
A Script-based Approach to Distributed Presence Aggregation

Olaf Bergmann† Jörg Ott‡ Dirk Kutscher†
†Universität Bremen, Technologie-Zentrum Informatik, E-mail: {bergmann, dku}@tzi.org

‡Helsinki University of Technology, Networking Laboratory E-mail: jo@netlab.hut.fi

Abstract

Personal presence systems are widely used to get aware of
other users’ availability and willingness to communicate
before actually contacting them. After early systems fo-
cused on ad-hoc text messaging only and relied on man-
ual updates of status descriptions, modern applications not
only integrate multi-media communication but also facili-
tate automatic detection of status changes. The status of
devices owned by a particular user then can be used to in-
fer the user’s presence status automatically, i.e. without ex-
plicit user-interaction. To achieve this, unstructured data
provided from various sources is aggregated and set into re-
lation with user-specific context information. The aggrega-
tion service presented here eliminates the need for extensive
information acquisition that is necessary for most learning
algorithms. Users instead have full control over the aggre-
gation process, including the distribution of their presence
status information to interested watchers.

keywords: Presence aggregation, sensor fusion, capability
description, SIP, PIDF

1. Introduction
Interpersonal communication is an important aspect of en-
terprise organization and thus can have significant impact
on the employees’ productivity if not handled efficiently.
Recently, instant messaging and presence systems have
been recognized to break the predominance of email as the
most important means of informal asynchronous communi-
cation. Some systems even provide support for automatic
detection of users’ presence status, hence making manual
updates of status descriptions redundant. To do so, low-
level sensors like motion detectors and personal communi-
cation devices are used to infer the user’s physical presence
at a specific location and whether or not the user is busy.

The availability information then can be published to
anyone who has indicated interest and who is authorized
to obtain this information. To facilitate efficient and se-
cure distribution a generic event notification protocol can
be used, e.g. the Session Initiation Protocol (SIP) [15] ex-
tension defined in [11]. Standardized syntax and semantics
for presence information exchange are specified in [10].

In SIP, user mobility is enabled by soft-state registra-
tions of contact addresses at a specific registrar server that
is usually operated by the administrative owner of the user’s
domain. Hence, registrations forjohn@example.com
would somehow arrive at a server that accepts SIP requests
for the domainexample.com . Whenever a SIP request is
sent tojohn@example.com , it is directed to the user’s
current contact address by that particular server. As multi-
ple contacts can be stored for a particular user the relative
priority of every address can be specified explicitly.

Even though the priority mechanism comprises a simple
form of presence-based request routing, registrations nei-
ther provide rich presence information nor do they reflect
rapid changes of the user’s availability—especially when
moving around in wireless networks. To overcome this lim-
itation, the SIP proxy can be co-located with a presence
agent (PA) that aggregates the presence notifications of the
user’s personal devices. As a result, the PA can use the syn-
thesized information to make enhanced routing decisions,
and subscribed users may be notified of the aggregated sta-
tus information.

Presence aggregation therefore happens at different ab-
straction levels and at different points within a network:
End systems often usesensor fusionto infer a user’s pres-
ence status. With this approach, low-level sensor data is
examined in a closed environment—e.g. the user’s office—
representing a distinctpresence zone. After that initial ag-
gregation step, the status descriptions for a presence zone
are published via SIP to a PA that manages subscriptions
for the corresponding user. Having various communica-
tion devices in several presence zones, the user’s PA has
to merge the presence descriptions that are published from
multiple zones. At this point, the presence information is
represented as XML document that is not suited well as
input for the sensor fusion approach. Instead, we propose
script-based aggregation of presence documents from mul-
tiple sources that can be individually controlled for every
subscribed watcher. An extension to the standardized pres-
ence information data format facilitates secure publication
of watcher-specific views on the user’s presence status.

This paper is structured as follows: Section 2 references
existing research activities with relevance to our work. The

0-7803-9305-8/05/$20.00 © 2005 IEEE.



architecture we are using to convey presence information
is shown in section 3, followed by a detailed discussion of
script-based aggregation in section 4. Our experience is re-
viewed and future steps are outlined in section 5. Finally,
section 6 gives a brief summary of our achievements.

2. Related Work

Numerous research activities in the past have addressed ser-
vices that transparently collect context information in order
to support mobile applications, particularly to foster effi-
cient communication [17], [2], [6]. The context information
being used in most cases is made up from sensor data that
has been aggregated and transformed in appropriate repre-
sentations. For instance, to facilitate determining user lo-
cation, several sensors could be related, like wireless signal
strength, GPS, direction, velocity and possibly weather con-
ditions.

The mechanism used for aggregation and transformation
depends on the input data types and the desired output type.
While, e.g., coordinate triangulation requires floating point
operations yielding a geographic location as result, estima-
tions on the availability of a human user to receive calls on
her mobile phone merely use symbolic values likeawayor
busy. In addition to manually crafted functions, sensor fu-
sion can be automated using AI technologies like learning
algorithms and fuzzy technology.

2.1. Personal Presence Systems

Since the early days of the Internet, networked applications
have been used to leverage communication between peo-
ple at distant locations. [4] credits the UNIX commands
talk and write as the roots ofinstant messaging, i.e.
text-based ad-hoc communication in a networked environ-
ment. Besides, thefingerprotocol [19] has been used for a
long time to retrieve user-specific status information from
remote hosts.

An important aspect of instant messaging systems is the
awareness of other users, i.e. the concept ofpersonal pres-
ence. One of the key features of messaging applications
like AIM or Windows Messenger is the ability to display
symbolic status descriptions for remote users’ contact ad-
dresses. A limitation of these systems is the lack of support
for multiple communication channels. A subscribed user is
represented as a single contact with its aggregated presence
status. A calling user hence cannot select explicitly which
channel should be used for communication. Some call sig-
naling protocols instead provide a mechanism to negotiate
which communication facility is to be used, thus preventing
the explicit decision of the calling user which is a funda-
mental part of interpersonal communication [8].

2.2. Generic Event Notification Systems
Being a popular research topic for more than a decade, nu-
merous publications are available on Internet-scale event
notification systems (ENS), including dynamic aggregation
of event notifications.

[1] defines an abstract framework for generic event noti-
fication systems in wide-area networks, based on previous
work from Rosenblum and Wolf (see [16]). The notifica-
tion service is formally described by a number of operations
to be invoked on the system, where event notifications are
treated as sets of typed attributes.Filters on attributes can
be used to decide if an event matches a specific subscrip-
tion or advertisement. Moreover, filters can be combined
to event patternsthat allow selective forwarding of notifica-
tions. The architecture thus facilitates filtering of events but
does not modify notifications.

A similar approach to graph-based forwarding of event
notifications is documented in [5] for theSolarsystem. Us-
ing a central control component, the dissemination of event
notifications is modeled as a directed acyclic graph. Any
node in this graph may aggregate several event streams into
a single output stream. To receive events, a node previously
must have subscribed to other nodes upstream.

The Solar system provides an overlay network of event
brokers that can be used by applications to subscribe to rel-
evant context information synthesized from sensor data that
is collected at the graph’s leaves. This architecture is an ex-
ample for a plethora of middleware layers currently emerg-
ing that aim at “ubiquitous” or “pervasive” computing.

2.3. IETF Standardization
Standardization of architectures and protocols for interop-
erable presence services has been in the focus of the IETF
for several years. In addition to defining subscription-
based notification services—SIP being only one of them—
considerable effort has been taken to guarantee interoper-
ability between these services. As a result, a data format
called PIDF [18] has been developed to represent a ba-
sic information set for presence, together with a set of ap-
plication rules (CPP, [10]). XML notation and an exten-
sion mechanism for the core format have fostered several
special-purpose extensions, e.g. to include geographic lo-
cation information or to express additional descriptions of
the publishing entity.

When user presence gained importance and the CPP
turned out to be an insufficient description of a presence
service’s semantics, a formal data model for user presence
within the IETF was defined [12]. In that document, the
aspects of service capabilities and device status have been
separated for the first time from the presence status of an
individual user. A vocabulary for capability descriptions
currently is under development [7].

0-7803-9305-8/05/$20.00 © 2005 IEEE.



Figure 1: SIP service architecture for event notifications.

Targeting at large-scale data distribution, SIP provides a
scalable architecture for secure exchange of small presence
documents given that updates are not too frequent (say, ev-
ery 120 seconds). To combine SIP services with automatic
status updates based on low-level sensor data, an additional
aggregation step is necessary to avoid overloading the SIP
presence agent (PA). When dealing with multiple presence
zones for a particular user, the PA must be able to merge
status descriptions from various sources. However, users
should be given fine-grained control over the aggregation
process, including the contents of notifications that are sent
to subscribed watchers. In the following section, we give an
overview of our SIP-based architecture that uses a hierarchy
of aggregation servers to achieve this without downgrading
overall performance or security.

3. System Architecture
As mentioned before, we are building upon the SIP event
notification service as described in [11]. Entities that are
interested in the current status of a particular user may sub-
scribe the user’s status identified by a generic presence URI
and get notified whenever a change occurs. Figure 1 depicts
the common SIP service architecture for basic event sub-
scriptions. On the left, publishing entities send status update
messages to a server that manages subscriptions and notifi-
cation generation on behalf of the entities within that par-
ticular presence zone. The subscribed entities on the right
then will be notified of any status change as soon as it has
been signaled to the presence server located in the middle
of this image.

3.1. Aggregating Multiple Presence Sources
Now, consider multiple sources contributing to the status
description of a mobile user, as shown in figure 2. Every
rectangle on the left hand side of the image depicts a self-
contained presence zone, with consistent knowledge of the
status of every user within that zone. As a user can be part of

Figure 2: Subscriptions to multiple presence sources.

Figure 3: Aggregation of presence notifications.

several disjoint zones, inconsistent status information may
occur when subscribing to multiple zones as is the case in
most multi-protocol instant messaging systems, shown at
the image’s right.

Adding a centralized entity that has sufficient knowledge
about the distinct zones the user is part of allows to aggre-
gate the streams of independent status notifications to form
a consistent view on the user’s presence status, as shown in
figure 3.

Here, the presence server located in the middle aggre-
gates the information from contributing sources at the left.
The server acts on behalf of the user whose presence infor-
mation is to be published. In particular, the server must be
authorized to handle subscriptions and generate status noti-
fications for that user—bypassing the presence agents at the
edge of the zones where the original presence documents
have been generated.

Note that the centralization of aggregation servers refers
only to the administrative domain of a particular user (i.e.,
there is no global root server for presence aggregation, and
the DNS is being used to determine the server that handles

0-7803-9305-8/05/$20.00 © 2005 IEEE.



requests for the user). As with HTTP or SIP for voice com-
munication, every domain can provide a server farm to do
the processing for that particular domain. Load sharing and
replication of servers then assure high availability and con-
siderable performance of the presence service.

The aggregation process is controlled by user-specific
rule-sets that specify how concurring presence notifications
from the contributing sources have to be combined into a
single presence information document. In addition, a script
can modify, add, or remove information, force or block
sending of status notifications. Operations may be cus-
tomized with respect to the identity of receiving peers, i.e. a
script may generate subscriber-specific views on the current
presence status.

Several mechanisms for uploading scripts onto aggrega-
tion servers could be provided, ranging from HTTP upload
using the PUT method to specific document manipulation
protocols like WebDAV [3] or XCAP [13].

4. Script-based Presence Aggregation

Aggregation of distributed presence information can be
done in several ways, depending on the desired level of ab-
straction. The choice may also influence the level of secu-
rity that can be achieved. Automatic learning algorithms for
which examples have been shown in section 2 deliver good
results for detecting a suitable context description from a
set of pre-defined values, e.g. to switch presentation of in-
coming messages from a handheld device to a workstation
computer when entering the office.

Most of these application scenarios use a static descrip-
tion of available communication services, typically cus-
tomized by the user who has entered a set of preference
rules. Presence information is generated automatically from
these preferences together with the known status of individ-
ual devices. Once this presence information is generated,
a user has no option to customize this information prior to
publication.

4.1. Controlling the Aggregation Process

The goal of our work is to provide users with a fine-grained
control of the aggregation process. We have selected the
JavaScript programming language for aggregation specifi-
cations to facilitate rapid adoption by users already hav-
ing skills in development of applications for the World
Wide Web. A custom runtime environment in the aggre-
gation server provides objects and functions that are nec-
essary to manipulate incoming presence status notifications
and generate output to be published to subscribed watch-
ers. The JavaScript-basedPresence Aggregation Language
(PAL) thus is used by an aggregation server to process in-
coming presence documents, to generate subscriber-specific

Figure 4: Application of PAL scripts on input documents.

presence documents and to specify when and where output
documents should be published.

Figure 4 shows the invocation of PAL scripts on incom-
ing presence status notifications. The script operates on the
logical structure of PIDF documents, here being visualized
as trees. The script’s output is a set of subscriber-specific
documents that are sent to subscribed watchers according
to the rules of the used presence transport protocol. PAL-
specific filters can be installed at the input side to collect in-
coming presence documents until a notification matching a
pre-defined pattern arrives or a script-specific timer expires.
Additional mechanisms to control processing of presence
notifications as event filters and throttling can be applied as
well.

We use SIP-based event notifications [11], [14] for man-
aging subscriptions as well as delivering presence informa-
tion documents to subscribed watchers. Presence sources
may publish status updates using the PUBLISH method de-
scribed in [9] or via file upload. When the presence server
is co-located with a registrar server, it may optionally create
automatic subscriptions to registered SIP user agents to fa-
cilitate communication with applications that do not support
the PUBLISH method.

4.2. Extending PIDF
Presence information is represented as XML using the Pres-
ence Information Data Format (PIDF) as specified in [10].
A PIDF document represents a set ofpresence tupleseach
of which describes a specific aspect of the publishing user’s
status. In order to give users more control over the aggre-
gation process, we have extended PIDF to carry not only
policy information specific to the corresponding document

0-7803-9305-8/05/$20.00 © 2005 IEEE.



but also detailed descriptions of time-dependent values of
presence attributes.

In particular, any presence tuple contained in a
PIDF document may be augmented by meta-data giving
application-specific information about the characteristics of
that tuple. The meta-data is encoded in XML elements con-
tained in a special XML namespace for our proposed ex-
tension. A simple type system facilitates development of
generic aggregation engines and enables future extensions
of our framework. Currently, the basic typesstring ,
number , andboolean are available. Complex types can
be built as combinations of basic types, e.g.list(T) cre-
ates a homogeneous list containing only items of typeT.

The meta-data added to the status description of a pres-
ence tuple (i.e. enclosed within elements of typestatus
which are contained intuple elements) can give addi-
tional information about the service capabilities of that par-
ticular communication channel. Let aside proper names-
pace declarations, a status description in a PIDF document
therefore could look like this:

<pidf:status>
<pidf:basic>closed</impp:basic>
<media type="list(string)">audio, video</media>
<incall type="boolean" timestamp="20040211203010"

decay="linear(5)">true</pidfxy:incall>
</pidf:status>

The channel described in this example is declared to be
closed by the elementbasic from the PIDF namespace.
The following elementsmedia and incall give addi-
tional information on that status description: First, the chan-
nel described here is capable of audio and video communi-
cation. Second, the device in this example is known to be in
an active call since some specific point of time as indicated
by the elementincall .

Attached to a meta-data element, thedecay can be
used to describe the exactness of that information decreas-
ing over time. The attribute’s value denotes a mathematical
function with optional parameters for better results. The
value given here,linear(5) , refers to a mathematical
function linear5(t) modeling a linear decrease of the ex-
actness curve over time.lineark(t) then is defined in the
interval[timestamp, timestamp + 1

k ] as

lineark(t) = 1− (t− timestamp)
k

andlineark(t) = 0 for any othert. As most processes are
better approximated by an exponential function, we define
another functionlogk(t) as

logk(t) = e(−k ∗ (t−timestamp))

Finally, the functionconst can be used to specify a con-
stant exactness value which is used primarily for backwards

Figure 5: Applying decay functions to sensor values.

compliance with PIDF. Hence,const is the default for el-
ements having nodecay attribute.

Given this information, the sender’s presence status can
be calculated more accurately, especially in the case of lost
update notifications due to network overload or event throt-
tling being in effect. To do so, a threshold value must be
set for each type of attribute that has a non-constant decay
function. Once the valuedecay(t) drops below that thresh-
old for a timet, the presence status will be re-calculated,
taking into consideration the changed exactness value (e.g.
assuming the statusincall has switched fromtrue to
false ). Figure 5 illustrates this effect: On the y-axis, the
exactness values for a linear and an exponential decay func-
tion are shown over time. Two threshold values are indi-
cated by dotted horizontal lines, one associated with the ex-
ponential curve, the other with the descending line.

Suppose the PIDF processor has determined the presence
statusbusy right after reception of the presence informa-
tion. After some time—at the first vertical line—the ex-
ponential curve goes beyond its associated threshold value,
and the presence status is re-calculated. As the correspond-
ing status information (e.g. theincall attribute shown
previously) is not considered up to date any more, the oper-
ation’s result changes frombusy to available , follow-
ing the idea that the user has just put the phone on hook and
is still in the office. As more time passes, this assumption
gets less precise and might not be accurate at all. Therefore,
another function is being used to trigger a re-calculation
event at a later point in time (indicated by the second verti-
cal line). Now, the processor cannot determine any activity,
so the status is set to default (idle in this case).

This example clearly shows that appropriate threshold
values as well as the mapping from input values to a valid
presence status cannot be inferred automatically or deter-
mined from log analysis. Instead, the user has to specify
a number of parameters that reflect personal preferences
and device capabilities. The highly customizable aggrega-
tion system not only allows the specification of appropriate
threshold values to trigger re-calculation of a presence sta-

0-7803-9305-8/05/$20.00 © 2005 IEEE.



tus, it also lets the user specify her own function to deter-
mine the current presence status.

4.3. Implementation

In our implementation, the combination of meta-data at-
tributes, decay functions and threshold values constitute a
trigger objectthat is bound to a user-specific callback func-
tion. Once instantiated, the trigger is being watched by the
runtime system of the aggregation engine. Whenever a trig-
ger fires—i.e. when the associated decay value goes below
the threshold value for the first time—its callback function
is evaluated in a trigger-specific environment. The func-
tion is defined to take the current presence status, the up-
dated decay values, and global system state as its input and
returns zero or more presence descriptions. Any presence
description that is returned will be published as extended
presence information document to authorized subscribers
according to the local policy of the server. Watcher-specific
annotations of the generated presence information facilitate
the generation of separateviewson this document. A no-
tification being sent to a particular watcher hence contains
only data from the corresponding view. Any other informa-
tion from the original status update notification is not made
available.

We use an open-source JavaScript interpreter1 with
a customized runtime-environment to provide an object-
oriented representation of PIDF documents as well as spe-
cialized functions to create, modify and remove trigger ob-
jects. ThePresence Aggregation Language(PAL) thus con-
sists of the JavaScript core and an additional function li-
brary. Every user is allowed to add PAL scripts to handle
aggregation of any presence data related to her official pres-
ence URI (in many SIP implementations the corresponding
address-of-record will be used). If no filters are in effect, the
script will be evaluated for any (authorized) incoming pres-
ence notification related to this presence URI. The script
output is a published as presence description to any sub-
scribed watcher as mentioned before.

With PAL being Turing-complete, it is not possible to
determine a script’s complexity class or if script execution
will finish at all. To achieve a considerable performance,
the aggregation server must set an upper limit of CPU time
to be spent by a PAL script. As with CGI scripts on HTTP
servers, the presence server simply aborts processing after
a pre-defined amount of time. A log entry is written to give
the script author feedback of the problem. Unlike HTTP,
clients cannot be notified of this event as there is no useful
presence status to be published. However, the decay func-
tion in this case helps for subscribed clients not to rely on
heavily outdated information.

1SpiderMonkey from the Mozilla project, see
<http://www.mozilla.org/js/>.

5. Experience and Future Steps
Initial tests with our implementation of script-based aggre-
gation have shown good results for small user bases. As
expected, resource consumption (memory and CPU time)
of the JavaScript interpreter makes this approach not ade-
quate for high-performance installations. However, since
strong trust relationships are required anyway, the aggre-
gation service can be used in small installations, e.g. in
a personal presence server that has to control the data of
a limited number of principals. Script evaluation usually is
bound to incoming presence update notifications, so the fre-
quency of published status changes is a good performance
indicator: As the corresponding SIP transactions must not
overlap, we anticipate change notifications per user to occur
less frequent than every 100 seconds. Given a script evalu-
ation time below one second, this results to 100 users to be
served in parallel. Additional load sharing mechanisms can
be used to improve performance, so at least enterprise scale
with thousands of users should be achievable.

A disadvantage of the script-based approach compared
to automatic learning and rule-based actions is the lack of
robustness. While predicting the results of the aggregation
process is difficult for any of these techniques, scripts are
the most brittle as small changes already may break the re-
sult. To mitigate this problem, we plan to provide a sim-
ulation framework that enables script testing using a large
set of automatically generated test cases. To evaluate the
results, the quality of the output documents must be de-
termined. Factors that make a “good” output function yet
have to be identified. In a future step, an adaptive environ-
ment could be added as well to provide automatic learning
of script functions.

The modification of presence documents at intermedi-
aries also requires the user to have a strong trust relationship
with the aggregation server. Even worse, the server needs to
sign notifications on behalf of the user to provide end-to-end
security. For S/MIME, this would require the user to sign
every outgoing notification with her private key, or the re-
ceiving entity must be configured to accept the server’s sig-
nature instead of the user’s. Moreover, to encrypt messages
the recipient’s public key must be available to the server.
To facilitate private webs of trust, users must be able to up-
load the public keys of trusted subscribers to their dedicated
aggregation server.

Besides the issues regarding secure communication, the
aggregation server must be protected from scripts that pro-
hibit proper operation of the service—either accidentally or
on purpose. To avoid this, scripts should be executed in a
sandbox that prevents any dangerous operation. Similar to
common practice on WWW servers, scripts should also be
killed after having consumed a certain amount of CPU time.

Finally, an interesting problem is handling presence up-
date notifications that contain a delta encoding of what is

0-7803-9305-8/05/$20.00 © 2005 IEEE.



considered the current presence status. As the aggregation
service is defined on the complete status, the server has to
re-construct this information prior to script evaluation. Un-
fortunately, if using multiple presence sources, the current
status of every source has to be stored by the server to han-
dle partial notifications from that particular source. The
amount of memory to be allocated for a user hence grows
linear to the number of contributing presence sources. Par-
tial notifications therefore should not be used when aggre-
gation is enabled.

6. Conclusion
We have presented our project for aggregation of presence
information collected from multiple sources, e.g. mobile
devices at different locations that have wireless connec-
tivity. As an alternative to sensor fusion and automatic
learning algorithms, our system makes use of user-specific
scripts written in an imperative programming language.
Presence attributes have been annotated with decay func-
tions to model decreasing exactness of published informa-
tion over time.

The language we have designed provides a persistent
runtime environment that facilitates the presence status cal-
culation using temporary values from previous execution
cycles. Moreover, we have introduced the concept oftrig-
gerscausing a callback function to be evaluated under cer-
tain conditions, with an updated presence information doc-
ument as its result.

A major goal of our approach is to give users full con-
trol over the aggregation process and subsequent publica-
tion of resulting status documents. We anticipate that only
highly skilled user will make use of this facility as software
development is a difficult task, especially for distributed
systems. Future improvements might include self-learning
script functions and an integrated development environment
that allows users with average skills to create and evaluate
PAL scripts and adapt these with minimal effort as guided
by the system. The integration of our script-based approach
with self-learning systems facilitates development of pres-
ence aggregation services that combine the strengths of both
worlds without giving up control.

References

[1] A. Carzaniga, “Architectures for an Event Notification Ser-
vice Scalable to Wide-area Networks,”PhD Thesis, Politec-
nico Di Milano, 1998.

[2] J. Fogarty, J. Lai, J. Christensen, “Presence versus availabil-
ity: the design and evaluation of a context-aware communica-
tion client,” International Journal of Human-Computer Stud-
ies, Vol. 61, No. 3, pp. 299-317, 2004.

[3] Y. Goland, E. Whitehead, A. Faizi et al., “HTTP Extensions
for Distributed Authoring – WEBDAV,”RFC 2518, 1999.

[4] R. E. Grinter, L. Palen, “Instant Messaging in Teen Life,”
Proceedings of the ACM 2002 Conference on Computer Sup-
ported Cooperative Work, pp. 21-30, 2002.

[5] Guanling Chen, D. Kotz, “Context Aggregation and Dissem-
ination in Ubiquituos Computing Systems,”Proceedings of
the Fourth IEEE Workshop on Mobile Computing Systems and
Applications (WMCSA), 2002.

[6] T. Kanter, “Attaching Context-Aware Services to Moving Lo-
cations,”Internet Computing, Vol. 7, No. 2, pp. 43-51, 2003.

[7] M. Lonnfors, K. Kiss, “User Agent Capability Extension to
Presence Information Data Format (PIDF),”draft-ietf-simple-
prescaps-ext-03, Work in progress, 2005.

[8] J. C. McCarthy, A. F. Monk, “Channels, Conversation, Co-
operation And Relevance: All You Wanted To Know About
Communication But Were Afraid To Ask,”Collaborative
Computing, Vol. 1, No. 1, pp. 35-60, 1994.

[9] A. Niemi (ed.), “Session Initiation Protocol (SIP) Extension
for Event State Publication,”RFC 3903, 2004.

[10] J. Peterson: “Common Profile for Presence (CPP).”RFC
3859, 2004.

[11] A. B. Roach, “Session Initiation Protocol (SIP)-Specific
Event Notification,”RFC 3265, 2002.

[12] J. Rosenberg, “A Data Model for Presence,”draft-ietf-
simple-presence-data-model-02, Work in progress, 2005.

[13] J. Rosenberg, “The Extensible Markup Language (XML)
Configuration Access Protocol (XCAP),”draft-ietf-simple-
xcap-06, Work in progress, 2005.

[14] J. Rosenberg, “A Presence Event Package for the Session Ini-
tiation Protocol (SIP),”RFC 3856, 2004.

[15] J. Rosenberg, H. Schulzrinne, G. Camarillo et al., “SIP: Ses-
sion Initiation Protocol,”RFC 3261, 2002.

[16] D. S. Rosenblum, A. L. Wolf, “A Design Framework for
Internet-Scale Event Observation and Notification,”Proceed-
ings of the 6th European conference held jointly with the 5th
ACM SIGSOFT international symposium on Foundations of
software engineering, pp. 344-360, 1997.

[17] A. Schmidt, K. A. Aidoo, A. Takaluoma, et al. “Advanced
Interaction in Context,”Proceedings of the 1st international
symposium on Handheld and Ubiquitous Computing, pp. 89-
101, 1999.

[18] H. Sugano, S. Fujimoto, G. Klyne et al., “Presence Informa-
tion Data Format (PIDF),”RFC 3863, 2004.

[19] D. Zimmerman, “The Finger User Information Protocol,”
RFC 1288, 1991.

0-7803-9305-8/05/$20.00 © 2005 IEEE.


	Go To
	Main Menu
	Previous View


