

 n
um

be
r 

of
 r

es
po

ns
es

Message Lifetime (h)

Caching all responses
Caching 1/4 of responses

No responses from intermediate nodes

(a) Effect of caching probability (b) Different caching alternatives (c) Effect of caching in a mobile scenario

Figure 4. Simulation results for content aware retrieval in different DTN scenarios.

caching. We assume Bluetooth EDR connections with a ca-
pacity of 2.1 Mbit/s and used again 500 MB forwarding and
100 MB additional caching buffer. Six fixed and four mo-
bile nodes served as gateways to the Internet to access fixed
servers. We randomly requested files of sizes 600, 1200,
and 1800 KB (which seems realistic for a log containing
photos) from two mobile and three stationary nodes. Due
to the limited connectivity, no forwarding buffer overflows
were observed during our simulations.

Figure 4c illustrates the impact of caching and the mes-
sage TTL (the caching lifetime is set to 15 times the mes-
sage TTL, the x-axis indicates the message TTL) on the
number of responses received. We normalize the results
to the number of responses received without caching at
a TTL of 30 min (39 responses) and plot the responses
with different caching probabilities. We observe 1) that
caching increases the response probability even in sparsely
connected scenarios, 2) that the increasing message and
caching lifetime yields better performance increase with
caching (roughly a factor of two), and 3) that, again, lim-
ited caching already yields noticeable gain. Further simula-
tions (not depicted) have shown that most responses come
from three hops or less in distance which further empha-
sizes the achievable performance gain from caching. With
caching, the response time to bundle requests (not shown in
the graph) ranges from 1.5 to 3 hours, which appears rea-
sonable for our travel scenario where shared contents can
be obtained without infrastructure use. Further investiga-
tions will have to show how well proximity can be exploited
when also realizing temporary distributed storage.

6 Discussion
Application support in intermediaries raises the issue of

how much knowledge is needed (and acceptable!) in these
nodes and how much support can be provided without un-
derstanding the application protocols. All actions that do
not create bundles or alter their contents but only modify
bundle treatment or replicate existing ones can operate in-
dependently of the applications: they may perform caching,

influence forwarding or queuing, the degree of replication,
and the bundle lifetime.

To generate responses or perform other protocol opera-
tions, nodes must know how to handle the application pro-
tocol. This functionality may be hardcoded into DTN nodes
or provided via application-specific plug-ins. Supporting a
few widely used protocols in this way may already suffice
to cover large fractions of the traffic. However, protocols
evolve over time. For more flexibility, minimal mobile code
(as in Active Networks [23] or signaling compression [17])
could be sent along with a retrieve request and contain in-
structions for creating the response from a store request.

Since the enhanced DTN router modules operate proba-
bilistically and the basic routing and forwarding operations
do not depend on such support, applications will still work
even if their bundles are not recognized by some or all of
the nodes—which also allows for incremental deployment
and does not require agreement among nodes on which pro-
tocols to support. However, while this opportunistic opera-
tion avoids that applications break if no support is available,
actively influencing the network may lead to a loss of trans-
parency and hence requires careful consideration [19].

7 Conclusion
In this paper, we have suggested to leverage two DTN

properties—the transmission of ADUs in self-contained
bundles and their queuing in intermediate nodes for some
time—to provide support for applications. Our approach
allows generic functions such as bundle routing to be per-
formed differently per application, operation, or resource,
but particularly enables application support by means of
caching or distributed storage. The proposed extensions are
incrementally deployable and robust as the regular network
operation does not depend on particular or any nodes offer-
ing such support at all. Our initial simulations show that
even a small contribution from supportive DTN nodes suf-
fices to increase application performance.

Detailed application protocol analysis (and their re-
design for DTNs) will yield further insights how much

6



functionality can (and should) be provided application-
independently, whether and where mobile code can help,
and when application-specific protocol engines are needed.
Obviously, security issues require special consideration, in-
cluding content authentication and integrity protection as
well as privacy (e.g., for distributed storage) which also im-
pacts application protocol design at large, as we have started
discussing elsewhere [14] [11].

In our future work, we will address further setups, mobil-
ity models, and routing protocols as well as erasure coding
techniques and investigate the implications for congestion
control and scalability. Particularly the issue of feature in-
teraction between application-specific control and the un-
derlying DTN routing in heterogeneous environments re-
quires further study.

8 Acknowledgements
This work was funded by the Academy of Finland in the

DISTANCE project.

References
[1] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst,

K. Scott, K. Fall, and H. Weiss. Delay-Tolerant Network
Architecture. RFC 4838, April 2007.

[2] F. Delmastro. From Pastry to CrossROAD: CROSS-layer
Ring Overlay for AD hoc networks. In Proceedings of the
Percom Workshop on Mobile Peer-to-Peer, March 2005.

[3] J. K. et al. OceanStore: An Architecture for Global-Scale
Persistent Storage. In Proceedings of the Ninth International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS 2000), November
2000.

[4] K. Fall. A Delay-Tolerant Network Architecture for Chal-
lenged Internets. In Proceedings of ACM SIGCOMM, 2003.

[5] S. Jain, M. Demmer, R. Patra, and K. Fall. Using redun-
dancy to cope with failures in a Delay Tolerant Network. In
Proceedings of ACM SIGCOMM, 2005.

[6] S. Jain, K. Fall, and R. Patra. Routing in Delay Tolerant
Networks. Proceedings of the ACM SIGCOMM, 2004.

[7] G. Karlsson, V. Lenders, and M. May. Delay-tolerant Broad-
casting. In ACM SIGCOMM CHANTS Workshop, 2006.

[8] P. Kunszt, E. Laure, H. Stockinger, and K. Stockinger. File-
based replica management. Future Gener. Comput. Syst.,
21(1):115–123, 2005.

[9] J. Leguay, A. Lindgren, J. Scott, T. Friedman,
J. Crowcroft, and P. Hui. CRAWDAD trace set
upmc/content/imote (v. 2006-11-17). Downloaded
from http://crawdad.cs.dartmouth.edu/upmc/content/imote,
Nov. 2006.

[10] A. Lindgren and A. Doria. Probabilistic Routing Protocol
for Intermittently Connected Networks. Internet Draft draft-
lindgren-dtnrg-prophet-02, Work in Progress, March 2006.

[11] J. Ott. Application Protocol Design Considerations for a
Mobile Internet. In Proceedings of the 1st ACM MobiArch
Workshop, 2006.

[12] J. Ott and D. Kutscher. Bundling the Web: HTTP over DTN.
In Proceedings of WNEPT 2006, August 2006.

[13] J. Ott, D. Kutscher, and C. Dwertmann. Integrating DTN and
MANET Routing. In ACM SIGCOMM CHANTS Workshop,
2006.

[14] J. Ott and M. J. Pitkänen. Application-aware DTN Routing.
Technical Report, TKK Netlab, August 2006.

[15] A. Pentland, R. Fletcher, and A. Hasson. DakNet: Rethink-
ing Connectivity in Developing Nations. IEEE Computer,
37(1):78–83, January 2004.

[16] M. Pitkanen, J. Karppinen, and M. Swany. Erasure codes
for increasing the availability of grid data storage. In Pro-
ceedings of Workshop on Next-Generation Distributed Data
Management, 2006.

[17] R. Price, C. Bormann, J. Christoffersson, H. Hannu, Z. Liu,
and J. Rosenberg. Signaling Compression (SigComp). RFC
3320, January 2003.

[18] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content-Addressable Network. In
Proceedings of ACM SIGCOMM, 2001.

[19] D. P. Reed, J. H. Saltzer, and D. D. Clark. Active net-
working and end-to-end arguments. http://web.mit.edu/
Saltzer/www/publications/endtoend/ANe2ecomment.html,
1998.

[20] K. Scott and S. Burleigh. Bundle Protocol Specifica-
tion. Internet Draft draft-irtf-dtnrg-bundle-spec-08, Work in
progress, December 2006.

[21] M. Seligman, K. Fall, and P. Mundur. Alternative Custodi-
ans for Congestion Control in Delay-tolerant Networks. In
ACM SIGCOMM CHANTS Workshop, 2006.

[22] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A Scalable Peer-to-peer Lookup Ser-
vice for Internet Applications. In Proceedings of ACM SIG-
COMM, 2001.

[23] D. L. Tennenhouse and D. J. Wetherall. Towards an Active
Network Architecture. Proceedings of ACM SIGCOMM,
1996.

[24] Y. Wang, S. Jain, M. Martonosi, and K. Fall. Erasure Coding
Based Routing for Opportunistic Networks. In ACM SIG-
COMM Workshop on Delay-Tolerant Networking (WDTN),
2005.

[25] J. Widmer and J.-Y. L. Boudec. Network Coding for Effi-
cient Communication in Extreme Networks. In ACM SIG-
COMM Workshop on Delay-Tolerant Networking (WDTN),
2005.

[26] L. Yin and G. Cao. Supporting Cooperative Caching in Ad
Hoc Networks. IEEE Transactions on Mobile Computing,
5(1):77–89, January 2006.

[27] W. Zhao, M. Ammar, and E. Zegura. Multicasting in De-
lay Tolerant Networks: Semantic Models and Routing Al-
gorithms. In ACM SIGCOMM Workshop on Delay-Tolerant
Networking (WDTN), 2005.

7


