
Application-aware DTN Routing

Jörg Ott <jo@netlab.tkk.fi> and Mikko Juhani Pitkänen <mikko.pitkanen@hip.fi>

ABSTRACT
Delay-tolerant networking (DTN) enables nodes to com-
municate by means of asynchronous messaging even
though no end-to-end path may exist at any point in time.
Messages may be of arbitrary size and the (email-style)
store-carry-and-forward operation keeps copies of mes-
sages in possibly many nodes for an extended period of
time. Suitably designed application protocols avoid fre-
quent interactions and create self-contained messages in-
stead. We leverage these properties and propose applica-
tion support for DTN routers. By adding explicit appli-
cation hints visible to intermediate DTN nodes the latter
can selectively aid application performance, by means of
application-dependent routing, cooperative caching, dis-
tributed storage, or even more complex operations.

1 INTRODUCTION
For many years, caching and (more recently) dynamic
content adaptation techniques have been used for web
applications in the Internet to serve users more effi-
ciently, distribute load, and tailor results to each re-
questor. Of particular interest are wireless nodes for
which Internet connectivity is often the bottleneck. With
increasingly powerful wireless devices (particularly in
terms of local storage and communication capabilities),
cooperative caching [12] among mobile nodes in mo-
bile ad-hoc networks gains potential in addition to the
caching infrastructure offered by service providers.

However, traditional web caching is not very well
suited for mobile (ad-hoc) environments: Caches, placed
within the infrastructure or located on other mobile
nodes, need to be “inserted” between the client and
the origin server. This can be achieved by client
(auto)configuration or by having the cache intercept IP
packets transparently from the passing traffic (which re-
quires that all packets follow the same route and the
cache is on-path). Both is difficult to achieve in dynamic
mobile environments. As request and response data are
transmitted as a sequence of otherwise independent IP
packets, caches need to terminate an application connec-
tions and reassemble, interpret, and process each appli-
cation data unit (ADU).

The situation is different with Delay-tolerant Net-
working [1]. As application protocols cannot rely on
highly interactive communications, protocol messages
(bundles) are semantically self-contained (i.e., ADU =
bundle). This means that intermediate routing nodes will
often only operate on complete ADUs so that implement-

ing further support functions such as caching will not re-
quire additional processing (such as reassembling appli-
cation data). Moreover, assuming that bundles will usu-
ally be larger (at least not smaller) than packets, the ar-
rival frequency is lower, rendering per-bundle processing
less expensive than per-packet processing. Finally, de-
pending on the routing protocol, DTNs may keep ADUs
longer available due to extended storage periods and
wider dissemination (when using replication).

These observations motivate using DTN nodes for
(mobile) storage and retrieval. In this paper, we lever-
age bundles queued in DTN routers for the purpose of
caching and distributed storage platform but also con-
sider generalizing these concepts to support further ap-
plication protocol operations. After a review of related
work in section 2, we introduce application scenarios in
section 3 and outline application support in DTN routers
in section 4. We show first simulation results for infor-
mation caching in section 5, discuss limitations and some
open issues in section 6, and conclude with a short as-
sessment and discussion of next steps in section 7.

2 RELATED WORK
DTN has been studied to enable communication in dis-
connected or challenged environments, including sparse
mobile (ad-hoc) networks. Communication in DTNs is
asynchronous, modeled after email. Messages may be
stored for an extended period of time (rather than dis-
carded) if no end-to-end path exists and may also be car-
ried physically during this period, thus extending com-
munication capacity and reach. In the DTN architecture
[1] different (inter)networks are interconnected above the
transport by means of a bundle layer. Bundles are for-
warded hop-by-hop between DTN nodes (bundle routers
or agents). As bundles may be of arbitrary size, frag-
mentation is supported to deal with storage or transmis-
sion constraints. A custody transfer imposes persistence
requirements on bundle storage in and reliability on for-
warding across bundle agents. A bundle lifetime set by
the sender limits each bundle’s circulation. Adminis-
trative bundles may inform a sender about message for-
warding progress, end-to-end delivery, or failures.

A DTN routing framework has been presented in [3].
Variants of epidemic routing have been proposed (not
just) for mobile environments (e.g. [5]). These routing
protocols create multiple copies of a message and choose
different paths to increase the delivery probability (using
different algorithms for creating, forwarding, and purg-

1



ing copies of messages). Furthermore, erasure and net-
work coding techniques have been suggested [2, 10, 11]
to increase the delivery probability while reducing the
overall load on the network.

The delay-tolerant nature of DTNs enables more so-
phisticated membership and delivery models when deal-
ing with multicasting [13]. The store-carry-and-forward
paradigm is exploited for (application-layer) broadcast-
ing to spread information from a few feeds to many re-
cipients [4], leveraging DTNs for content distribution.
In contrast to traditional Content Delivery Networks
(CDNs) that use dedicated infrastructure, with DTNs, the
user nodes play an active roles in dissemination.

Our recent work on Grid data storages has presented a
design for a scalable erasure coding storage showing how
to efficiently stripe files into large chunks for redundancy
[8] and how the coding can be used with large data units
comparable to size of bundles [9].

In this paper, we generalize and extend these ideas and
propose tapping into the DTN layer to leverage and in-
fluence storage and propagation in DTNs in order to sup-
port application operations. We start by looking at stor-
ing, disseminating, and retrieving self-contained ADUs,
but also investigate supporting further operations. In all
cases, each DTN bundle carries processing hints to influ-
ence its treatment by the DTN nodes.1

3 APPLICATION SCENARIOS
We assume that the application protocols are designed
for or adapted to be used with DTNs (as proposed for
HTTP [6] or email [7]). We start with two specific sce-
narios concerning retrieval and distributed storage, then
look at more general protocol operations, and finally
summarize common requirements for DTN support. We
focus on realizing the respective protocol functionality
and defer the discussion of security issues to section 6.

3.1 Implicit Content Caching
A mobile user wants to retrieve web page resources
available on the Internet. A web page request req(U)
from a requester R contains an HTTP GET message with
a URI identifying the resource U sought; header fields
may indicate R’s relevant capabilities and conditions for
resource retrieval. req(U) travels from R intermediate
nodes Ni the (fixed) origin server which returns a re-
sponse rsp(U) containing the complete resource U in
question plus a set of descriptive attributes (e.g., its mod-
ification date and validity period) or an error notification.
Both req(U) and rsp(U) may be replicated several times
on their way through the DTN and stored temporarily, at
most until their respective lifetimes have expired.

1This might be viewed as resembling Active Networking to some
extent. In comparison, in DTN-based operation, processing takes place
per (large) self-contained bundle rather than per (small) independent
packet (and thus less frequently) and DTN nodes will often be user
devices rather than infrastructure components.

Depending on the routing algorithms in use, both
req(U) and rsp(U) may traverse several paths and mul-
tiple copies may be spread across the network. When
another client S later also issues a request req′(U) for U ,
depending on the proximity of R and S, the motion of
nodes Ni, and the respective paths chosen by the routing
protocol, req′(U) may traverse a node N j that still holds
a copy of rsp(U). In this case, N j could act as an im-
plicit cache, create rsp′(U) from its stored U , and reply
to S (not forwarding req′(U)). The prerequisite is that
N j is able to identify U , to match req′(U) and rsp(U),
and to determine if the freshness requirements from the
request are satisfied by rsp(U). If response bundles are
stored even longer than necessary for DTN delivery (e.g.,
space permitting, for the validity period), a cooperative
cache can be created among mobile users by leveraging
delay-tolerant routing mechanisms. Note that this con-
tent caching is different from the content delivery mech-
anisms presented above since, here, we wait for explicit
requests rather than distributing resources proactively.

3.2 Content Storage
The above scenario can be extended to cover store oper-
ations as well. Assume a (mobile) user T traveling who
wants to maintain a blog about her trip and archive her
digital pictures, making the blog and a subset of the pic-
tures also available to other travelers who might be in the
area as an instant travel guide. T uses some third-party
provider in the fixed Internet that accepts DTN-based de-
livery of contents, generates blog entries, and archives
images as specified; all bundles received and success-
fully processed by the service provider are explicitly ac-
knowledged end-to-end so that the traveler knows when
she can delete the information locally.

The storage request srq(U) identifying and containing
the resource U will propagate towards the fixed Internet,
again, being stored, forwarded, and replicated possibly
along multiple paths on nodes Ni. Replication and ex-
tended storage on other intermediary nodes can be used
to make the U available to another peer P who is in-
terested in this information; its request req(U) can be
handled as described above. This very mechanism may
also serve as a (short-term) distributed backup storage
for user T as multiple copies exist and may prevent in-
formation loss in case of hardware loss or failure—or for
storage in a DTN for the entire lifetime of U . In both
cases, T may choose the lifetime for the srq(U) bundle
to match the desired period of (local) availability rather
than just the expected time to reach the fixed “origin”
server. Explicit cleanup bundles may be used to force
purging contents once it is no longer needed.

3.3 Further Operations
The above examples show protocol operations acting on
complete resources and delivering these in a DTN. Fur-

2



ther operations maintaining the integrity of such com-
plete resources are conceivable: Partial resource re-
trieval is straightforward by allowing common subad-
dressing schemes (such as the HTTP Range: header).
Subscription and notification services could be realized
that allow nodes to monitor known resources for updates.
DTN multicasting could be used for efficient distribution
with multicast EIDs representing certain resource collec-
tions (e.g., content-based or source-based “channels”).
Assuming some hierarchical structure of resource iden-
tifiers (such as web pages), prefix-based subscriptions
would allow efficiently monitoring huge resource collec-
tions (e.g., all objects of a web site). Content transfor-
mation may be performed for a specific requesting node
that supplies its own capabilities in the request. Another
node will only respond if it is capable of performing the
necessary content transformation. As a fallback, the re-
quest can be routed to the origin server.

Operations that manipulate or update parts of a re-
source might also be defined; however, this raises syn-
chronization and authorization issues (see section 6).

3.4 Common Requirements
From the above scenarios, we can extract some common-
alities that a DTN bundle router instance could use as
hints for tailored processing of bundles. Tailored pro-
cessing may range from noticing the presence of a partic-
ular bundle (e.g., carrying a resource) to modifying store
and forward operations to replying to received bundles as
we will discuss further in the next section.

First of all, bundles that could benefit from enhanced
treatment need to be identified as such. Somewhat sim-
ilar to the IP router alert option, a bundle should be
tagged if special handling beyond “fast path” is desired.

Independent of a particular application protocol, the
general class of operation should be identified to allow
for minimal support even if the application protocol de-
tails are not understood: it should be visible whether a
bundle carries a resource (retrieved or to store) as op-
posed to just a retrieval request, storage or error response.
This allows for different storage and routing policies.
Obviously, the resource the protocol operation is to act
upon needs to be identified independent of the applica-
tion, typically by using a URI, so that at least content-
specific indexing is possible.

If a resource is contained in the message, its applica-
tion layer validity period (lifetime) should be made ex-
plicit, so that bundle storage may be adapted accordingly.
For more advanced processing, its content type and pos-
sibly other (MIME) parameters might be provided.

Finally, the application protocol should be identified
to allow for dedicated handling so that, e.g., specific re-
sponses to retrieval requests can be generated. Process-
ing steps requiring further details can then interpret the
application protocol and react accordingly.

This common information may be carried in a bundle
protocol extension header, Application-Hints, providing
the following fields: resource URI (including the appli-
cation protocol), operation indicator, resource lifetime,
and possibly further resource-specific parameters. Such
a header can be encoded in a few bytes plus the URI and
optionally the MIME type and thus will increase the bun-
dle size only marginally. In case of bundle fragmenta-
tion, this header needs to be copied into every fragment.

4 APPLICATION-AWARE DTN ROUTERS
Figure 1 shows a simplified diagram of a sample DTN
router: a bundle—comprising a DTN header denoted by
“H” and a payload—arrives on an incoming interface on
the left. After some validity checking (e.g., authentica-
tion, TTL) the bundle is passed on to the routing logic
where loop detection is performed, a forwarding deci-
sion is taken, and the bundle is placed in one or more of
the outgoing queues. The routing decision may be revis-
ited whenever a new contact/link becomes available and
queues may be updated as new bundles arrive. The bun-
dle is transmitted when a contact/link becomes available,
logically preceding bundles have been sent, and the peer
accepts the bundle. After transmission, a bundle may be
kept further in the same or a different queue, e.g., to await
further transmission opportunities to other contacts. A
bundle may be purged after successful transmission, re-
ception of a delivery or custody transferred notification,
or according to some deletion strategy (e.g., oldest bun-
dle, shortest remaining lifetime, random).

Incoming
processing

Routing
logic Queuing

H H H HH H
H

Incoming
interface

Outgoing
interfaces

Forwarding

Figure 1: Simplified view of a DTN router

Bundles may stay in router queues up to their TTL.
Routing protocols may perform partial or full replication
of bundles at different stages: only the sender may create
copies, only n copies in total may be created, or bun-
dles may forwarded only a fixed number of times (before
the destination is met), to name just a few. In all cases,
bundle routing/forwarding as well as deletion decisions
are taken based upon the bundle headers only. However,
these headers indicate transmission parameters but do not
necessarily reflect properties of the bundle contents. In
the following, we introduce two extension steps to bun-
dle routers based upon the Application-Hints header pro-
posed above: a passive and an active mode of operation.

4.1 Passive Router Support
With passive support, the DTN router does not alter its
own behavior concerning bundle routing. Merely, as
depicted in figure 2a, an additional application-aware

3



processing (AAP) module gathers information upon ev-
ery bundle event occurring in the router: about newly
arriving bundles (info) containing an Application-Hints
header “A” and when these bundles get added to and
deleted from queues. By inspecting the Application-
Hints, the module maintains a local context from the
application perspective. This context allows the AAP
module, e.g., to locate a local copy of a resource U in
an srq(U) or rsp(U) matching an incoming req(U). If
found it may retrieve the resource from a queue, use an
application-specific component to generate a reply bun-
dle, and enqueue it for delivery to the requester

Incoming
processing

Routing
logic Queuing

H H H HH H
H

Incoming
interface

Outgoing
interfaces

Forwarding

Application-aware processing + local context

A A A A
A

a)

retrieve ()
add ()
delete ()info () reply ()

Incoming
processing

Routing
logic Queuing

H H H HH H
H

Incoming
interface

Outgoing
interfaces

Forwarding

Application-aware processing + local context
(+ optional application state)

A A A A
A

b)

retrieve ()
discard ()

add ()
delete ()

info ()

info () reply ()
discard ()

info () ctrl ()

Figure 2: Passive (a) and Active (b) Support in a DTN Router

4.2 Active Router Support
A passive AAP module cannot influence decisions of the
local router, which has the benefit of minimizing inter-
ference with the operation of DTN routing protocols. In
some situations, however, such an influence may be de-
sirable: In a simple example, an AAP module that serves
repeated req(U) for a resource from the local queue may
want to prevent the bundle containing rsp(U) from be-
ing deleted and keep it until its application-level validity
period expires. Similarly, an AAP module may speed up
deletion of resource bundles that are no longer needed or
may treat bundles containing different (classes of) opera-
tions differently. Furthermore, an AAP module may sup-
ply routing hints or forwarding decisions per application
and thus enable different routing schemes to be active
at the same time—a feature which could be used to con-
struct overlays as part of the regular routing mechanisms.
Finally, this may even allow a mobile node to exercise
better control of its local capacity by selectively forward-
ing bundles for some applications (which the user is in-
terested in) while not accepting them for others.

For this active control, further interfaces are added as
shown in figure 2: The AAP module may discard in-
coming bundles. Queuing is extended to keep the AAP
module informed about manipulations (including mov-
ing bundles within or between queues) and enable the

AAP module to perform similar operations (ctrl) as well
as to discard queued bundles. These operations allow
an AAP module speeding up spreading of some bun-
dles while delaying or preventing further dissemination
of others. The AAP module now also interacts with the
routing logic, receiving information (info) about routing
tables but also being able to supply such information via
the ctrl interface.2 This enables controlling the degree of
replication, the choice of outgoing links, or the amount
of erasure coding being applied per bundle to match ap-
plication needs. For example, if a DTN serves as (tempo-
rary) storage for certain resources according to scenario
2 above, a higher degree of replication is desirable for
storage than for retrieval requests.

In all their decisions and influences, the application
modules do not have to strive for absolute correctness
or reliability as in a distributed system but may rather
operate probabilistically: those requests that cannot get
resolved or found locally will have to travel to the origin
server. This means that AAP modules can be optimistic
in their behavior to achieve their goals and conservative
with respect to their impact on the network’s operation.

4.3 Generic vs. Specific Operation
In both passive and active mode, the question arises of
how much generalization can and should be applied and
where application-specific support is absolutely needed
(and how much application knowledge should go into a
router in the first place). Any router actions that do not
generate new bundles (with modified contents) or alter
existing ones can operate independently of the applica-
tion protocol, yet may support selected applications, e.g.,
by influencing routing decisions or queuing.

It is obvious that a DTN router must understand an ap-
plication protocol to respond to requests or perform even
more sophisticated operations. However, there are some
fairly general protocols (such as HTTP) that make up a
large fraction of the Internet traffic today so that very lim-
ited additional effort may already yield significant gain.
As the application protocols can be identified from the
hints in a bundle, their processing can be dispatched to
specific plug-ins that may be added and removed dynam-
ically. Again, since enhanced DTN router modules op-
erate probabilistically, applications will still work even
if their bundles are not recognized by some or all of the
nodes. This also helps incremental deployment.

5 SIMULATIONS AND OBSERVATIONS
We have carried out a first set of simple simulations to
show the effect of caching bundle contents in routers and
present some initial findings on the use of application-
aware routing combined with caching in bundle based
message delivery. As performance metrics, we look at
the delivery ratio, response time, and network utilization.

2A bundle router API is currently under discussion in the DTNRG.

4



We have extended a Java-based DTN simulator [3]
to support the functionality needed for our application-
aware routing: bundle-based transfer, with each bundle
identified by a URI; caching bundles on the routing nodes
with a certain probability; bundle forwarding without
fragmentation with incomplete transfer leading to a re-
transmission; bundle fragmentation with bundles being
send in chunks in a way that each chunk remains to be
self-contained and identifiable. For bundle forwarding,
we use flooding implemented in the simulator.

src

snk

snk

src
Background traffic

… …

SS

C

Figure 3: Simple grid topology used in simulations.

Figure 3 depicts the network topology used in our sim-
ulations. We have chosen a simple structure of the topol-
ogy to avoid biases. The client (C) is situated at one edge
of a 10x10 grid topology and two servers (S) are located
at the opposite side. Nodes connect to their neighbors
over a WLAN link at 11 Mbit/s. The link behavior simu-
lates a highly intermittent connectivity pattern where up
and down times are exponentially distributed with mean
of 16 s for the uptime and a mean of 4 s for the down-
time, thus letting our target bundles pass but also leading
to transmission failures. Link delays are static at 100 ms
and each node contributes 500 MB of queue space. Four
different URIs U1...U4 are requested every 50 s and both
requests and responses time out after 24 s; responses may
be cached for 480 s by intermediate nodes. We have run
simulation over 3 hours of simulation time with back-
ground traffic of 2 MB bundles sent in ten second inter-
vals from two sources (“src”) to two sinks (“snk”) lo-
cated in the middle two grid rows on the left and right.

0

10

20

30

40

50

60

70

80

90

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

response time (s)

network usage (10MB)

hop count

request success (%)

Figure 4: Probabilistic application-aware caching of resources

Figure 4 illustrates the effect of caching messages be-
yond forwarding with an increasing caching probability

(used by each intermediary to determine independently
per unique message whether or not to cache). Network
usage shows the average message volume in the network
queues when responses arrive at the client. With in-
creased caching probability, an the number generated re-
sponses grows if a request reaches multiple independent
caching nodes.3 The request success rate shows the suc-
cess rate of 200 requests being responded to by the server
or a caching intermediary. With increasing caching prob-
ability, the success rate greatly increases and average
time to get a response strongly decreases. The need for
requests to travel shorter distances in a lossy network ex-
plains the increased performance which is confirmed by
the response message hop count.

We note that even small caching probabilities lead
to significant performance improvements. Above 30 %,
there is little extra gain and above 10 %, there is virtually
no extra storage penalty. In this scenario, the delivery ra-
tio does not exceed 85 % and queuing requirements are
quite immense, both of which can be addressed by dif-
ferent routing protocols. Particularly the latter also hints
at the need for application-aware duplicate detection as
two identical responses from different caches are differ-
ent messages from a bundle layer perspective. A further
analysis of the hop count revealed that 75 % of the re-
sponses came from less than 3 hops away.

We have compared these figures against two fixed
caches placed in the middle rows of the grid: the result-
ing performance was only marginally better than without
any caching (the impact of cache placement has not yet
been investigated). We have also simulated (a) selective
support per application class where a node only caches a
certain resource Ux chosen at startup and (b) additionally
50 % of the nodes not cooperating at all. The results are
roughly similar to those obtained for 20-30 % caching as
shown above with (a) performing slightly better.

6 DISCUSSION AND OPEN ISSUES
Adding application-awareness to DTN routing raises nu-
merous issues: should intermediate systems comprising
“the network” mess with application information units
instead of just forwarding them? If so, where shall we
draw the borderline? And which technical issues need to
be overcome in the real world?

As discussed in the introduction, we believe that DTN-
based communication is much more suitable for inspect-
ing and processing bundles in intermediate nodes than
are individual IP packets, provided that we do not make
end-to-end communication dependent on anything but
regular bundle forwarding in the DTN. Providing explicit

3Because of the lossy network, we do not drop requests once they
were responded to and also do not perform duplicate detection on bun-
dles from different sources. Significant fine-tuning appears possible
here.

5



hints about application contents also appears more sen-
sible than second-guessing applications (e.g., from port
numbers or communication patterns) so that particularly
mobile users can choose which contents to process and
forward and which to discard—which may also serve as
a basis for future incentives to mobile users to carry traf-
fic for others. So far, we also believe that application-
specific extensions should be simple and so should be the
supported operations. This rules out operations requiring
synchronization of concurrent write access to resources
as we do not see router support as a way to build dis-
tributed applications. We deliberately restrict our gen-
eral application hints to a common minimum (and also
rule out conveying code).4

For practical operation, as with any caching but par-
ticularly relevant to cooperative environments, applica-
tions may need to authenticate the origin and ensure the
integrity of the data received. If DTN routers shall be
able to generate replies, the protection of the resource
contained in a bundle must be independent of the au-
thentication of the entire response bundle. As operations
and associated resources are spread and stored across the
DTN, resources may need protection against unautho-
rized access, which can only be achieved by means of
encryption. Finally, DTNs are susceptible to all kinds
of DoS attacks: senders may lie about bundle contents
to obtain better treatment, intermediate nodes may mali-
ciously drop bundles, or nodes may simply flood a DTN
with bundles, tagged as arbitrary or one particular ap-
plication to disturb the regular operation of the network
through congestion. However, most of these security is-
sues are not specific to the application-awareness pro-
posed in this paper, but need to be solved for DTNs and
particularly DTN-based MANETs in any case.

7 CONCLUSION AND NEXT STEPS
In this paper, we have suggested to take advantage
of two DTN features—namely bundles being self-
contained ADUs and their extended storage period and
distribution—to provide additional support for applica-
tions in DTN bundle agents. This allows generic func-
tions such as bundle routing to be performed differently
per application or resource, but particularly allows more
sophisticated support such as caching, distributed stor-
age, and further functions to be built on top. The pro-
posed extension concept is incrementally deployable and
robust as the regular network operation does not depend
on any nodes to support a specific application.

From some initial simulations we have carried out for
cooperative caching, we observe that a small fraction of
DTN nodes cooperating at the application layer suffices
to increase caching performance; future investigations

4If an application wants to benefit from communicating code, this
should be part of the application protocol portion and be validated and
executed in the context of application-specific processing.

will need to look at additional setups (including mobil-
ity), different DTN routing protocols, and erasure cod-
ing. We will also look at further application protocol
operations and particularly investigate the performance
and persistence characteristics of a distributed storage.
An important aspect is the potential for “feature interac-
tion” of plain and application-aware DTN routers in case
the latter actively influence DTN routing (e.g., perform
content-based routing). These investigations should help
characterizing the space in which adding application-
awareness to DTN routing is applicable.

REFERENCES
[1] V. Cerf, K. Fall, et al. Delay-Tolerant Network Ar-

chitecture. Internet Draft draft-irtf-dtnrg-arch-05,
Work in progress, 2006.

[2] S. Jain, M. Demmer, R. Patra, and K. Fall. Using
redundancy to cope with failures in a Delay Toler-
ant Network. In ACM SIGCOMM 2005.

[3] S. Jain, K. Fall, and R. Patra. Routing in Delay
Tolerant Networks. In ACM SIGCOMM 2004.

[4] G. Karlsson, V. Lenders, and M. May. Delay-
tolerant Broadcasting. In ACM SIGCOMM
CHANTS Workshop 2006.

[5] A. Lindgren and A. Doria. Probabilistic Rout-
ing Protocol for Intermittently Connected Net-
works. Internet Draft draft-lindgren-dtnrg-prophet-
02, Work in Progress, 2006.

[6] J. Ott and D. Kutscher. Bundling the Web: HTTP
over DTN. In Proceedings of WNEPT 2006.

[7] A. Pentland, R. Fletcher, and A. Hasson. DakNet:
Rethinking Connectivity in Developing Nations.
37(1):78–83, January 2004.

[8] M. Pitkanen, J. Karppinen, and M. Swany. Era-
sure codes for increasing the availability of grid
data storage. In HPDC06: Proceedings of Work-
shop on Next-Generation Distributed Data Man-
agement, 2006.

[9] M. Pitkanen, R. Moussa, M. Swany, and T. Niemi.
Erasure codes for increasing the availability of grid
data storage. In Proceedings of ICIW06.

[10] Y. Wang, S. Jain, M. Martonosi, and K. Fall. Era-
sure Coding Based Routing for Opportunistic Net-
works. In ACM SIGCOMM WDTN 2005.

[11] J. Widmer and J.-Y. L. Boudec. Network Coding
for Efficient Communication in Extreme Networks.
In ACM SIGCOMM WDTN 2005.

[12] L. Yin and G. Cao. Supporting Cooperative
Caching in Ad Hoc Networks. IEEE Transactions
on Mobile Computing, 5(1):77–89, January 2006.

[13] W. Zhao, M. Ammar, and E. Zegura. Multicasting
in Delay Tolerant Networks: Semantic Models and
Routing Algorithms. In ACM SIGCOMM WDTN
2005.

6


