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Abstract— Today’s mobile, wireless, and ad-hoc commu-
nications often exhibit extreme characteristics challenging
assumptions underlying the traditional way of end-to-
end communication protocol design in the Internet. One
specific scenario is Internet access from moving vehicles on
the road as we are researching in the Drive-thru Internet
project. Using wireless LAN as a broadly available access
technology leads to intermittent—largely unpredictable
and usually short-lived—connectivity, yet providing high
performance while available. To allow Internet applications
to deal reasonably well with such intermittent connectivity
patterns, we have introduced a supportive Drive-thru
architecture. A key component is a “session” protocol
offering persistent end-to-end communications even in the
presence of interruptions. In this paper, we present the
design of the Persistent Connectivity Management Protocol
(PCMP) and report on findings from our implementation.

I. INTRODUCTION

The reach of the Internet in today’s world is ever
expanding. New link layer technologies are constantly
emerging and allow to connect remote locations as well
as nomadic users. However, these new technologies
and deployment scenarios may exhibit communication
characteristics that (traditional) Internet protocols and
applications are not designed for. Wireless networks may
suffer from packet losses due to bit errors (rather than
congestion), thereby impacting TCP’s performance; net-
works with a high bandwidth-delay product raise other
issues with TCP performance; mobile ad-hoc networks
are too dynamic for traditional routing schemes; and
most Internet applications are unsuitable for intermit-
tently connected networks, to name just a few examples.

Serving nomadic users needs to deal with various
aspects of challenged networks and has been a particular
focus of interest in networking for quite some time.
Wireless local and wide area networking technologies

have been developed and concepts for their integration
have been devised to keep users “always best connected”
[1] in a hybrid networking environment. In fact, the
majority of the approaches to support mobile users strive
for some form of ubiquitous connectivity in 3G and 4G
networks. Such permanets [2], however, are expensive
to build and maintain (and hence costly to use), often
at relatively poor performance. The authors’ practical
experience based upon GSM and GPRS networks in
Europe and in the US suggests that coverage is not
ubiquitous today and will not be in the near future.

Fortunately, ubiquitous access is not needed—at least
not for many applications as we will discuss below. In
contrast, nearlynets provide high performance connec-
tivity at little cost in limited geographic areas, the most
prominent example today being IEEE 802.11 WLAN
(with farther reaching networks such as IEEE 802.16
and 802.20 on the horizon). However, so far WLANs
are basically only used to serve rather stationary users
(in cafes, hotels, conference centers, and the like) or as
means to connect users to a local onboard network, e.g.,
on trains or buses [3].

In the Drive-thru Internet project, we take a different
approach to mobility support and trade off ubiquity for
pricing and performance. We base network access for
mobile users in moving vehicles (cars, trains, etc.) on
WLAN technology deployed, e.g., at the road side, in
rest areas, or at gas stations. Recent trends in hot-spot
provisioning show that we may expect to have network
access available at reasonable density [4].

Our approach allows applications to deal with the
intermittent connectivity, exploiting even short connec-
tivity periods whenever they are available. The Persis-
tent Connection Management Protocol (PCMP) that we
present in this paper is a crucial element in the overall
Drive-thru Internet architecture: it is employed by Drive-
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thru proxies and Drive-thru clients in order to maintain
application sessions despite connectivity interruptions.

This paper is organized as follows: first, in section
II, we outline the Drive-thru architecture that supports
mobile users in vehicles in accessing Internet content,
discuss characteristics, and derive requirements of such
scenarios. In section III, we review related work ad-
dressing specifics of wireless networks and intermittently
connected users. In section IV, we describe the design
of PCMP, a “session” protocol that provides a persistent
transport across connectivity gaps. We briefly review our
experience from its implementation and testing in section
V. Section VI concludes this paper summarizing our
findings and pointing out areas of future work.

II. DRIVE-THRU INTERNET

The left hand side of figure 1 depicts a scenario that
is commonplace today: basic Internet access is provided
by connectivity islands, each established by one (or
more) access points and operated by some Wireless
Internet Service Provider (WISP). The connectivity is-
lands are independently managed, so that we expect
different (W)ISPs and access networks to be chosen
and private address spaces and NATs to prevail. Access
to these wireless networks is usually governed through
commonly accepted (mostly web-based) authentication
techniques [5], but access points for free Internet access
may be available, too [6].

As noted above, nomadic users are expected to remain
in a hot-spot area as long as necessary to configure
their mobile devices and run their respective Internet
applications: typically e-mail and web browsing, VPN
access to corporate networks and databases, and, increas-
ingly, IP telephony, media streaming and chat [7]. With
Drive-thru Internet, we aim at enabling mobile users to
automatically detect and access a wireless network while
walking, driving, or otherwise passing through a hot-spot
even at significant speed when only a short period of
connectivity may be available [8].

A. The Drive-thru Architecture

In order to enable useful communications in such
environments of “extreme” intermittent connectivity and
mobility, as shown in figure 1, we apply an en-
hanced variant of connection splitting and introduce two
intermediaries—the Drive-thru client on or co-located
with the mobile node and the Drive-thru proxy some-
where (well-connected) in the fixed network—to shield
the respective application entities (usually clients and
servers) from the intermittent nature of connectivity.

Furthermore, a Drive-thru PEP may be placed in a
WLAN hot-spot to separate the characteristics of the
wireless and the wired networks [9]. These three Drive-
thru components and their communication relationships
are depicted in more detail in figure 2.

Application Servers
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Internet
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Drive-thru Client

Connectivity Islands
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Fig. 1. Drive-thru architecture overview

The Drive-thru client is a transport layer proxy
(presently for TCP connections). It is responsible for
maintaining persistent connections with the Drive-thru
proxy in the fixed network across connectivity islands
using the “session” protocol described in section IV.
In particular, it is the Drive-thru client that detects
(loss of) connectivity and takes the necessary action
to resume communication sessions whenever possible.
At the application layer, the Drive-thru client provides
a mechanism for application-specific plug-ins that may
implement additional functionality and thus act as an
application layer gateway (ALG) for different application
protocols such as HTTP, SMTP, POP3, etc. The Drive-
thru client uses the aforementioned standard protocols to
communicate with its co-located applications entities and
thus can either be run on a user’s device (e.g., a laptop)
or can be realized as part of a vehicle’s communication
platform.
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Fig. 2. Interaction between Drive-thru components
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The Drive-thru proxy is the counter-part of the Drive-
thru client in the fixed network and conceals the mobile
node’s temporary unavailability from the corresponding
(fixed) application peers (e.g., web or mail servers).
The Drive-thru proxy passively awaits new or resumed
transport connections from the Drive-thru client. While
the Drive-thru client is connected, the Drive-thru proxy
relays information to and from the fixed network; during
disconnection periods, it continues communications with
the fixed network where necessary and buffers data for
the mobile node.

The Drive-thru proxy may also implement application-
specific functionality using a plug-in concept similar to
the Drive-thru client. The Drive-thru proxy runs standard
protocols to communicate with the servers/peers in the
fixed network. It may be located anywhere, the sole
requirements are a public IP address and an Internet link
with sufficient capacity so that it does not become the
communication bottleneck.

The Drive-thru PEP is an optional component that,
if present, must be located in a hot-spot. Its task is to
perform connection splitting for the underlying transport
so that the network characteristics of the WLAN and the
fixed network are isolated. Numerous future enhance-
ments to its functionality are conceivable (including
application-specific functions) but, for the time being, we
restrict its use to optimizing throughput at the transport
layer.

The mobile application peers (e.g., web browser or
mail client) are the user’s unmodified standard appli-
cations. Depending on the application, they may need
to provide explicit support proxies or application layer
gateways and to be configurable accordingly.1

For fixed application peers, not even a re-configuration
is needed; they remain entirely unchanged. They com-
municate with the Drive-thru proxy just as they do with
any other peer. It is the Drive-thru entities’ responsibility
to preserve end-to-end semantics of application layer
protocols (e.g., successful submission of an e-mail) as
much as possible—possibly requiring additional means
for user notification (e.g., to indicate to the user when a
previously buffered e-mail was successfully delivered to
the outgoing SMTP server in the fixed network).

B. Communication Characteristics

We have performed several laboratory tests and so
far twelve measurements series on German highways

1In addition to the explicit use of intermediaries such as HTTP
proxies and SMTP relays, transparent TCP connection capturing
could be employed to support intermediary-unaware applications.

and autobahns for IEEE 802.11b and 802.11g. The
objective was to validate the feasibility of Drive-thru
Internet access at higher speeds, to analyze the link layer
characteristics of IEEE 802.11 in these mobile scenarios,
and to evaluate the performance of UDP and TCP under
the observed conditions. For the initial 802.11b measure-
ments, we did not use elaborate equipment and focused
on basic feasibility of our approach. These tests showed
that moving vehicles can obtain Internet connectivity via
a single access point at velocities ranging from 40 km/h
to 180 km/h for a total distance of some 800 meters,
allowing data transfers of several megabytes via both
TCP and UDP from as well as to the mobile node [10].

Subsequent measurements using IEEE 802.11g equip-
ment with range extending antennae confirmed the basic
findings and showed significant improvements of the
observed performance [9]: the reach of the WLAN con-
nectivity island created by a single access point extended
to a total diameter of some 1800 meters, with 300-400
meters usable at the maximum link layer transmission
rate of 54 Mbit/s—yielding a peak net rate of 16 MBit/s
for TCP applications, which roughly corresponds to
some 80 % of our laboratory measurement results. At
120 km/h, a minimum data volume of 30 MB could be
transmitted in virtually all test runs in a single pass.

From our measurements, we identified a three phase
model based upon the transmission characteristics for
both UDP and TCP depicted in figure 32: after associ-
ating with the access point, the throughput increases for
several seconds during an entry phase with delays and
packet losses still being significant [10]. After some time,
transmission quality stabilizes in the production phase,
during which packet losses are rare and delays short (i.e.,
no link layer retransmissions needed, no queues building
up). This phase may last for up to thousand meters and
significantly contributes to the TCP goodput. Afterwards,
the link quality drops again over a long period of time
in the exit phase until connectivity is lost.

In test runs carried out from March through September
2004, again with IEEE 802.11g equipment, we have in-
vestigated situations with different real-world conditions
for Drive-thru Internet access. 3 We can summarize some
of our key findings as follows:

• Depending on the traffic situation, we were able to

2The figure shows measurements using our IEEE 802.11g equip-
ment at speeds of 120 km/h. The roughly equidistant (in intervals of
10 seconds) drops in transmission rate stem from the WLAN driver
and/or firmware used in this measurement.

3Because of the unstable weather conditions, the impact of rain on
WLAN access on the road still requires systematic investigation.
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Fig. 3. Three-phase model for WLAN connectivity on the road

transmit a total data volumes per pass ranging from
30 MB (continuous flow of trucks and cars on two
lanes in each direction at inter-vehicle distances of
50 m and less) to more than 70 MB (fairly empty
road with one or two vehicles every few hundred
meters on average).

• The TCP data rate and total data volume was
independent of the transmission direction (sending
fixed to mobile or mobile to fixed).

• TCP background traffic of a stationary node (one or
two TCP streams at maximum possible transmission
rate) shared the WLAN resources fairly with a
mobile node in a passing car.

• Two passing cars in distances ranging from 30m
to some 400m also shared the available access
bandwidth in a fair fashion yielding 20MB-55MB
per car in this particular measurement set.

• DHCP employed for auto-configuration completed
early in the entry phase (even in case of packet
losses due to background traffic) thus providing
full IP-layer connectivity before the start of the
production phase. In [8] we have also presented an
automated user authentication approach and have
shown that the complete auto-configuration and
authentication step can complete in the first few
seconds after connectivity has been established.

• Measurements and simulations with different access
link types for connecting the hot-spot to the Internet
(DSL, ISDN, satellite links) in [8] have shown that
today’s available terrestrial access technologies are
suitable to provide Drive-thru Internet services in
regular WLAN hot-spots. As long as queues in the
access routers (both at ISPs and in the hot-spot) are

kept short so that the RTT remains low, there is
no need for performance enhancing proxies (PEPs)
in the Drive-thru connectivity island: with terrestrial
access networks, the variations of the wireless link’s
communication characteristics can be handled “end-
to-end”, i.e., between Drive-thru client and proxy.

Figure 4 compares the total data volume transmitted
during a single pass: for a plain TCP connection, for
different types of background traffic, and for two cars
passing. As can be seen, all cases show that WLAN-
based connectivity islands are able to provide sufficient
throughput to passing cars even in the presence of
significant background traffic or multiple mobile nodes.4
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Fig. 4. Transmitted data volume in a single pass at 120km/h

In summary, IEEE 802.11 WLAN is capable of of-
fering powerful network access services to mobile users
even when passing through at high speed. Assuming that
WLAN link layer detection, autoconfiguration (e.g., via
DHCP), and auto-authentication (e.g., via the Universal
Access Method conventions defined in [5]) become
workable [8], the final prerequisite for exploiting this
kind of connectivity, is that the applications are capable
of dealing with such potentially short and unpredictable
connectivity periods.

C. Drive-thru Applications

Several classes of today’s typical Internet applications
can be distinguished: asynchronous applications, web
applications, audiovisual (and other real-time) commu-
nications, and distributed object synchronization. With
the exception of audiovisual communications that re-
quire largely continuous connectivity to preserve the

4Giving precedence to traffic of passing nodes over stationary ones
is subject to ongoing research.
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user experience5, all these applications are workable
given sufficient support and a few considerations as
discussed in the following. Of course, new applications
and application protocols may be designed to inherently
take disruptive connectivity into account and/or provide
specific services to mobile users [7].

Asynchronous applications such as e-mail access
(POP3, IMAP3) and transmission (SMTP) as well as ap-
plications based upon distributed object synchronization
(such as calendars, offline file systems, data bases, and
repositories for distributed authoring) are able to deal
reasonably well with intermittent connectivity. However,
the respective protocols expect some level of predictabil-
ity for network access and particularly require that their
transactions (sending an e-mail, retrieving an e-mail,
synchronizing a file) complete while being connected—
otherwise they are likely to repeat at least some of
the operations when recovering at the next time. Also,
the operations are often not sufficiently fine-grained and
may thus lead to a significant rollback of interactions
(which may ultimately make it impossible to complete
a transaction at all if only short-lived connectivity is
available).

Except for the higher degree of interactivity, the
same considerations apply to web browsing and related
applications. While the aforementioned asynchronous
applications are designed for offline use (and users
are accustomed to this), users expect virtually im-
mediate responses from web applications. To better
conceal the discontinuous nature of connectivity, for
example, prediction/prefetching schemes [12] or push
techniques combined with caching may be employed—
which nevertheless remain probabilistic. The latter types
of support imply application-specific infrastructure com-
ponents somewhere “in the network”.

Independent of the application class, effectively using
short connectivity periods requires the applications to be
triggered just in time to initiate their respective interac-
tions when the mobile node enters a connectivity island
so that the major data exchange can take place during the
production phase. If a transaction cannot be completed
within a single connectivity period, the transport layer
connection may need to be preserved and resumed in the
next connectivity island—which, in turn, makes further
application protocol-specific considerations necessary:
for example, application layer timeouts may interfere

5Alternatively, the service model (and thus the user experience) can
be adapted to match scenarios with intermittent connectivity, e.g., as
presented in [11] for SIP-based voice applications.

leading to transactions being aborted and errors reported
to the user.

Finally, all applications depend on the availability and
responsiveness of their remote peer (e.g., a server in the
Internet). Observations with mail servers made by the
authors have shown that those spend a significant fraction
of mail download time with retrieving the respective
mailbox during the initialization phase (particularly, if
the user keeps copies of e-mails on the server). It is not
unusual that 60 seconds or more pass before the server
is ready to react to user commands—a time span during
which a car may have well passed through a connectivity
island. Similar considerations apply to heavily loaded
web (and other) servers. And, besides its load, congestion
on the server side access link may affect a server’s
responsiveness.

D. Session Layer Requirements

In [9], we have discussed general requirements on the
Drive-thru architecture: particularly to be independent of
hot-spot architectures and (W)ISPs and, as mentioned
above, to support existing operating systems and ex-
isting applications without modification. With this, we
have also motivated the case for an intermediary-based
solution to conceal the intermittent nature of connectivity
from user applications and servers. To achieve this
concealment, we have chosen to provide a dedicated
session protocol between Drive-thru client and proxy that
allows arbitrary applications to maintain their transport
connections persistently across connectivity periods and
in spite of sudden failures.

From the above application considerations, we have
gathered the following requirements for such a session
protocol in a Drive-thru environment:

• The protocol must provide persistent connections
across arbitrarily short connectivity periods and
offer reliable communications.

• The protocol must not rely on link or network
layer mobility mechanisms (such mechanisms are
expected to be orthogonal).

• The protocol must be able to deal with changing
IP addresses and port numbers and, therefore, must
provide network and transport layer independent
identification of endpoints.

• The protocol must be able to support any number of
applications and application connections in parallel.

• The management (set up, suspend, resume, tear-
down) of end-to-end transport/application connec-
tions must be efficient and incur as few round-trips
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as possible.6

• The protocol must allow for application-specific
hooks (application layer gateways, ALGs) to be
introduced at both Drive-thru client and proxy.

• The protocol should support suspending and resum-
ing application connections independently to allow
the user or applications to decide about relative
priorities of applications.

• The protocol must support strong user authentica-
tion, as system resources will be occupied at the
Drive-thru Proxy.

• The protocol must support confidentiality for those
applications that cannot rely on end-to-end applica-
tion layer security.

• The protocol should allow for providing hints for
cleaning up state at the Drive-thru proxy.

• The protocol must be able to work with perfor-
mance enhancing proxies (PEPs) that operate at the
link, network, or transport layer.

Finally, the session protocol should use existing un-
derlying transport protocols and be kept independent of
these so that suitable candidates can be selected. The
underlying transport is expected to provide the necessary
reliability, flow, and congestion control mechanisms to
enable efficient and fair communications.

III. RELATED WORK

The Drive-thru environment requires dealing with
numerous aspects of challenged networks at the same
time: error-prone wireless communications, connectivity
changing in a rapid and unpredictable fashion, user
mobility with changing network addresses, and intermit-
tent connectivity. A variety of work has been carried
out on these subjects, particularly regarding transport
layer (mostly TCP) optimizations for mobile users and
wireless links.

Improving TCP performance for wireless links (where
packet losses may be due to bit errors rather than being
caused by congestion) is addressed in various ways.
Optimizations at the (TCP-aware) link layer including
the Snoop protocol [13] and WTCP [14] are invisible

6For efficiency, a protocol implementation should support indi-
cations about changes in link layer connectivity and be able to
interact with system autoconfiguration (and, ultimately, the mobile
node’s authentication mechanisms). We have chosen to provide a
control interface (depicted in figure 2) that allows a “controller”
application to trigger protocol actions (such as suspending and
resuming communications with the Drive-thru proxy). Such a Drive-
thru controller may monitor network interfaces, react to explicit user
input, etc. Further considerations, however, are beyond the scope of
this paper.

to the end points: a dedicated agent on the path between
a mobile and a fixed station (usually in the base station
or access point) monitors (snoops on) the TCP communi-
cation, buffers TCP segments and transparently provides
retransmissions. The TCP peers are thus shielded from
segment loss that can be repaired by the intermediary
agent without loss of end-to-end semantics.

Split connection approaches operate at the transport
layer and, in the simplest case, link two independent TCP
connections, one for the wired and one for the wireless
side [15]. This allows each TCP connection to tune
its operating parameters to the respective environment
(fixed vs. wireless), to perform this adaptation efficiently
(particularly for the WLAN side due to the comparably
low RTT from the access point to the mobile node), and
even to negotiate different (optimized) TCP options for
the respective links (see, e.g., SCPS-TP for satellite links
[16]).

To address efficiency across the wireless link even bet-
ter, numerous split connection approaches substitute TCP
on the wireless link by a different protocol: MSOCKS
[17] provide a remote socket interface via the wireless
link, with the option of substituting the entire TCP/IP
protocol suite with a specifically optimized one. I-TCP
[18] additionally addresses handover of a Wireless Host
between two Mobile Support Routers: it is capable of
concealing losses during this handover period but re-
quires explicit connection state transfer from one Mobile
Support Router to the next. Mobile-TCP [19] uses a
dedicated wireless transport to reduce the processing
load and power consumption on the mobile device, make
most efficient use of the scarce mobile bandwidth, and
also supports the handover process.

Another class of protocols offers mobility support
at the transport layer. For example, the approach to
reliable network connections [20] allows for changing IP
addresses at either endpoint and maintain TCP connec-
tions state across those addresses. Migratory TCP [21]
supports transport and application layer state migration
between servers (rather than clients) when a client moves
to a different network and can potentially be better served
by a different peer. A transport-protocol independent ap-
proach for maintaining connections in spite of changing
IP addresses is being defined in the IETF as the Host
Identification Protocol (HIP) [22].

Intermittent connectivity may also be supported at the
transport layer: M-TCP [23] and Freeze TCP [24] allow
TCP connections to survive blackout periods. The M-
TCP approach uses an intermediary communicating via
a dedicated protocol (M-TCP) with the mobile node
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and is capable of freezing the TCP connection to the
fixed network in case the mobile node loses connec-
tivity (persistent mode). Freeze TCP achieves the same
functionality end-to-end but obviously requires sufficient
time to communicate the respective information. Those
approaches, however, do not consider implications of
outages at the application layer.

Performance enhancing proxies (PEPs) [15] may be
used with split connection approaches not just to adapt
to the characteristics of the wireless link but also to help
concealing intermittent connectivity from the mobile
user. Predictive prefetching of web pages (e.g., [12]) may
be employed for advance retrieval of content as may be
push techniques for cache prefilling to move contents
closer to the mobile nodes. Such approaches may help
(not just for web traffic) to make best use of the short
connectivity periods and provide contents ahead of time
so that it can be accessed when no longer connected.

Maintaining session contexts in the presence of in-
termittent transport layer connectivity is typically con-
sidered a session layer service, e.g., as historically
addressed by the OSI X.225 session layer protocol.
Conceptually, a session is characterized by a session
identifier, and a session layer protocol provides the
notion of synchronization points in order to enable
resuming sessions after loosing an underlying transport
connection. The Wireless Session Protocol (WSP, [25])
of the WAP suite is a specific implementation of a
session protocol—targeted at the WAP domain and thus
not directly applicable to the general Internet environ-
ment. In the WAP architecture, WSP and WTP (Wireless
Transaction Protocol [26]) are used as communication
substrate between a mobile device and a WAP gateway,
which translates WSP and WTP to HTTP.

Specific support for certain (legacy) applications such
as web browsing in mobile vehicular environments is
provided by the MOCCA architecture developed in the
FleetNet project [27], albeit with a focus on ad-hoc
communications, mobility-aware applications, and a ded-
icated fixed infrastructure.

Finally, a different communication paradigm has been
proposed for networking in challenged networks with
extreme communication delays and intermittent connec-
tivity [28]. Asynchronous (e-mail-style) communication
is assumed based upon which interworking between
internetworks is achieved: potentially large bundles of
data are moved between communicating peers with
intermediate nodes taking up responsibility for their
ultimate delivery from the source to the destination; end-
to-end communication optionally only takes place at the

application layer via explicit return receipts [29].
Our design of a persistent session protocol for Drive-

thru Internet presented in the next section draws on
many of these ideas but deliberately keeps other as-
pects orthogonal. The Drive-thru architecture follows a
split connection approach, currently employing standard
TCP implementations on both sides (to minimize the
necessary modifications and thus facilitate immediate
deployment). This allows for future link layer optimiza-
tions in the access point or elsewhere in the hot-spot to
improve performance. Our architecture may also substi-
tute TCP by a different underlying transport protocol
for the wireless link as long as the service of TCP
is preserved. Using our Drive-thru intermediaries, we
follow the transport layer approach towards supporting
mobility by introducing a dedicated session protocol on
top that is responsible for maintaining persistent connec-
tions in spite of changing IP addresses and intermittent
connectivity. Our architecture provides the necessary
hooks for application-layer enhancement (such as HTTP
prefetching and caching) that may, to some degree, be
modeled following the custody transfer mode of the
bundle protocol specification.

IV. PCMP: PERSISTENT CONNECTION

MANAGEMENT PROTOCOL

The Persistent Connection Management Protocol
(PCMP) provides the service of maintaining reliable
transport layer sessions (TCP sessions) in the presence
of intermittent connectivity and address changes. It is
used by PCMP entities, i.e., by a Drive-thru client and
a Drive-thru proxy, that manage persistent connections
on behalf of application components such as an SMTP
client on a vehicle laptop and an SMTP server run by
an e-mail service provider.

While the fundamental service of PCMP is to make
transport layer sessions persistent by providing a care-
ful transmission of bytes in TCP sessions, PCMP also
provides hooks for application layer protocols that can
be employed by application-specific modules (AMs)
in PCMP entities. This enables a Drive-thru proxy to
provide application specific functions such as careful
transaction completion, proxy services, caching, and
prefetching.

A. Protocol Architecture

The basic PCMP model is depicted in figure 5. A
Drive-thru client accepts TCP connections from any
number of clients, multiplexes them via a single Drive-
thru connection (Connectivity-loss resilient connection,
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CLRC), and the server demultiplexes the incoming in-
formation again into individual transport connections.
PCMP currently uses standard TCP (and, optionally,
TLS) as underlying transport for CLRCs but other reli-
able, congestion-controlled transport protocols (such as
SCTP) are conceivable as well.

Appl.
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Appl.

Server 1

Appl.
Server 2

AM 2

AM 1
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Fig. 5. The PCMP operation model

The CLRC provides an authenticated, reliable,
congestion-controlled channel for bidirectional commu-
nication and can host multiple application transport
sessions. The transport sessions inside the CLRC are ex-
plicitly created, suspended, resumed and finally removed;
they are independent of the CLRC they are created in:
once the TCP connection between a Drive-thru client
and the Drive-thru proxy fails, the CLRC implicitly
terminates, but the transport sessions continue to exist.
When re-connecting, the PCMP peers establish a new
CLRC, in which the persistent transport sessions can be
explicitly resumed. In addition to explicit termination,
a timeout mechanism can be employed to automatically
remove transport sessions, e.g., when the client has not
re-connected for several hours.

Decoupling of CLRCs and the persistent transport
sessions bears several advantages: The CLRC provides
the fundamental transport services for the PCMP peers,
including authentication, reliability, congestion control
and, potentially, encryption and data compression. Trans-
port sessions can be instantiated efficiently, and all
transport sessions are running under a common con-
gestion control regime. The decoupling of CLRCs and
transport sessions also allows a Drive-thru client to
deliberately instantiate multiple CLRCs, e.g., one per
network interface, and assign transport sessions to certain
CLRCs and network interfaces. Explicit resuming of
transport sessions after a re-connection removes the need
for actively probing each transport session upon CLRC
establishment: instead, transport sessions are resumed
when they are needed, i.e., when one peers wants to send
data, and are otherwise terminated when the correspond-

ing TCP connections are closed or when the timeout has
occurred.

The setup of “end-to-end” connections occurs in two
steps. First, the CLRC is established (either triggered by
an incoming client connection or by link layer detection
of an available network). The establishment of the CLRC
involves full (client and server) authentication potentially
incurring multiple round-trips. This stage is also used
to create a shared context for reliability, confidentiality,
compression, and other functions at both peers.

In the next step, individual transport sessions are set
up. Each application connection intended to run from a
client to a server is mapped to a single session within
the CLRC. The session setup procedure is simplified
and does not require additional round-trips. For each
individual transport session, both parties maintain a
session state. For example, it is monitored how many
bytes have been transmitted in each direction in order
to allow for a seamless resuming should the session be
paused or the CLRC be closed or interrupted.

B. Names and Addresses

In a PCMP session, there are several entities that have
to be identified:

• the Drive-thru client has to identify and authenticate
the Drive-thru server and vice versa;

• within CLRCs, persistent transport sessions have to
be identified, e.g., in order to resume a transport
session after CLRC re-establishment; and

• the application client has to identify the remote
application server to ultimately connect to.

PCMP is intended to be used in an environment
where client IP addresses may change frequently, e.g.,
resulting from a new network attachment in a WLAN
hot-spot. Hence, IP addresses cannot be used as unique
client identifiers. Instead, we use the concept of “peer
names”—globally unique identifiers that are independent
of a host’s IP address. For the current version of the
protocol specification, peer names are represented as
host names, e.g., on-the-road.example.com7 but
other types of host identifiers (such as public keys as
used by HIP [22]) are conceivable, too.

When initiating a CLRC, both peers exchange their
identifiers, and, based on these identifiers, a 32 bit CLRC
ID is calculated that is later used to identify messages
pertaining to the CLRC context.

7It should be noted that these do not have to be resolvable but are
merely used to identify endpoints.
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The creation of transport sessions within a CLRC is
parameterized with a session name (provided by the
session initiator) that uniquely identifies the session.
Because transport sessions may be suspended in a spe-
cific CLRC and resumed in another CLRC, e.g., after a
disconnection and re-connection cycle, the session names
have to be globally unique. Within the current CLRC, the
session is identified with a 32-bit session identifier (also
chosen by the initiator upon setup or resumption).

The actual communication endpoint addresses for
transport sessions (target addresses) are also provided
at transport session setup. A target address may be an
arbitrary URL or a tuple providing an IP address or
DNS name and a port number. In addition, the desired
transport protocol and (if applicable) the application
layer protocol can be specified.

C. Transport Session Management

The actual persistence management relies on the two
PCMP peers tracking the state of the CLRC and the
different application sessions. PCMP provides a reliable
transport between the PCMP peers (currently TCP/TLS).
A connection loss, e.g., determined by a TCP timeout
or derived from a link layer indication, results in a
termination of the CLRC and in an implicit suspension of
the transport sessions that have been used in the CLRC.

The data transmission in a transport session employs
a record marking principle. Each message provides a
sequence number (of the first byte in the message).
When a CLRC is lost due to disconnection, all embedded
transport sessions are suspended. When communication
is resumed in a new CLRC, e.g., because the Drive-
thru client has entered the next connectivity island,
the PCMP peers exchange the sequence numbers they
have successfully received so far. Thereby, a peer can
notice if the other peer is lacking data, and will re-
send the missing bytes before moving on with the data
transmission. This is accomplished by three mechanisms:

1) Each PCMP peer tracks the number of bytes sent
and received so far (per transport session);

2) each PCMP peer keeps a copy of yet-to-be-
acknowledged bytes in case a retransmission may
be required; and

3) PCMP provides an explicit acknowledgment mes-
sage that is intended as a reliability mechanism
indicating to a sender how many bytes have been
received by the peer.

Buffer management is an important function for im-
plementing persistent transport sessions: for each trans-
port session, a peer must maintain an independent buffer

for storing data that has been received locally, e.g.,
during a connectivity blackout period. There is also a
buffer for buffering data that has been received over
PCMP and is to be delivered to an endpoint, possibly
facing congestion. In order to manage the buffer sizes,
PCMP provides a flow control mechanism, implemented
by a receive window.

D. Protocol Operation

Application
Client

Application
Server

Drive-thru
Client

Drive-thru
Proxy

SYN-ACK

SYN-ACK

App.Req.

CLRC_SETUP

SETUP(conn) + DATA
SYN-ACK

ACCEPT
App.Req.

A
p

p
lic

at
io

n
 R

es
p

o
n

se

DATA

SYN-ACK

CLRC_SETUP

FIN-ACKSETUP(resume)

ACCEPT

C
o

n
n

ec
ti

vi
ty

 
T

ri
g

g
er

DATA + FINFIN-ACK

Conn.
Lost

(ACK)

DATA

Fig. 6. The PCMP operation example

Figure 6 depicts a sample PCMP message exchange8:
A client application is initiating a TCP connection, e.g.,
for an HTTP transaction, to a server in the fixed network.
The application is configured to use the Drive-thru client
(PCMP client) as a proxy. The Drive-thru client accepts
the incoming TCP connection, and the client application
transmits the first application protocol request, e.g., an
HTTP GET request. As soon as connectivity is available,
the Drive-thru client initiates a TCP connection to its

8The complete PCMP operation is described in the
PCMP specification that is available at http://www.drive-thru-
internet.org/spec.html.
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configured Drive-thru proxy in the fixed network and
establishes a PCMP session by creating a CLRC, and
both Drive-thru client and Drive-thru proxy authenticate
each other.

After the CLRC has been established, the Drive-thru
client establishes a transport session for the TCP connec-
tion by specifying the desired endpoint address and by
assigning a transport session ID. The setup message for
the transport session can also include a payload, e.g., the
first HTTP request. At the Drive-thru proxy, the transport
session is associated to the user (not to the current
CLRC). A TCP connection to the application server is
set up and the result is sent back to the Drive-thru client.
The data that has been received so far (the HTTP request)
is sent to the application server, where it is processed and
answered. The Drive-thru proxy receives data on its TCP
connection to the application server and forwards it over
PCMP to the Drive-thru client.

During the transmission of the response the TCP
connection between the Drive-thru client and the Drive-
thru proxy fails, e.g., because the mobile user leaves a
WLAN connectivity island. The CLRC is terminated at
both peers, but the transport session state is maintained.
When connectivity has been recovered, e.g., sensed and
triggered by a Drive-thru “Controller” as depicted in
figure 2, the Drive-thru clients sets up a new TCP
connection to the Drive-thru proxy and establishes a new
CLRC. The transport session for the HTTP transaction
is explicitly resumed (in this example initiated by the
Drive-thru client), and the transmission of the outstand-
ing bytes can continue.

After the response from the application server has
been received by the Drive-thru proxy, the application
server closes the TCP connection, which leads to a
PCMP transport session tear-down, and, finally to termi-
nation of the TCP connection between Drive-thru client
and application client.

E. Application-specific Support

PCMP’s fundamental persistent connection manage-
ment service can be augmented by application-specific
support. In general, PCMP provides persistent connec-
tions that transparently outlive disconnection phases.
While this basic service is useful because users, i.e., the
users’ applications, do not have to care about discon-
nections, lost communication contexts due to address
changes, etc., additional functions may be required in
order to make the persistent connection service useful
for applications.

For example, many application protocol implementa-
tions employ application layer timeouts for transactions
and will consider a transaction failed if no answer has
been received for a certain duration despite the under-
lying transport association still being alive. Typically,
an implementation will retry the given transaction at a
later time. An application specific support module in the
Drive-thru client could provide the following extensions
in order to enhance the overall application behavior in
these scenarios:

1) The Drive-thru client could notice the transaction
interruption by the application and then later, upon
entering the next connectivity island, proactively
complete the transaction and cache the result.
When the application later retries the transaction
(which may or may not be within a connectivity
island), the Drive-thru client can provide the result
without having to complete the transaction end-to-
end.

2) Some application layer protocols such as HTTP al-
low for finalizing partially completed transactions,
e.g., by using the HTTP Range header in HTTP
GET requests. An HTTP-enabled Drive-thru client
could thus optimize the use of scarce network re-
sources by remembering partial results from earlier
requests and thus enhance the HTTP protocol op-
eration accordingly. Also, HTTP prefetching may
be employed in the Drive-thru proxy (even while
the Drive-thru client is disconnected) and, at the
next opportunity, the results pushed to and cached
at the Drive-thru client to bundle traffic for the
short connection periods.

It should be noted that application specific functions
can (or need to) be implemented in both PCMP peers,
i.e., the Drive-thru client and the Drive-thru proxy. Many
application layer protocol already provide the notion of
application layer intermediaries such as HTTP proxies,
SMTP relays etc., and the PCMP peers are natural places
for providing these services. For example, the Internet e-
mail architecture is based on SMTP relays that provide
a careful message forwarding, that has been designed
for robustness in case servers become unavailable or
networks become unreachable.

The usage of these intermediaries can be explicitly
configured at applications. However, there are also ap-
plication layer enhancements that can be applied trans-
parently such as POP3/IMAP4 prefetching at the Drive-
thru proxy and content transcoding and compression. [7]
provides a taxonomy of application classes and discusses
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ways of how these applications can be made to work in
Drive-thru environments.

PCMP supports these application-specific functions by
application protocol specifiers that can be provided by a
PCMP peer upon establishing a new transport session,
thus enabling peers to identify the used application
layer protocol and to invoke application specific support
functions.

V. IMPLEMENTATION AND TESTS

We have implemented PCMP and performed some
measurements in our Drive-thru environment as well
as in a simple simulation setting in the lab in order
to evaluate the protocol design and to compare the
performance against our first measurements.

A. Implementation Outline

So far, we have developed two PCMP implemen-
tations: a Microsoft .NET based implementation for
MS Windows systems and a C++ implementation for
UNIX-based systems. While we have tested both imple-
mentations in various simple nomadic scenarios (using
Ethernet and WLAN access links), we have carried out
simulation tests and real-world Drive-thru measurements
only for the latter.

The PCMP implementations consist of two PCMP
peers that are largely symmetric at the PCMP level: the
PCMP client (Drive-thru client) and the PCMP server
(Drive-thru proxy). They communicate via plain TCP
connections (TLS is yet to be added). The client acts
as a TCP relay and can be configured to establish
PCMP connections to a PCMP server on a specific
host. Currently, both implementations support the funda-
mental persistent connection service and offer a plug-in
framework for application-specific support. Plugins for
SMTP and POP3 are already available for the .NET
implementation. Further application-specific support is
under development.

Furthermore, hooks for detecting network access (as
well as disconnection) are provided by means of support
for external trigger events from a “controller” (see figure
2). For disconnections, the PCMP client also reacts to
operating system error indications for the underlying
TCP connection (as provided by MS Windows) and TCP
timeouts. Without a controller, the Drive-thru periodi-
cally attempts to establish a new connection (initially
and after an interruption) and determines disconnection
solely by operating system means.

Application clients may use the Drive-thru client as
a proxy (e.g. an HTTP proxy) and we currently rely

on the application peer to explicitly contact the Drive-
thru client. While not yet implemented, connections
originating from the mobile application peer may also
be intercepted transparently so that no proxy support
by the application is needed—as it is commonly done
for performance enhancing proxies, e.g., for satellite
networks.

We have performed a set of fundamental functional
tests and have developed some test applications in order
to validate the protocol design and the implementation
in general. First tests involved a simulation of inter-
mittent connectivity, e.g., by disconnecting the peers
programmatically for random amounts of time. We have
also implemented a simple simulation of a Drive-thru
environment using a remotely controlled WLAN access
point and a program script reproducing a car’s circular
track on a Northern German autobahn with different
connection and disconnection times.

For our initial tests and our real-world measurements,
we have used our TCP traffic generator (tcpx) and manu-
ally configured the PCMP entities to relay TCP connec-
tions to a specific test server. Initial test applications to
validate the PCMP functionality included unidirectional
TCP data transmission, web browsing (by using the
PCMP client as a proxy, as described above), and a
remote file system synchronization application where
two application processes synchronize a distributed file
system despite intermittent connectivity. We have also
used regular e-mail clients running SMTP and POP3
with and without support of the corresponding plug-in.

B. Performance Measurements

We have carried out our PCMP performance measure-
ments in the original Drive-thru scenario as described
in section II. Instead of measuring the transmission
characteristics for passing a single connectivity island,
we have passed multiple connectivity islands with about
3 minutes of no connectivity between islands.9 In the
lab, we have also tested PCMP with larger disconnection
periods.

We have used the same tools for generating TCP
traffic and used identical traffic patterns as for our single-
pass tests. During the disconnection phases, the PCMP
entities have maintained the TCP connections to their
local peers, i.e., the PCMP client has maintained the
TCP connection to the client application and the PCMP

9In fact, we have installed a single connectivity island and then
turned the car after each passing. The disconnection period stems
from the travel time from the connectivity island to the next exit and
back.
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server has maintained the TCP connection to the server
application. As both PCMP entities have ceased to read
from their TCP socket (of the local TCP connection),
TCP flow control has paused sending of the local peer.
After a disconnection, the PCMP client has periodically
tried to establish a new connection to the PCMP server.
After successful re-establishment of the connection, a
new CLRC context has been created and the applica-
tion session has been resumed. The PCMP peers have
continued to read from the socket bound to their local
TCP connection, which has led to a re-activation of the
application client and server.

PCMP Operation at 120km/h
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Fig. 7. PCMP throughput measurement results

Figure 7 depicts the TCP throughput for a series of
Drive-thru passings in a single application session and
the cumulative throughput for the complete measure-
ment. Each Drive-thru pass is shown as a peak in the
throughput graph and represents the observed throughput
when passing the connectivity island at 120 km/h. As
an long-term average, we have observed a throughput of
about 1 MBit/s (including all disconnection phases). The
individual peaks for each pass are principally similar to
those observed for a single pass (as depicted in figure
3). However, the maximum transmission rate is about
10 MBit/s, while for our non-PCMP measurements, we
have been able to obtain about 16 MBit/s.

This can only partly ascribed to the PCMP protocol
overhead that is needed to transmit the data between the
two PCMP peers: The additional PCMP header of 22
bytes makes up about 1.5 % of the data traffic and the
increased amount of data leads to additional IP packets
being sent (thus incurring additional IP and TCP header
overhead). Also, slight measurement inaccuracies are
expected as our TCP test applications have been sending
and receiving data segments of 1460 bytes (which leads

to a less efficient segmentation when the PCMP headers
are added). An analysis of the packet traces using
Ethereal shows that the major impact comes from the
limited TCP window size (of just 18 KB) on the receiving
side which causes regular blocking of the PCMP sender.
The receiver’s TCP kernel buffer not being emptied
sufficiently fast by the Drive-thru client may be due
to its experimental (non-optimized) nature peered with
the overhead of additional context switches when locally
forwarding the data to the TCP test application. 10

PCMP Operation under Different Conditions
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Fig. 8. PCMP throughput measurement results at different conditions

Figure 8 depicts PCMP behavior for different network
and driving conditions. The last two passings were
performed at 180 km/h (instead of 120 km/h)—we can
identify a significant decrease in both the maximum
throughput and the cumulative throughput for these pass-
ings. However, we still have achieved TCP transmission
rates of about 6 MBit/s.

While these experiments are not meant to provide a
statistical analysis of PCMP, they clearly show that reg-
ular applications can exploit connection chains involving
two intermediaries and yet provide decent performance
end-to-end in spite of intermittent and rapidly changing
connectivity patterns. In addition, our qualitative tests
using the same component constellation in a lab setup
with simulated connectivity interruptions have proven the
Drive-thru architecture workable for e-mail transmission
(using SMTP) and retrieval (using POP3), for directory
synchronization, and (so far without plug-in support) for

10For the total data volume, only a minimal additional penalty is
expected from the PCMP operation itself: in the absence of explicit
triggers, the CLRC setup retry interval incurs some extra delay and
the CLRC setup handshake adds another round-trip.
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HTTP retrieval.11

In summary, our first PCMP tests have been quite con-
vincing in the lab as well as on the road: We were able to
maintain an application layer session throughout a cycle
of network attachments and disconnections and have
been able to transmit significant amounts of data and
work with different existing applications. On the road,
we have achieved an average throughput of 1 MBit/s—
an encouraging value given the rather long phases of
no connectivity (some 80 % of the operation time as
per figures 7 and 8). The observed peak performance
difference calls for further analysis and particularly for
future optimizations in our PCMP implementation.

VI. CONCLUSION

We have presented a transport and application layer
solution for disconnection tolerant networking in a par-
ticularly challenging environment. The Drive-thru Inter-
net environment exhibits frequent disconnections, com-
paratively high data rates and, a diversity of network
operators, network attachment procedures and network
topologies.

Although we have shown that a single Drive-thru con-
nectivity islands may allow for transmitting significant
amounts of data (up to 70 MB per connectivity island),
applications, i.e., users, cannot take much advantage of
it without additional support. We have shown that, in
many cases, the limiting factor is not the applications
themselves—many transactional applications could be
made to work with only little adaptations. The funda-
mental issue is that transport protocols and computing
environments are designed with the notion of permanent
(or: seamless) connectivity in mind—a concept that is in
fact only realistic for controlled environments but begins
to fail for any serious degree of mobility in 2G networks,
let alone WLAN-based Drive-thru environments.

A set of approaches have been developed for deal-
ing with aspects of challenged networks, ranging from
improving TCP performance in heterogeneous networks
by applying split connection approaches, to new host
mobility solutions, to performance enhancing proxies, to
protocols for session management, and to network archi-
tectures for interplanetary (and other delay-challenged)
networks. We have shown that, although our approach
draws on many of these ideas, none of the presented
approaches is directly applicable.

11In this minimalistic HTTP case, web browser timeouts are still
relevant—which we seek to address by dedicated HTTP plugins in
the future, e.g. as in [30].

What is needed is an automated connectivity manage-
ment that liberates the user from manually attaching to
WLAN hot-spots and from manually triggering applica-
tion operation. The automated connectivity management
must also shield transport protocols from loss of con-
nectivity and provide support for applications in order
to use connectivity phases efficiently.

The Persistent Connection Management Protocol
(PCMP) is a key component in our Drive-thru Internet ar-
chitecture and acts as a “session” protocol that offers per-
sistent end-to-end communications even in the presence
of interruptions. PCMP provides the service of managing
intermittent connectivity for transport layer endpoints. It
is used by PCMP entities, i.e., by a Drive-thru client
and a Drive-thru proxy—transport and application layer
intermediaries that manage persistent connections on
behalf of communicating nodes and their applications.

Our measurement results from first lab and real-world
tests with PCMP implementations have validated the
overall approach: We have been able to maintain a
persistent application session throughout a period of
several disconnections and new network attachments.
The observed data rate when passing through a single
connectivity island under different conditions was rea-
sonable; nevertheless, we believe that some protocol op-
timizations are still possible. In particular, we are looking
into basing PCMP on SCTP and adding TLS support for
strong (certificate-based) mutual authentication of Drive-
thru client and proxy.

In addition to optimizing the PCMP specification and
our implementations for performance, our next steps in-
clude the advancement of our local endpoint architecture.
We are already able to automate the WLAN hot-spot
association procedure for certain environments and are
currenly working on support for additional authentication
and authorization procedures as well as on approaches
for (wireless Internet) service announcements in hot-
spots [8]. Another activity involves the development of
a local architecture for disseminating link layer events,
such as link on and link off to higher layers
and applications. Moreover, we are implementing further
application-specific PCMP support functions, such as
HTTP prefetching and caching schemes and push-to-talk
voice applications, and are developing a corresponding
PCMP server architecture that allows to include new
application modules on-demand. The resulting Drive-
thru infrastructure should then address the most press-
ing applications for nomadic users and improve their
working conditions on the road in spite of intermittent
connectivity.
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