
Bundling the Web: HTTP over DTN

Jörg Ott
Helsinki University of Technology

Networking Laboratory

jo@netlab.tkk.fi

Dirk Kutscher
Universität Bremen

Technologie-Zentrum Informatik

dku@tzi.org

ABSTRACT
Mobile users traveling by car, bus, or train usually experience vary-
ing connectivity characteristics while they are on their way, in-
cluding unpredictable (loss of) network access, changes in a data
rate, and the like. In short, they operate in a challenged network-
ing environment that is not well suited for many Internet applica-
tions. While different approaches have been developed to specifi-
cally mitigate (short-term) disconnections while at least partly pre-
serving the end-to-end notion of such applications, Delay-tolerant
Networking (DTN) takes a different approach by relying exclu-
sively on asynchronous communications. While this fits well with
the mobile user connectivity, particularly interactive applications
(such as web access) are affected by the lack of synchronous end-
to-end interaction. In this paper, we present protocol mechanisms
for running HTTP-over-DTN as well as a system architecture for
incremental deployment, and we report on findings from measure-
ments performed with our prototype implementation.

Categories and Subject Descriptors
C.2.2 [Computer Communication Networks]: Network Proto-
cols; C.2.6 [Computer Communication Networks]: Internetwork-
ing

General Terms
Design, Experimentation, Algorithms, Performance

Keywords
Delay-tolerant Networking, DTN, Mobility, HTTP, WWW

1. INTRODUCTION
Mobile communication has undoubtedly become a key ingredi-

ent of everyday life for many people. While mobile telephony and
messaging are ready to use for everyone, other applications, partic-
ularly those not running on mobile phones but rather on laptops or
PDAs, still do not work well with the mobile environment and its
characteristics. Limiting factors for mobile (data) communications

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WNEPT 2006, August 10, 2006, Waterloo, Ontario, Canada.
Copyright 2006 ACM 1-59593-360-3/06/0005 ...$5.00.

include the risk of signal (and thus connection) loss and variation
in access link quality both of which may lead to disruptions in the
regular interaction of applications.1

Numerous suggestions are focusing on mitigating the risk of
connectivity loss and maximizing the connection quality to keep
users always best connected [1] [2]. Thereby, the focus remains
on networking technologies and their capabilities, largely ignoring
related issues of potential disconnection: cost associated with stay-
ing connected (which may vary tremendously across different link
layer technologies and service providers); legal or social require-
ments leading to connectivity interruptions (e.g., during take-off
and landing of an aircraft); and aspects concerning the user (who
may want or need to turn off a mobile device) and the device itself
(e.g., running out of battery); among others. In particular, however,
this does not consider the respective application needs.

Some of the typical applications of mobile or nomadic users—
such as email, calendar synchronization, and database access—
may basically operate asynchronously [3] and support for this is
often provided by the application software. But even interactive
applications such as web access (retrieving web pages and access-
ing shared web-based information spaces or editors) and (instant)
messaging do not require permanent connectivity: the user is busy
most of the time reading, thinking, or typing, leaving a connec-
tion unused during this time—and, in principle, occasional mes-
sage exchanges would suffice to update or synchronize the mobile
user with her (fixed) peer(s). While such information exchanges are
basically possible even in mobile scenarios with intermittent con-
nectivity, the main issue preventing today’s web applications from
functioning smoothly in a dynamic mobile environment are that (1)
connectivity may not be available when the application wants to
communicate and (2) an end-to-end path between the two applica-
tion peers may not exist at all. The former (1) means that the appli-
cation transaction (and thus the user) may experience unexpected
delays of unpredictable duration which needs to be concealed. De-
pending on the nature of connectivity, highly interactive application
protocols such as HTTP (where sequences of requests are used to
obtain a web page), are not well suited for environments requiring
delay-tolerant communications. The latter (2) implies that appli-
cations can no longer rely on end-to-end properties inherited, e.g.,
from the transport layer (such as secure end-to-end communica-
tions as provided by TLS).

In this paper, we address the former issue of enhancing HTTP to
become workable in a delay-tolerant networking (DTN) environ-
ment. Building on our earlier proof-of-concept work on this sub-
ject [4], we focus on the details for running HTTP in intermittently

1Both factors also inhibit voice communications but, with
voice, the necessary recovery actions are taken—more or less
efficiently—by the human users.

connected environments. In particular, we specify the HTTP-over-
DTN protocol operation and describe a system architecture suitable
for incremental deployment in today’s Internet.

In section 2, we briefly review the Drive-thru Internet scenario
for opportunistic mobile Internet access. We present related work
concerning the core aspects of mobile web access in section 3 and
summarize different resulting architectures for (mobile) web ac-
cess in section 4. We present our design for HTTP-over-DTN and
deployment-related aspects in section 5 and describe our ongoing
implementation efforts, measurements, and findings in section 6.
Section 7 concludes this paper with a short summary and hints at
future work.

2. DRIVE-THRU INTERNET AND DTN
In the Drive-thru Internet project [5], we have been investigat-

ing mobile Internet access for users in vehicular environments, e.g.,
aboard a car, bus, or train. Figure 1 shows a mobile user in a vehicle
passing through wireless LAN hot-spots—connectivity islands—
located at the roadside. The hot-spots may be dedicated for trav-
elers, e.g., at gas stations or restaurants in rest areas, or may be
additionally available for use in city areas from cafés or other loca-
tions. Hot-spots may comprise one or more access points and may
be operated by different WISPs as is shown on the left hand side of
the figure [6].

Application Servers

ISP B

ISP A

Internet

Drive-thru Proxies

Application Clients +
Drive-thru Client

Connectivity Islands
(WLAN Hot Spots)

Figure 1: Example for Mobile Internet Access on the Road

When a mobile user travels, she will experience periods with and
without connectivity: The beginning of a connectivity period may
often not be predictable, their respective end may be anticipated
from signal strength readings. Due to traffic conditions on the road
and obstacles (buildings, vegetation, bridges), the reach of a con-
nectivity island may vary as will the quality of the radio channel
(and hence transmission and error rates). These also heavily de-
pend on the radio equipment installed in the vehicle or the mobile
device and used in the hot-spot. Our measurements have shown
that, with proper equipment, mobile users may, e.g., obtain more
than 60 s of connectivity at 120 km/h (up to 2 km) and may transfer
some 30–70 MB of data to/from a peer located in the hot-spot in
a single pass [7]. A mobile user shares the bandwidth reasonably
fairly with fixed and other mobile users. Automatic authentication
with wireless ISPs and auto-configuration can enable users to ef-
fectively use most of their connectivity window for data transfer
[8, 9].

To support existing Internet applications in such an environment,
we have applied connection-splitting between the mobile and the
fixed endpoints, realized in two dedicated components: the Drive-
thru client running locally to or on the mobile device and the Drive-
thru proxy somewhere well-connected in the fixed network. Our

Persistent Connection Management Protocol (PCMP) follows a ses-
sion layer approach towards achieving continued application ses-
sions in spite of connectivity interruptions, changing IP addresses,
NATs/firewalls, and highly variable performance characteristics.
Application-specific modules implemented as plug-ins on the Drive-
thru client and proxy perform additional functions to prevent appli-
cation layer timeouts, provide user feedback, and allow for asyn-
chronous processing of messages (exchanged with the application
peers) while the user is disconnected—thereby also offering perfor-
mance enhancement to maximize the utilization of the short con-
nectivity period [10].

In [4], we have introduced the general concept of treating a mo-
bile user and her applications as node in a delay-tolerant network
(DTN) and have shown that interactive applications such as HTTP
can operate in this environment, albeit at suboptimal performance.
In this paper, we formalize HTTP over DTN regarding the protocol
operation and discuss an architecture to enable incremental deploy-
ment.

3. RELATED WORK
We combine aspects of mobile and vehicular communications

with HTTP-specific approaches for optimization and offline opera-
tion and apply the concept of delay-tolerant networking to enable
usable mobile web access.

3.1 Mobile and Vehicular Networking
IP communications on the road has independently been studied

by the FleetNet [11] and Networks on Wheels [12] projects, albeit
with a different focus and slightly different goals: both primarily
target inter-vehicle communications in wireless ad hoc networks
for traffic-related control information and data sharing across ve-
hicles. Despite Internet access was only considered a secondary
objective, a proxy-based architecture was developed [13]. Network
access for vehicles via multiple (complementary) networks to keep
users always best connected has also been addressed in various
projects, including OverDRIVE [14], IPonAir [15], and the Mo-
bile Access Router [16]. A mobile router dealing with temporary
connectivity loss is also studied in the eMotion project [17]. The
latter two implement dedicated mobile routers to provide wireless
network access, addressing multi-provider support at the IP layer
and temporary connectivity interruptions at the transport-layer, re-
spectively. The DHARMA project targets agent-supported mobil-
ity in general [18] as does the Tetherless computing architecture
(TCA) [19]. All of these projects have devised their own infras-
tructure support to deal with intermittent connectivity. Finally, a
vast body of research has studied performance improvements for
reliable (TCP-based) communication across wireless links, which
we acknowledge but for which we do not provide references in this
paper as these techniques are not directly related to our focus.

3.2 Mobile and Offline Web Access
HTTP-based access to web pages from mobile users and chal-

lenged environments has been discussed for about a decade and
various approaches have been pursued in research or in deployed
products. We can roughly distinguish three different ideas that are
somewhat related: offline operation, cache prefill, and on-demand
(predictive) prefetching [20, 21] in addition to TCP acceleration.

Tools such as wget2, puf3, or wwwoffl4 allow replicating
contents of a web server to some local storage which can then be

2http://www.gnu.org/software/wget/
3http://puf.sourceforge.net/
4http://www.gedanken.demon.co.uk/wwwoffle/

accessed when offline. Similar functions have been built into web
browsers that support some offline mode of operation. These tools
often provide means for manual content synchronization (e.g., in-
voked by the user), however, contents not available from the local
storage cannot be accessed while offline.

In contrast, cache prefill aims at improving the web access per-
formance by populating caches with information that will likely be
requested by the user in the not too distant future (before its expiry).
Cache prefill can be push-based (initiated by content providers) or
pull-based (initiated by the cache), and contents to be pushed or
pulled (also: prefetched) will typically be selected following some
access heuristics. While push is usually based upon some dedicated
distribution or replication protocol, pull often employs HTTP, pos-
sibly augmented by inter-cache protocols such as ICP, to retrieve
the desired resources. This type of cache prefill usually operates
asynchronously to actual user requests and it is hence unknown
whether the requested resource will be used at all [22].

A special case we refer to as on-demand prefetching is used to
improve user experience across challenged links (e.g., low bit rate
and high error rate for mobile users or high latency for geo satellite
users). A user request may trigger prefetching of resources related
to the requested one (such as objects embedded in a web page) to
be delivered to the user along with the requested resource and thus
save uplink bandwidth and reduce latency. But this comes at the
expense of potentially unnecessarily prefetched objects—the prob-
ability of which is lower than with cache prefill because prefetching
is invoked by an actual user request. While not perfect due to the
increasing complexity of web resources, significant performance
improvements can be achieved [23].

Combinations of HTTP acceleration and cache prefill are used in
public transportation systems such as trains and airplanes for pas-
senger entertainment. Such solutions are suitable for public trans-
portation environments in which networking infrastructure (such
as the satellite links in Connexion by Boeing5) are available. Even
then, disconnections may occur (e.g., if buses or trains pass through
longer tunnels) or communication performance of the instantly avail-
able links (such as GRPS) may not be sufficient. This applies even
more to personal transportation (e.g., a mobile user in her car) or
when no supportive infrastructure is available on public transport—
which calls for delay- and disruption-tolerance for mobile web ap-
plications as we have presented in section 2.

3.3 Delay-tolerant Networking
Applying delay-tolerant networking (DTN) principles to (mo-

bile) communications removes the need for an end-to-end path and
therefore is attractive to a set of mobile applications that do not
inherently require immediate interaction. DTN uses asynchronous
communications (modeled after email): Rather than sending (small)
packets end-to-end, DTN endpoints exchange messages of arbi-
trary size (bundles) forwarded by DTN routers (also referred to
as bundle routers, BRs) hop-by-hop from the source to the desti-
nation. Conceptually, DTN operates above the transport layer and
may interconnect different internets with arbitrary underlying pro-
tocol stacks [24]. A custody transfer mode allows ensuring reli-
able delivery while delegating the responsibility to the next capa-
ble DTN router. Status reports may convey information about the
delivery progress of a bundle and include forwarding and custody
notifications from intermediate routers as well as receipts from the
receiver to achieve end-to-end semantics [25]. DTN endpoints and
applications are identified by endpoint identifiers, EIDs specified
in a URI-style format: scheme:scheme-specific-part. The scheme

5http://www.connexionbyboeing.com/

defines the scope within which the scheme-specific part, i.e., the
actual address, is interpreted.

DTN routing and forwarding offers particular challenges due to
the delay tolerance of communications. While (Internet) and ad-
hoc routing protocols determine an end-to-end path when they have
to forward a packet (and may report an error if none is found), DTN
routing must also account for potential or known future paths so
that the complexity of forwarding decisions increases [26]. Fur-
thermore, if paths are only available intermittently, no continuous
exchange of routing information is possible. And, for links that
become available only opportunistically, like with ad-hoc network-
ing, predictions are difficult. For mobile ad-hoc networking envi-
ronments, DTN routers rely on various kinds of information repli-
cation for forwarding bundles to maximize delivery probability and
minimize transit time. Such forwarding schemes, for example, fol-
low the concept of epidemic routing [27], with numerous variants
having been developed such as [28, 29, 30].

4. HTTP SCENARIOS
HTTP is designed to perform end-to-end interactions between

a client and an origin server but also supports the introduction of
intermediaries (web caches, proxies). The latter are usually sepa-
rate physical entities but may also be integrated or co-located with
the client (e.g., internal web caches). In all cases, however, per-
manently available connectivity is assumed so that resources can
always be retrieved from the origin server. This “regular” mode
of operation governing today’s Internet is depicted as scenario 1
in figure 2.6 Performance Enhancing Proxies (PEPs) [31], explic-
itly configured or transparently inserted, are often used to deal with
challenged networks as shown in scenario 2. While they are typ-
ically meant to improve performance for connected users (using,
e.g., mobile or satellite links), approaches such as the Drive-thru In-
ternet architecture described in section 2 or the DHARMA project
[18] make use of proxies to conceal temporary complete loss of
connectivity. Scenario 3 shows an alternative class of approaches
in which the functionality to maintain sessions across disruptions
is built into the end points [32, 33], supported through appropriate
mechanisms provided by the operating system.

1)
Internetweb

client
web

server

Internetweb
client

web
serverProxy

Cache

Internetweb
client

web
serverProxy

2) Challenged
Network

PEPPEP Proxy

Internetweb
client

web
server

Challenged
Network Proxy

Challenged
Network

3)

Internetweb
client

web
server

Challenged
Network

BR Proxy
Disconnected

Network
4) BR

BR

BRBR

Cache

Cache

Cache

Figure 2: Options for HTTP operation

6Note that proxies and caches may be introduced by service
providers without the user noticing, e.g., to improve performance,
augment content, or perform content adaptation.

The end-to-end approach has the clear advantage that, besides
the obvious avoidance of additional points of failure (fate sharing),
it is not necessary to identify the location of the challenged links
and more than one challenged link is implicitly dealt with. The
downside of end-to-end approaches operating at the transport or
a session layer is that an end-to-end path has to exist in the first
place. We have suggested that Delay-tolerant Networking can be
a suitable communication platform for mobile web access [4] as
depicted in scenario 4: the resulting complete decoupling of client
and server allows a maximum of flexibility when dealing with in-
termittent connectivity, at the expense of losing interactivity. Nev-
ertheless, less interactive communication may often be preferable
to not communicating at all.

5. HTTP OVER DTN
Running HTTP across a DTN-based infrastructure needs to be

addressed in two dimensions: (1) From a plain transport perspec-
tive, the bundle protocol can be used as a substitute for TCP in
which case a suitable protocol mapping needs to define how to
carry HTTP payloads in bundles, how to map addresses, and how
to achieve reliability. (2) From an application perspective, the im-
pact of disruptions needs to be addressed since, otherwise, delays
or disconnections occurring during HTTP-style interactive retrieval
of the resources belonging to a web page would render the user ex-
perience unacceptable [10, 3, 4].

While pursuing (1) alone will be insufficient in most cases, sim-
ply substituting TCP by the DTN bundle protocol in environments
with permanent end-to-end connectivity allows benchmarking the
additional overhead from introducing DTN for a single HTTP trans-
action. This may also serve as the baseline for interoperability if we
assume a migration from TCP to a DTN transport if functionality
according to (2) is not available or not desirable as we will discuss
below.

5.1 HTTP over DTN Transport
As introduced in section 3.3, the bundle protocol supports the

delivery of arbitrarily sized bundles. The natural approach is to per-
form a one-to-one mapping of HTTP requests and responses onto
bundles.

In an HTTP context, addressing bundles is basically straightfor-
ward using HTTP URIs: Just as with regular HTTP, request bun-
dles are either addressed to the origin server at which a request
is targeted or to a configured intermediary while response bundles
are addressed to the originator of the corresponding request. De-
multiplexing from other applications takes place using the scheme
identifier (http) and we assume the host part of the scheme-specific
part to be used for routing.

5.2 Application Layer Bundling:
Content and Message Aggregation

When intermediaries are used several requests or responses may
be bundled to reduce overhead and improve efficiency. This re-
quires an aggregation scheme for independent requests and respon-
ses (including HTTP headers and the respective message bodies)
and a way to match responses to requests. One option is to use
Multipart MIME [34] paired with a suitable content type for HTTP
messages (“message/http”) for aggregation and to perform match-
ing requests and responses by means of the Content-Location
MIME header. As some environments may demand a more com-
pact representation, alternatively, a general bundle-in-bundle en-
capsulation is conceivable.

Since web pages typically consist of many objects, a request for
a particular page will be followed by numerous additional ones for

the “embedded” objects. With delay-tolerant communication, one-
by-one retrieval may not be workable at all or may simply take too
long for an acceptable user experience. Instead, all the resources
required to display a web page could be retrieved upon a single
request and returned in bundled format, ideally a single response.
One suitable format to return associated resources in response to
a request is MHTML [35] that defines a MIME-based aggregation
scheme for HTML and other contents. Alternatively, a file system-
based format such as the directory tree structure created by wget
or puf bundled in an archive format (such as tar) is also workable.
Both options are orthogonal to and can be combined with bundles
containing multiple requests.

5.3 Application Layer Bundling:
Content Retrieval

With the HTTP encapsulation format in place, we discuss several
conceivable scenarios how and where to create the content bundle
in response to a request as shown in figure 3:

web
client

web
server1) Challenged, disconnected, or regular

network
BR

BR

BR

BR
BR BR

web
client

web
server

Challenged, disconnected,
or regular network

BR

BR

Proxy

BR
BR

BR

2)

web
serverBR

HTTP-over-DTN
with MHTML responses

HTTP-over-DTN
with MHTML responses

HTTP-over-DTN
with simple responses

Internet

web
client

web
server

Challenged, disconnected,
or regular network

BR

BR

Gateway

BR
3)

web
serverHTTP-over-DTN

with MHTML responses HTTP-over-TCP

Internet
Gate
way

HTTP-over-TCP

Figure 3: Alternatives for web access in challenged networks

5.3.1 End-to-end HTTP-over-DTN
Ideally, both client and server (as well as potential intermedi-

aries) implement HTTP-over-DTN so that bundles can be sent di-
rectly to the respective (origin) server. A DTN-aware server is ex-
pected to have locally stored knowledge—statically supplied by the
web page creator or dynamically created per request—that identi-
fies all the associated objects for each resource so that all objects
making up a web page can be returned in a single request. For re-
sources for which such information is not available, the web server
reverts back to the plain HTTP-over-DTN transport operation de-
scribed above.

Web browsers inherently supporting HTTP-over-DTN formulate
requests as (aggregated) bundles and interpret bundled contents
from responses. Such DTN-aware browsers should be able to pro-
vide adequate feedback to users: this may include, besides indi-
cating the progress of a page retrieval, showing whether the user is
presently connected or not and distinguishing server non-reachability
due to temporary disconnection from unknown or non-operational
servers. Even the estimated time of arrival for web resource might
be predicted.

5.3.2 Proxy-based HTTP-over-DTN
Introducing proxies into an HTTP-over-DTN environment may

support a mobile node in content aggregation from one or more
origin servers. As web pages often contain objects from multiple

origin servers (e.g., advertisements), a client requesting a single re-
source will thus have to receive multiple responses without know-
ing so a priori. Therefore, either a two-step retrieval is required in
which the client first receives all the objects the origin server of the
requested resource can provide and then analyzes these in a sec-
ond step to retrieve the missing pieces—which one may want to
avoid in challenged environments. Or, a proxy “closer” (i.e., better
connected) to the origin servers gathers the necessary resources on
the client’s behalf and then returns the bundled content to the client
in a single response. This intermediary may also be the initially
contacted origin server itself.

But even when retrieving resources only from a single origin
server, charging this server with the task of collecting all local re-
sources associated with a single web page requested by a client
may incur significant load both in computation and subsequently
required data transmission capacity—and this creates an easy to
exploit target for DoS attacks.7 To remedy this risk, proxies trusted
by the users may be introduced: after authenticating a user, a proxy
acts on their behalf and performs the resource collection for each
request, thus maintaining anonymity towards the servers while dis-
tributing the load incurred by a single request. Proxies collecting
resources from one or more origin servers interact with the latter via
HTTP-over-DTN or HTTP-over-TCP (see next subsection). They
gather the resources and then return them as a single bundle to the
initiating web client. To improve performance, they may imple-
ment local caching.

An enhanced origin server may support third party resource col-
lection by providing an explicit list of resources required by a web
page. This information should be made available as a set of HTTP
headers—Embedded-Resource—when responding and include
both local resources required as well as pointers to external re-
sources, all of which are identified by their respective URIs to a
request to avoid extra round-trips.8 Typical HTTP response head-
ers are usually a few hundred bytes in size (147–502 bytes for ac-
cessing the web pages investigated in section 6) followed by the
message body containing the initial resource of some kilobytes (3–
120 KB with a mean of some 26 KB for these web pages). Each
additional Embedded-Resource header adds another 21 bytes
(header name, blank, and CRLF) plus the URI size to the response.
The investigated web pages comprised 6–115 resources (some 38
on average) with a mean URI length of 60 bytes so that some 2–
3 KB of header fields would be added on average to the response
containing the initially retrieved resource, or roughly 2–95 %. To
avoid this overhead if not needed, the additional headers are only
returned if the proxy includes an Embedded-Resource-Request
header in which it lists which resources it would like to obtain:
none does not request any resources, embedded indicates that all
embedded objects are asked for, and linked may hint that point-
ers to the referenced web pages are also desired.9

5.3.3 Gatewaying HTTP-over-DTN
Finally, the sheer number and variety of web clients and servers

and their independent administration makes anything but incremen-
tal deployment unrealistic. With web clients and web servers speak-

7Unless all the client requests are authenticated which, however,
would counteract anonymous web access.
8Embedded resources could also be listed in an additional meta el-
ement in the HEAD of an HTML document; this would, however,
make the solution dependent on the document type and would re-
quire the proxy to parse document contents.
9The latter could ultimately support recursive retrieval of parts of
a web site up to a given depth, similar to wget, to allow offline
navigation.

ing only HTTP-over-TCP, another intermediary is required to con-
vert between HTTP-over-DTN (using one of the formats introduced
above) and HTTP-over-TCP operation. Such a gateway must also
perform the necessary aggregation (on the server-side) and deaggre-
gation (towards the client) functions so that existing web browsers
and servers may be used.

Even an unmodified server may support resource collection for
DTN-based HTTP access: as (static) HTTP resources are typically
stored in files (e.g., resource.html), for each resource with depen-
dencies on other resources, an additional dependency file may be
placed on the server following a simple naming convention (e.g.,
resource.html.dep), either (manually) by the creator of the web page
or automatically by a web design tool or some content manage-
ment system. A client, proxy, or gateway simply attempts to re-
trieve this dependency file using a regular HTTP GET request. It
needs to do so only if the resource type indicates the possibility for
embedded resources—which is typically identified by the filename
suffix or subsequently by the Content-Type header of the re-
sponse containing the resource—so that the additional overhead is
fairly low. An empty dependency file indicates that no dependen-
cies exist while a 404 Not Found error code shows that the cor-
responding server has no dependency information associated with
this particular resource. In the latter case, a gateway has to revert
to predictive prefetching to collect resources for the mobile user.

Towards a web client, similar to Drive-thru Internet as described
in section 2, a (local) gateway maintains the transport connections
and may generate temporary pages until the sought resources are
retrieved [36] where it also may indicate further information (such
as the expected availability).

5.4 A Gateway Resource Retrieval Algorithm
With the aforementioned variety of operational options available,

it is easy to foresee that some if not all of them will coexist. In par-
ticular, when beginning to introduce DTN-based web access, this
will have to rely on gateways being available for an extended pe-
riod of time. In the following, we describe an algorithm that to
be executed by DTN-over-HTTP gateway located “in the fixed net-
work” to fetch resources on behalf of a mobile user and forward
the collected resources as bundles.10 The algorithm stepwise ex-
plores all the aforementioned options for retrieving web resources
as efficiently as possible. We only describe the interaction with the
server and assume that the contents will be returned to the client as
a bundle; whether the user’s web browser natively supports HTTP-
over-DTN or whether a co-located personal gateway performs the
necessary conversion for a web browser is not relevant here.

The algorithm is shown in pseudo code in figure 4. It maintains
some local state to remember whether a particular server supported
DTN before. For the first contact with a given server S, the gate-
way simply contacts the server assuming that in a well-connected
Internet environment, non-support will be detected quickly so that
a short timeout can be used.11 A response to a DTN-based request
will either return all resources associated with the web page or just
the requested resource itself. In the latter case, subsequent (DTN-
based) interactions with this and possibly other servers are neces-
sary to retrieve the missing pieces (using additional information
supplied by the web server).

If DTN is not supported, the gateway reverts to plain HTTP-
over-TCP to request the resource but includes a hint that it supports

10A variant could also be run on the mobile client or as part of a web
browser.

11Alternatively, a DTN-capable origin server could include a DTN-
Supported header in each response and the gateway could issue
the first request using plain HTTP to learn about this capability.

Gateway algorithm: Retrieve (URI)

receive request bundle request for a URI on server S
if (S supports DTN || nothing known about S) {
// try HTTP-over-DTN first
send bundle request to S and wait for response
if (response received) {
if (error || response body contains all resources) {
forward response bundle towards originator
return

} else {
analyze bundle response and fetch embedded objects
bundle responses and forward to originator
return

}
} else {
// timeout -> note that server S does not support DTN

}
// Try plain HTTP
create HTTP request with Embedded-Resource-Request header
send HTTP request to S and wait for response
if (response received && no error) {
if (response contains Embedded-Resource: headers) {
parse Embedded-Resource: headers
recurse to retrieve all indicated resources via HTTP
aggregate the the collected resources in a bundle
send the response bundle towards the originator

} else {
// server does not support additional HTTP headers
create HTTP request for request URI dependency file
send HTTP request to S and wait for response
if (response received && no error) {

// dependency file received
parse returned dependency file
recurse to retrieve contained resources via HTTP
aggregate the the collected resources in a bundle
send the response bundle towards the originator

} else {
// no dependency file -> revert to prefetching
execute predictive prefetching for request URI
aggregate the the collected resources in a bundle
send the response bundle towards the originator

}
}

} else {
forward error response to originator as bundle

}
}

Figure 4: DTN-HTTP gateway algorithm for resource retrieval

information about embedded objects. If the response includes a
list of objects, the gateways subsequently retrieves these. Other-
wise, the gateway additionally requests a potential dependency file
from the server. If such a file is available, the gateway extracts the
additional URIs and requests the missing resources similar to the
previous step. If no further information is available, the gateway
uses predictive prefetching as last resort to obtain the necessary re-
sources. In any case, the collected resources are aggregated in a
bundle and forwarded to the originator via DTN.

6. MEASUREMENTS
Considering the mobile Internet access scenario discussed in sec-

tion 2, we are interested in the performance of our alternative re-
trieval schemes for web pages using DTN compared to the perfor-
mance of plain HTTP. We have used our prototype DTN applica-
tion proxy for plain TCP connections and HTTP, dtntcp [4] and
enhanced it to allow us simulating the availability of dependency
lists offered by the server. dtntcp has been developed for Linux
2.4, is written in plain C, and is based on the DTN reference imple-
mentation version 2.2.0 [37], using a snapshot from the public cvs
repository from May 2006. We have used the dtnd included in the
distribution as DTN bundle routers.

While dtntcp is designed in a symmetric fashion, command line
parameters can be used to configure one instance as the (mobile)
client and another one as the (fixed) server. On the client side,
dtntcp accepts incoming connections on a configured transport ad-
dress and forwards the received data as bundles to a configured
peer (identified by its DTN EID). On the server side, dtntcp ac-
cepts incoming bundles, opens a new TCP connection to the target,
and then forwards the data via TCP. After connection setup, data
forwarding operates largely symmetrically and if one TCP connec-
tion is torn down a corresponding event is relayed via DTN to the
peer. dtntcp may be configured to interpret incoming data as HTTP
requests and responses and react accordingly which we use to im-
plement three modes of operation:

1) Simple HTTP forwarding: HTTP requests and responses are
parsed and forwarded as bundles to the corresponding peers. This
mode of operation is analogous to plain HTTP with TCP being
replaced by the bundle protocol.

2) HTTP prefetching: The server-side dtntcp accepts an incom-
ing HTTP requests and then forks and executes a the Parallel URI
Fetcher (puf)12 for parallel prefetching of the resources belonging
to a web page. The retrieved resources are collected in a direc-
tory in the local file system with the web server’s DNS names as
top-level directories under which each resource is stored, associ-
ated with the respective HTTP response headers in a separate file.
dtntcp uses a compact binary representation13 of the collected tree
containing the absolute URI, resource size, and its contents which
is then returned as a response bundle. The client unpacks the con-
tents and stores the retrieved resources in its local cache from where
they are used to satisfy subsequent requests by the web browser.

3) HTTP resource lists would require support by the server. Ra-
ther than replicating the web servers locally, we have added a spe-
cific resource list extension to the server-side dtntcp: For each re-
quested URI, we have supplied a list of embedded resources (that
we have determined immediately before the measurements by ac-
cessing the web page before using the we debugging tool Charles14)
as local files from which the respective URI list is extracted on de-
mand. While this saves one or two round-trips to the server, this
minimal systematic error is considered acceptable for our evalua-
tion below. The resulting URI list is fed into an instance of puf for
efficient retrieval15; the results are stored, bundled, and forwarded
as described above.

The main difference between modes (2) and (3) is that (2) oper-
ates in a probabilistic mode because not all the objects are known
a-priori and prefetching may miss some resources (so that subse-
quent bundle requests are required) while (3) is deterministic as
complete resource lists supplied for the origin server. We have not
yet implemented true end-to-end interaction with HTTP-over-DTN
integrated into a client and a server; this is subject to further study.

12Version 1.0.0, available from http://puf.sourceforge.net/. We use
puf because our earlier experiments with wget did not provide sat-
isfactory results due to its sequential operation. puf is invoked as
puf -ns -v -nc -pr++ -F -lc 4 -nb -xg -xd -xh * -U ”” followed by
all headers received from the client (-xH) and the request URI.

13For simplicity of the implementation, we do not yet support the
MIME-based MHTML.

14http://www.xk72.com/charles. This tool also provides lists of all
resources accessed including statistics about HTTP request and re-
sponse headers.

15Using puf -ns -v -nc -F -lc 4 -nb -xd -xh * -U ”” -i urilist-file,
again followed by the headers received from the client prefixed by
-xH each.

6.1 Setup and Scenarios
We have built a measurement environment for the gateway-based

approach (figure 3.3) as this is the expected initial situation to be
dealt with. The setup was located at Universität Bremen and com-
prises three Intel 80686 PCs (A, B, and C) running Debian Linux
2.6.16.11, interconnected by a Gigabit Ethernet switch and con-
nected to the Internet via a 1 Gbit/s access link. Host A runs Mozilla
Firefox as the web browser used to initiate all requests, Hosts B and
C each optionally run a squid web cache in proxy mode (i.e., with
caching deactivated) as well as an instance of dtnd and dtntcp. Host
B runs tcpdump to monitor the link between hosts A and B to de-
termine the web retrieval times from the initial web request to the
retrieval of the last resource associated with a web page. To mea-
sure the end user experience we have additionally used the Firefox
plug-in Fasterfox16 that also captures rendering times of the web
browser and excludes retrieval time for resources not needed to dis-
play a web page (such as the icon file favicon.ico.17 Host C runs
tcpdump to monitor the interaction with remote web servers.

Figure 5 depicts the four measurement setups we have used to
characterize the impact of introducing DTN. The focus is on the
performance impact under ideal conditions, i.e., no loss and no
congestion between a “mobile” node and the fixed Internet for two
different access link delays. Analyzing this scenario allows to de-
termine whether HTTP-over-DTN would be suitable as a baseline
mode of operation for all future web interactions—as opposed to
being chosen only when a user is mobile and finds herself in a
challenged environment [4]. Measurement (0) provides the refer-
ence setup of plain HTTP over TCP; we have included two squid
proxies to compensate for the connection splitting introduced by
the other scenarios. (1) measures plain HTTP-over-TCP with each
HTTP request and response encapsulated in a single DTN bundle.
(2) is the prefetching approach where we use puf for recursive re-
trieval of the requested resources that are then pushed towards the
dtntcp client and cached to satisfy subsequent requests. If puf fails
to determine all resources, subsequent HTTP request bundles will
be generated by the dtntcp client. Finally, (3) emulates the inter-
active retrieval of a web page’s resources using hints supplied by
the origin server (embedded in HTTP headers or by means of a
separate dependency files) using a locally available file containing
all relevant URIs (since modifications to the origin servers are not
possible). Again, all retrieved resources are pushed from the dtntcp
server to the client but, in this case, there are no missing resources
expected and thus no subsequent retrieval request bundles will be
necessary.

6.2 Measurement Results
We have carried out the above measurements three times for each

web page and report on the mean retrieval values. The retrieval
time is calculated from the SYN packet for the browser’s request
for the initial resource of the web page until the last TCP segment
carrying data belonging to the respective web page and the page
having been rendered.18 The number of resources associated with
each web page (“Obj”) is counted based up on the number of GET
requests as captured and reported in a separate run by Charles. The
tool ping has been used on host A to determine the RTT between
host A and each remote web server. In order to assess the influ-

16http://fasterfox.mozdev.org/
17Note that, due to varying local system load, the rendering time
for the same web page may vary by up to 30total retrieval time;
however, since we have observed varying response times due to
server and network load this local deviation is considered within
reasonable error bounds of our measurements.

18Using Ethereal and Fasterfox to support our evaluation.

dtntcp
client

DTN
Router

dtntcp
server web server

web
browser

DTN
Router puf

web server
web

browser

dtntcp
client

DTN
Router

dtntcp
server web server

web
browser

DTN
Router

squid1)

2)

3)

0) squid squid

Host A Host B Host C

Ethereal Ethereal

dtntcp
client

DTN
Router

dtntcp
server web server

web
browser

DTN
Router

puf

URIs

Gigabit
Ethernet

Figure 5: Measurement Scenarios

ence of delay in communication paths, e.g., caused by congestion
or short disconnections, we have also performed all measurements
with an additional round-trip delay of 300 ms.

We have used a set of selected websites with different complexity
(with respect to the number of embedded objects) and different ge-
ographic and network topological locations (Germany, US, Japan,
Australia). From our twelve websites, we present those eight that
have worked properly in all four scenarios during our repeated mea-
surements; they are shown in table 1.19

Id URL Obj RTT
TZI http://www.dmn.tzi.org/ 12 <1 ms
TS http://www.tagesschau.de/ 94 5 ms
WID http://www.wide.ad.jp/ 32 295 ms
APC http://cocoon.apache.org/ 29 28 ms
IETF http://www.ietf.org/ 8 107 ms
W3C http://www.w3.org/ 13 53 ms
News http://www.theaustralian.news.com.au/ 69 5 ms
ADL http://www.adelaide.edu.au/ 24 374 ms

Table 1: Overview of web pages and their characteristics

Table 2 summarizes the delays for the four aforementioned sce-
narios. Due to the small number of measurements and the variable
environmental conditions, we can only provide general trends ob-
served.20 First of all, we observe that the retrieval latency for web
pages between HTTP over TCP (0) and plain HTTP over DTN (1)
is roughly in the same order of magnitude and, in most case, DTN
only introduces a latency factor up to about six, with the exception
of the TZI that exhibits an extremely short RTT so that any DTN-
introduced latency gains particular weight. We expect this factor to
be lower in a real-world environment with less perfect connectivity
and when using optimized rather than prototype DTN and gateway
implementations.

The results also show that prefetching (2) may provide proba-
bilistic improvements, i.e., reduce retrieval latency, in cases where

19The contents of the other four websites could not be retrieved con-
sistently using either prefetching or our URI list emulation; for
those measurement results we obtained with these websites, they
exhibited largely similar behavior to what we present below.

20While results obviously will vary between different websites due
to their characteristics, even the evolution of a single website over
time can lead to variations (as we observed in measurements of
these twelve web sites over time). Therefore, any assessment has
to be conservative at this point.

Id (0) (1) (2) (3) (2):(0) (3):(0)
TZI 0.5 s 41.9 s 4.1 s 3.7 s 7.9 7.1
TS 1.4 s 9.6 s 13.3 s 12.4 s 9.2 8.6
WID 4.1 s 8.3 s 8.0 s 5.8 s 2.0 1.4
APC 1.1 s 2.7 s 3.8 s 2.9 s 3.5 2.7
IETF 0.7 s 1.3 s 1.5 s 1.1 s 2.1 1.6
W3C 1.3 s 2.8 s 3.8 s 2.5 s 3.0 2.0
News 7.5 s 9.9 s 31.1 s 17.7 s 4.2 2.4
ADL 7.7 s 37.1 s 12.8 s 15.9 s 1.7 2.1

Table 2: Retrieval time for web pages with no artificial latency

Id (0) (1) (2) (3) (2):(0) (3):(0)
TZI 4.0 s 50.6 s 8.5 s 7.2 s 2.1 1.8
TS 19.4 s 43.8 s 36.1 s 57.1 s 1.9 2.9
WID 8.4 s 15.2 s 10.6 s 11.5 s 1.3 1.4
APC 9.9 s 16.7 s 19.0 s 11.1 s 1.9 1.1
IETF 1.8 s 3.6 s 3.8 s 3.6 s 2.1 2.0
W3C 4.9 s 10.7 s 11.5 s 8.0 s 2.4 1.7
News 17.1 s 29.3 s 51.7 s 34.0 s 3.0 2.0
ADL 18.8 s 52.9 s 29.0 s 23.4 s 1.6 1.3

Table 3: Retrieval time for web pages with 300 ms delay

prefetching succeeds in predicting most embedded objects (which
is the case for at least 80 % of the embedded objects with most sites
except for APC, TS, and News). We attribute variations for the
other web pages primarily to varying server load and congestion
effects. If prefetching does not succeed, the retrieval time natu-
rally increases as repeated complex operations are required includ-
ing forking puf for each resource not prefetched and collecting data
from the file system afterwards; this explains the increased retrieval
times for APC, TS, and News.

Using URI lists (3) provides this improvement almost determin-
istically across all web pages because no heuristics are needed to
determine embedded links. Again, variable system load and con-
gestion lead to a variation of the results (for example, the perfor-
mance for WID has improved from (2) to (3) for the measurements
without delay but has not in the 300 ms delay setup).

When comparing the measurements without delay (table 2) with
those with 300 ms additional delay for the (wireless) access link
(table 3), we observe that the relative performance of (2) prefetch-
ing and (3) URI lists compared to plain HTTP-over-TCP improves
significantly with increasing delay. We observe that the relative
latency—i.e., the latency ratio of scenario (2) to (0) and (3) to
(0), columns “(2):(0)” and “(3):(0)” in the above tables—decreases
from a maximum of nine down to only three when introducing arti-
ficial delay between the fixed and the mobile node. Most web pages
take only about twice as long to retrieve despite the introduction
of the non-optimized DTN infrastructure so that the performance
“penalty” for using DTN becomes acceptable.

Overall, particularly deterministic advance retrieval of web page
contents (3) as suggested above allows for complete collection of
embedded resources and performs mostly only marginally worse
(remaining in the same order of magnitude) compared to today’s
HTTP over TCP, in individual measurements even better, while im-
proving robustness for mobile web access and enabling communi-
cation in particularly challenged environments in the first place.

However, as pointed out already in [4], the user experience suf-
fers if bundling is applied because of the increased initial delay be-
fore any web contents can be displayed. While this is perfectly

acceptable in disconnected environments, HTTP-over-DTN may
benefit from a two-stage delivery process: returning the initially
requested resource right away and then bundling all the embedded
ones into one subsequent response—allowing for providing a quick
first impression of the web page while preserving disconnection tol-
erance and efficiency.

7. CONCLUSION
In this paper, we have presented a protocol design and a sys-

tem architecture for delay-tolerant access to web pages by run-
ning a slightly enhanced variant of HTTP on top of the DTNRG
bundle protocol which enables web access for intermittently con-
nected users. We have presented different complementary architec-
tural options for incremental deployment and have shown that the
achievable performance for HTTP-over-DTN given perfect con-
nectivity is not much worse compared to plain HTTP over TCP
operation. We believe that even the user experience may be main-
tained in connected environments if appropriate mechanisms are
applied. This is important because it allows mobile users to choose
HTTP-over-DTN as regular mode of operation rather than switch-
ing modes between mobile and fixed environments [4].

While these results look promising, more encompassing mea-
surements (ideally using controlled environmental conditions) are
needed to establish more statistically significant results. Further-
more, we seek to provide a complete DTN-over-HTTP gateway
and proxy implementation in one component following the speci-
fication above and provide a minimal operational infrastructure for
access to (selected) web sites. Our next steps are towards enabling
end-to-end support for DTN, particularly the integration with a
standard web browser so that co-located mobile gateways can be
avoided. On the server side, we want to enable least partial support
for resource collection within the realm of a single origin server
(with the necessary consideration of DoS risks), while cross-server
collection will remain up to the client or proxies on the path for the
time being.

The most important conceptual issue to address in the future is
a security architecture for web access via DTN that allows clients
to also access secure contents on the web and thus substitute the
reliance on TLS by an appropriate end-to-end mechanism at the
application layer. This is essential as, with a constantly growing
awareness of and need for security in communications, otherwise
the most important (and an increasing number of) applications will
not be accessible by mobile users.

8. ACKNOWLEDGMENTS
The authors would like to thank Christoph Dwertmann for help-

ing with the measurements described in this paper.

9. REFERENCES
[1] Gosta Leijonhufvud, “Multi access networks and Always

Best Connected, ABC,” November 2001, MMC Workshop.
[2] Eva Gustafsson and Annika Jonsson, “Always Best

Connected,” IEEE Wireless Communications, vol. 10, no. 1,
pp. 49–55, February 2003.

[3] Jörg Ott and Dirk Kutscher, “Why Seamless? Towards
Exploiting WLAN-based Intermittent Connectivity on the
Road,” in Proceedings of the TERENA Networking
Conference, TNC 2004, Rhodes, June 2004.

[4] Jörg Ott and Dirk Kutscher, “Applying DTN to Mobile
Internet Access: An Experiment with HTTP,” Technical
Report TR-TZI-050701, Universität Bremen, July 2005.

[5] “Drive-thru Internet project,” http://www.drive-thru-
internet.org/.

[6] Jörg Ott and Dirk Kutscher, “Drive-thru Internet: IEEE
802.11b for ,,Automobile“ Users,” in Proceedings of the
IEEE Infocom 2004 Conference, Hong Kong, March 2004.

[7] Jörg Ott and Dirk Kutscher, “The “Drive-thru” Architecture:
WLAN-based Internet Access on the Road,” in Proceedings
of the IEEE Semiannual Vehicular Technology Conference
May 2004, Milan, May 2004.

[8] Jörg Ott and Dirk Kutscher, “Exploiting Regular Hot-Spots
for Drive-thru Internet,” in Proceedings of KiVS 2005,
Kaiserslautern, Germany, March 2005.

[9] Jörg Ott, Dirk Kutscher, and Mark Koch, “Towards
Automated Authentication for Mobile Users in WLAN
Hot-Spots,” in Proceedings of VTC Fall 2005, September
2005.

[10] Jörg Ott and Dirk Kutscher, “A Disconnection-Tolerant
Transport for Drive-thru Internet Environments,” in
Proceedings of the IEEE Infocom 2005 Conference, Miami,
March 2005.

[11] “FleetNet project,” http://www.et2.tu-harburg.de/fleetnet/.
[12] “Network on Wheels project,” http://www.network-on-

wheels.de/.
[13] Marc Bechler, Walter J. Franz, and Lars Wolf, “Mobile

Internet Access in FleetNet,” in 13. Fachtagung
Kommunikation in verteilten Systemen, Leipzig, Germany,
April 2003.

[14] “IST OverDRIVE project,” http://www.ist-overdrive.org/.
[15] M. Zitterbart, K. Weniger, O. Stanze, S. Aust, M. Frank,

M. Gerharz, R. Gloger, C. Görg, I. Gruber, S. Hischke,
P. James, H. Li, C. Pampu, C. de Waal, W. Weiß,
D. Westhoff, J. Wu, D. Yu, and X. Xu, “IPonAir – Drahtloses
Internet des nächsten Generation,” PIK, Vol 26, No 4,
October 2003.

[16] Pablo Rodriguez, Rajiv Chakravorty, Julian Chesterfield, Ian
Pratty, and Suman Banerjee, “MAR: A Commuter Router
Infrastructure for the Mobile Internet,” in Proceedings of the
ACM Mobile Systems, Applications and Services Conference
(ACM Mobisys 2004), June 2004.

[17] Adeel Baig, Mahbub Hassan, and Lavy Libman,
“Prediction-based Recovery from Link Outages in On-Board
Mobile Communication Networks,” in Proceeding of IEEE
Globecom 2004, December 2004.

[18] Yun Mao, Björn Knutsson, Honghui Lu, and Jonathan Smith,
“DHARMA: Distributed Home Agent for Robust Mobile
Access,” in Proceedings of the IEEE Infocom 2005
Conference, Miami, March 2005.

[19] “Mindstream project,” http://mindstream.watsmore.net/.
[20] Venkata N. Padmanabhan and Jeffrey C. Mogul, “Using

Predictive Prefetching to Improve World-Wide Web
Latency,” Proceedings of the ACM SIGCOMM ’96
Conference, 1996.

[21] Zhimei Jiang and Leonard Kleinrock, “Prefetching links on
the WWW,” in ICC (1), 1997, pp. 483–489.

[22] B. Davison, “Assertion: Prefetching with GET is not good,”
2001.

[23] Nils Seifert, “A Pragmatic Approach for ”d-burdened”
Internet Services,” in Presentation at the Dagstuhl Seminar
on Disruption Tolerant Networking, April 2005.

[24] Kevin Fall, “A Delay-Tolerant Network Architecture for
Challenged Internets,” Proceedings of ACM SIGCOMM

2003, Computer Communications Review, Vol 33, No 4,
August 2003.

[25] Keith L. Scott and Scott C. Burleigh, “Bundle Protocol
Specification,” Internet Draft draft-irtf-dtnrg-bundle-
spec-05.txt, Work in progress, May 2006.

[26] Sushant Jain, Kevin Fall, and Rabin Patra, “Routing in Delay
Tolerant Networks,” Proceedings of the ACM SIGCOMM
2004 Conference, Portland, OR, USA, 2004.

[27] A. Vahdat and D. Becker, “Epidemic routing for partially
connected ad hoc networks,” Technical Report CS-200006,
Duke University, April 2000.

[28] Anders Lindgren, Avri Doria, and Olov Schelen,
“Probabilistic routing in intermittently connected networks,”
in The First International Workshop on Service Assurance
with Partial and Intermittent Resources (SAPIR), 2004.

[29] Jörg Widmer and Jean-Yves Le Boudec, “Network Coding
for Efficient Communication in Extreme Networks,” in ACM
SIGCOMM Workshop on Delay-Tolerant Networking
(WDTN), 2005.

[30] Yong Wang, Sushant Jain, Margaret Martonosi, and Kevin
Fall, “Erasure Coding Based Routing for Opportunistic
Networks,” in ACM SIGCOMM Workshop on Delay-Tolerant
Networking (WDTN), 2005.

[31] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby,
“Performance Enhancing Proxies Intended to Mitigate
Link-Related Degradations,” RFC 3135, June 2001.

[32] Alex C. Snoeren, “A Session-based Architecture for Internet
Mobility,” PhD Dissertation, MIT, 2002.

[33] Simon Schütz, Lars Eggert, Stefan Schmid, and Marcus
Brunner, “Protocol enhancements for intermittently
connected hosts,” ACM Computer Communications Review,
vol. 35, no. 3, pp. 5–18, July 2005.

[34] N. Borenstein and N. Freed, “MIME (Multipurpose Internet
Mail Extensions) Part One: Mechanisms for Specifying and
Describing the Format of Internet Message Bodies.,” RFC
1521, September 1993.

[35] J. Palme, A. Hopmann, and N. Shelness, “MIME
Encapsulation of Aggregate Documents, such as HTML
(MHTML),” RFC 2557, March 1999.

[36] Henry Chang, Carl Tait, Norman Cohen, Moshe Shapiro,
Steve Mastrianni, Rick Floyd, Barron Housel, and David
Lindquist, “Web browsing in a wireless environment:
Disconnected and asynchronous operation in artour web
express,” Proceedings of ACM MOBICOM 97, Budapest,
Hungary, 1997.

[37] “DTN Reference Implementation,” http://www.dtnrg.org/
wiki/Code, May 2006.

